Active Filters

  • (-) Keywords = thermodynamic modelling
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Thermodynamic modelling of alkali-silica reactions in blended cements
Jin, H., Ghazizadeh, S., & Provis, J. L. (2024). Thermodynamic modelling of alkali-silica reactions in blended cements. Cement and Concrete Research, 181, 107543 (13 pp.). https://doi.org/10.1016/j.cemconres.2024.107543
Alkali-activated blast furnace ferronickel slag for Cr immobilization
Wang, D., Ma, B., Pang, L., & Wang, Q. (2024). Alkali-activated blast furnace ferronickel slag for Cr immobilization. Cement and Concrete Composites, 150, 105560 (10 pp.). https://doi.org/10.1016/j.cemconcomp.2024.105560
Speciation of iron(II/III) at the iron-cement interface: a review
Wieland, E., Miron, G. D., Ma, B., Geng, G., & Lothenbach, B. (2023). Speciation of iron(II/III) at the iron-cement interface: a review. Materials and Structures, 56(2), 31 (24 pp.). https://doi.org/10.1617/s11527-023-02115-x
Kinetics of Al uptake in synthetic calcium silicate hydrate (C-S-H)
Yan, Y., Bernard, E., Miron, G. D., Rentsch, D., Ma, B., Scrivener, K., & Lothenbach, B. (2023). Kinetics of Al uptake in synthetic calcium silicate hydrate (C-S-H). Cement and Concrete Research, 172, 107250 (39 pp.). https://doi.org/10.1016/j.cemconres.2023.107250
A structurally-consistent CASH+ sublattice solid solution model for fully hydrated C-S-H phases: thermodynamic basis, methods, and Ca-Si-H<sub>2</sub>O core sub-model
Kulik, D. A., Miron, G. D., & Lothenbach, B. (2022). A structurally-consistent CASH+ sublattice solid solution model for fully hydrated C-S-H phases: thermodynamic basis, methods, and Ca-Si-H2O core sub-model. Cement and Concrete Research, 151, 106585 (21 pp.). https://doi.org/10.1016/j.cemconres.2021.106585
Constraining the process of intracontinental subduction in the Austroalpine Nappes: implications from petrology and Lu-Hf geochronology of eclogites
Miladinova, I., Froitzheim, N., Nagel, T. J., Janák, M., Fonseca, R. O. C., Sprung, P., & Münker, C. (2022). Constraining the process of intracontinental subduction in the Austroalpine Nappes: implications from petrology and Lu-Hf geochronology of eclogites. Journal of Metamorphic Geology, 40(3), 423-456. https://doi.org/10.1111/jmg.12634
Extensions of CASH+ thermodynamic solid solution model for the uptake of alkali metals and alkaline earth metals in C-S-H
Miron, G. D., Kulik, D. A., Yan, Y., Tits, J., & Lothenbach, B. (2022). Extensions of CASH+ thermodynamic solid solution model for the uptake of alkali metals and alkaline earth metals in C-S-H. Cement and Concrete Research, 152, 106667 (27 pp.). https://doi.org/10.1016/j.cemconres.2021.106667
Porewater compositions of Portland cement with and without silica fume calculated using the fine-tuned CASH+NK solid solution model
Miron, G. D., Kulik, D. A., & Lothenbach, B. (2022). Porewater compositions of Portland cement with and without silica fume calculated using the fine-tuned CASH+NK solid solution model. Materials and Structures, 55(8), 212 (13 pp.). https://doi.org/10.1617/s11527-022-02045-0
Mechanisms and thermodynamic modelling of iodide sorption on AFm phases
Nedyalkova, L., Tits, J., Renaudin, G., Wieland, E., Mäder, U., & Lothenbach, B. (2022). Mechanisms and thermodynamic modelling of iodide sorption on AFm phases. Journal of Colloid and Interface Science, 608, 683-691. https://doi.org/10.1016/j.jcis.2021.09.104
Al uptake in calcium silicate hydrate and the effect of alkali hydroxide
Yan, Y., Ma, B., Miron, G. D., Kulik, D. A., Scrivener, K., & Lothenbach, B. (2022). Al uptake in calcium silicate hydrate and the effect of alkali hydroxide. Cement and Concrete Research, 162, 106957 (17 pp.). https://doi.org/10.1016/j.cemconres.2022.106957
Modelling of fission products release in VERDON-1 experiment with cGEMS: coupling of severe accident code MELCOR with GEMS thermodynamic modelling package
Nichenko, S., Kalilainen, J., Fernandez Moguel, L., & Lind, T. (2021). Modelling of fission products release in VERDON-1 experiment with cGEMS: coupling of severe accident code MELCOR with GEMS thermodynamic modelling package. Annals of Nuclear Energy, 152, 107972 (11 pp.). https://doi.org/10.1016/j.anucene.2020.107972
Uptake of iodide by calcium aluminate phases (AFm phases)
Nedyalkova, L., Lothenbach, B., Geng, G., Mäder, U., & Tits, J. (2020). Uptake of iodide by calcium aluminate phases (AFm phases). Applied Geochemistry, 116, 104559 (13 pp.). https://doi.org/10.1016/j.apgeochem.2020.104559
Quantitative disentanglement of nanocrystalline phases in cement pastes by synchrotron ptychographic X-ray tomography
Cuesta, A., De la Torre, Á. G., Santacruz, I., Diaz, A., Trtik, P., Holler, M., … Aranda, M. A. G. (2019). Quantitative disentanglement of nanocrystalline phases in cement pastes by synchrotron ptychographic X-ray tomography. IUCrJ, 6(3), 473-491. https://doi.org/10.1107/S2052252519003774
Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials
Lothenbach, B., Kulik, D. A., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B., … Myers, R. J. (2019). Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cement and Concrete Research, 115, 472-506. https://doi.org/10.1016/j.cemconres.2018.04.018
Hydration of a silica fume blended low-alkali shotcrete cement
Lothenbach, B., Rentsch, D., & Wieland, E. (2014). Hydration of a silica fume blended low-alkali shotcrete cement. Physics and Chemistry of the Earth, 70-71, 3-16. https://doi.org/10.1016/j.pce.2013.09.007
Modelling bentonite-water interactions at high solid/liquid ratios: Swelling and diffuse double layer effects
Wersin, P., Curti, E., & Appelo, C. A. J. (2004). Modelling bentonite-water interactions at high solid/liquid ratios: Swelling and diffuse double layer effects. Applied Clay Science, 26(1-4), 249-257. https://doi.org/10.1016/j.clay.2003.12.010
Geochemical modelling of repository systems: limitations of the thermodynamic approach
Berner, U. (1998). Geochemical modelling of repository systems: limitations of the thermodynamic approach. Radiochimica Acta, 82(s1), 423-428. https://doi.org/10.1524/ract.1998.82.special-issue.423