| The effect of Ni- and Mo-based materials on thermochemical sulfate reduction by glycerol under hydrothermal process conditions
Chang, C., Vogel, F., Kröcher, O., & Baudouin, D. (2024). The effect of Ni- and Mo-based materials on thermochemical sulfate reduction by glycerol under hydrothermal process conditions. Chemical Engineering Research and Design, 205, 459-466. https://doi.org/10.1016/j.cherd.2024.03.024 |
| Sulfur speciation in dacitic melts using X-ray absorption near-edge structure spectroscopy of the S <em>K</em>-edge (S-XANES): Consideration of radiation-induced changes and the implications for sulfur in natural arc systems
Kleinsasser, J. M., Konecke, B. A., Simon, A. C., Northrup, P., Lanzirotti, A., Newville, M., … Holtz, F. (2024). Sulfur speciation in dacitic melts using X-ray absorption near-edge structure spectroscopy of the S K-edge (S-XANES): Consideration of radiation-induced changes and the implications for sulfur in natural arc systems. American Mineralogist, 109(8), 1359-1374. https://doi.org/10.2138/am-2022-8833 |
| Steam-oxygen gasification of sewage sludge: reduction of tar, H<sub>2</sub>S and COS with limestone as bed additive
Schmid, M., Hafner, S., Biollaz, S., Schneebeli, J., Waizmann, G., & Scheffknecht, G. (2021). Steam-oxygen gasification of sewage sludge: reduction of tar, H2S and COS with limestone as bed additive. Biomass and Bioenergy, 150, 106100 (10 pp.). https://doi.org/10.1016/j.biombioe.2021.106100 |
| Effect of redox conditions on the structure and solubility of sulfur- and selenium-AFm phases
Nedyalkova, L., Lothenbach, B., Renaudin, G., Mäder, U., & Tits, J. (2019). Effect of redox conditions on the structure and solubility of sulfur- and selenium-AFm phases. Cement and Concrete Research, 123, 105803 (14 pp.). https://doi.org/10.1016/j.cemconres.2019.105803 |
| Incorporation and subsequent diagenetic alteration of sulfur in <em>Arctica islandica</em>
Fichtner, V., Strauss, H., Mavromatis, V., Dietzel, M., Huthwelker, T., Borca, C. N., … Immenhauser, A. (2018). Incorporation and subsequent diagenetic alteration of sulfur in Arctica islandica. Chemical Geology, 482, 72-90. https://doi.org/10.1016/j.chemgeo.2018.01.035 |
| Sulfur-33 isotope tracing of the hydrodesulfurization process: insights into the reaction mechanism, catalyst characterization and improvement
Sushkevich, V. L., Popov, A. G., & Ivanova, I. I. (2017). Sulfur-33 isotope tracing of the hydrodesulfurization process: insights into the reaction mechanism, catalyst characterization and improvement. Angewandte Chemie International Edition, 56(36), 10872-10876. https://doi.org/10.1002/anie.201704027 |
| Investigating the distribution of chemical forms of sulfur in prostate cancer tissue using X-ray absorption spectroscopy
Czapla-Masztafiak, J., Okoń, K., Gałka, M., Huthwelker, T., & Kwiatek, W. M. (2016). Investigating the distribution of chemical forms of sulfur in prostate cancer tissue using X-ray absorption spectroscopy. Applied Spectroscopy, 70(2), 264-271. https://doi.org/10.1177/0003702815620128 |
| Organic-sulfur poisoning of solid oxide fuel cell operated on bio-syngas
Madi, H., Diethelm, S., Ludwig, C., & Van Herle, J. (2016). Organic-sulfur poisoning of solid oxide fuel cell operated on bio-syngas. International Journal of Hydrogen Energy, 41(28), 12231-12241. https://doi.org/10.1016/j.ijhydene.2016.06.014 |
| On-stream regeneration of a sulfur-poisoned ruthenium-carbon catalyst under hydrothermal gasification conditions
Dreher, M., Steib, M., Nachtegaal, M., Wambach, J., & Vogel, F. (2014). On-stream regeneration of a sulfur-poisoned ruthenium-carbon catalyst under hydrothermal gasification conditions. ChemCatChem, 6(2), 626-633. https://doi.org/10.1002/cctc.201300791 |
| Sulfur containing organic compounds in the raw producer gas of wood and grass gasification
Kaufman Rechulski, M. D., Schildhauer, T. J., Biollaz, S. M. A., & Ludwig, C. (2014). Sulfur containing organic compounds in the raw producer gas of wood and grass gasification. Fuel, 128, 330-339. https://doi.org/10.1016/j.fuel.2014.02.038 |
| Influence of the support on sulfur poisoning and regeneration of Ru catalysts probed by sulfur K-edge X-ray absorption spectroscopy
König, C. F. J., Schuh, P., Huthwelker, T., Smolentsev, G., Schildhauer, T. J., & Nachtegaal, M. (2014). Influence of the support on sulfur poisoning and regeneration of Ru catalysts probed by sulfur K-edge X-ray absorption spectroscopy. Catalysis Today, 229, 56-63. https://doi.org/10.1016/j.cattod.2013.09.065 |
| Flavoenzyme-catalyzed formation of disulfide bonds in natural products
Scharf, D. H., Groll, M., Habel, A., Heinekamp, T., Hertweck, C., Brakhage, A. A., & Huber, E. M. (2014). Flavoenzyme-catalyzed formation of disulfide bonds in natural products. Angewandte Chemie International Edition, 53(8), 2221-2224. https://doi.org/10.1002/anie.201309302 |
| Air side contamination in Solid Oxide Fuel Cell stack testing
Schuler, J. A., Gehrig, C., Wuillemin, Z., Schuler, A. J., Wochele, J., Ludwig, C., … Van herle, J. (2011). Air side contamination in Solid Oxide Fuel Cell stack testing. Journal of Power Sources, 196(17), 7225-7231. https://doi.org/10.1016/j.jpowsour.2010.10.058 |
| Biomass-integrated gasification fuel cell systems - part 1: definition of systems and technical analysis
Nagel, F. P., Schildhauer, T. J., & Biollaz, S. M. A. (2009). Biomass-integrated gasification fuel cell systems - part 1: definition of systems and technical analysis. International Journal of Hydrogen Energy, 34(16), 6809-6825. https://doi.org/10.1016/j.ijhydene.2009.05.125 |
| Biomass-integrated gasification fuel cell systems - part 2: economic analysis
Nagel, F. P., Schildhauer, T. J., McCaughey, N., & Biollaz, S. M. A. (2009). Biomass-integrated gasification fuel cell systems - part 2: economic analysis. International Journal of Hydrogen Energy, 34(16), 6826-6844. https://doi.org/10.1016/j.ijhydene.2009.05.139 |
| The impact of sulfur on the performance of a solid oxide fuel cell (SOFC) system operated with hydrocarboneous fuel gas
Nagel, F. P., Schildhauer, T. J., Sfeir, J., Schuler, A., & Biollaz, S. M. A. (2009). The impact of sulfur on the performance of a solid oxide fuel cell (SOFC) system operated with hydrocarboneous fuel gas. Journal of Power Sources, 189(2), 1127-1131. https://doi.org/10.1016/j.jpowsour.2008.12.092 |
| Molecular speciation of sulfur in solid oxide fuel cell anodes with X-ray absorption spectroscopy
Braun, A., Janousch, M., Sfeir, J., Kiviaho, J., Noponen, M., Huggins, F. E., … Graule, T. (2008). Molecular speciation of sulfur in solid oxide fuel cell anodes with X-ray absorption spectroscopy. Journal of Power Sources, 183(2), 564-570. https://doi.org/10.1016/j.jpowsour.2008.05.048 |
| Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy
Struis, R. P. W. J., Ludwig, C., Barrelet, T., Krähenbühl, U., & Rennenberg, H. (2008). Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy. Science of the Total Environment, 403(1-3), 196-206. https://doi.org/10.1016/j.scitotenv.2008.05.034 |
| Muon-spin relaxation in sulfur
Reid, I. D., Cox, S. F. J., Jayasooriya, U. A., & Zimmermann, U. (2006). Muon-spin relaxation in sulfur. Physica B: Condensed Matter, 374-375, 408-411. https://doi.org/10.1016/j.physb.2005.11.118 |
| Manganese based materials for diesel exhaust SO<sub>2</sub> traps
Tikhomirov, K., Kröcher, O., Elsener, M., Widmer, M., & Wokaun, A. (2006). Manganese based materials for diesel exhaust SO2 traps. Applied Catalysis B: Environmental, 67(3-4), 160-167. https://doi.org/10.1016/j.apcatb.2006.03.025 |