Active Filters

  • (-) Keywords = superconducting magnets
Search Results 1 - 8 of 8
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Longitudinal gradient bend magnets for the upgrade of the Swiss Light Source storage ring
Calzolaio, C., Gabard, A., Lerch, P., Montenero, G., Negrazus, M., Sanfilippo, S., … Vrankovic, V. (2020). Longitudinal gradient bend magnets for the upgrade of the Swiss Light Source storage ring. IEEE Transactions on Applied Superconductivity, 30(4), 4100905 (5 pp.). https://doi.org/10.1109/TASC.2020.2973113
User defined elements in ANSYS for 2D multiphysics modeling of superconducting magnets
Brouwer, L., Arbelaez, D., Auchmann, B., Bortot, L., & Stubberud, E. (2019). User defined elements in ANSYS for 2D multiphysics modeling of superconducting magnets. Superconductor Science and Technology, 32(9), 095011 (12 pp.). https://doi.org/10.1088/1361-6668/ab2e63
Coil manufacturing process of the first 1-m-long Canted-Cosine-Theta (CCT) model magnet at PSI
Montenero, G., Auchmann, B., Arbelaez, D., Brouwer, L., Caspi, S., Felder, R., … Swanson, J. H. (2019). Coil manufacturing process of the first 1-m-long Canted-Cosine-Theta (CCT) model magnet at PSI. IEEE Transactions on Applied Superconductivity, 29(5), 4002906 (6 pp.). https://doi.org/10.1109/TASC.2019.2897326
Large energy acceptance gantry for proton therapy utilizing superconducting technology
Nesteruk, K. P., Calzolaio, C., Meer, D., Rizzoglio, V., Seidel, M., & Schippers, J. M. (2019). Large energy acceptance gantry for proton therapy utilizing superconducting technology. Physics in Medicine and Biology, 64(17), 175007 (13 pp.). https://doi.org/10.1088/1361-6560/ab2f5f
The CLIQ quench protection system applied to the 16 T FCC-hh dipole magnets
Prioli, M., Salmi, T., Auchmann, B., Bortot, L., Maciejewski, M., Verweij, A., … Munilla, J. (2019). The CLIQ quench protection system applied to the 16 T FCC-hh dipole magnets. IEEE Transactions on Applied Superconductivity, 29(8), 4703209 (9 pp.). https://doi.org/10.1109/TASC.2019.2930705
Analysis of losses in superconducting magnets based on the Nb<sub>3</sub>Sn Rutherford cable configuration for future gantries
Breschi, M., Cavallucci, L., Ribani, P. L., Calzolaio, C., & Sanfilippo, S. (2018). Analysis of losses in superconducting magnets based on the Nb3Sn Rutherford cable configuration for future gantries. Superconductor Science and Technology, 31(1), 015005 (12 pp.). https://doi.org/10.1088/1361-6668/aa95fd
Mechanical structure for the PSI Canted-Cosine-Theta (CCT) magnet program
Montenero, G., Auchmann, B., Brouwer, L., Calzolaio, C., Caspi, S., Rolando, G., & Sanfilippo, S. (2018). Mechanical structure for the PSI Canted-Cosine-Theta (CCT) magnet program. IEEE Transactions on Applied Superconductivity, 28(3), 4002805 (5 pp.). https://doi.org/10.1109/TASC.2017.2787596
Design study of a 3.5 T superconducting sector magnet in a 450 MeV/nucl booster cyclotron for carbon ion therapy
Sanfilippo, S., Schippers, J. M., Negrazus, M., Gabard, A., Calvi, M., & Vrankovic, V. (2011). Design study of a 3.5 T superconducting sector magnet in a 450 MeV/nucl booster cyclotron for carbon ion therapy. IEEE Transactions on Applied Superconductivity, 21(3 PART 2), 1838-1843. https://doi.org/10.1109/TASC.2010.2083628