| Polonium behavior following a vacuum window rupture in a lead-bismuth eutectic based accelerator driven system
Karlsson, E., Neuhausen, J., Aerts, A., Danilov, I. I., Eichler, R., Türler, A., & Vögele, A. (2021). Polonium behavior following a vacuum window rupture in a lead-bismuth eutectic based accelerator driven system. Applied Radiation and Isotopes, 168, 109551 (7 pp.). https://doi.org/10.1016/j.apradiso.2020.109551 |
| Quantitative analysis of rhenium in irradiated tungsten
Warnicke, P., Ramanantoanina, H., Li, J., Dai, Y., & Pouchon, M. A. (2021). Quantitative analysis of rhenium in irradiated tungsten. Journal of Nuclear Materials, 554, 153014 (9 pp.). https://doi.org/10.1016/j.jnucmat.2021.153014 |
| Radionuclide chemistry in nuclear facilities based on heavy liquid metal coolants: past, present and future
Neuhausen, J. (2020). Radionuclide chemistry in nuclear facilities based on heavy liquid metal coolants: past, present and future. Chimia, 74(12), 976-983. https://doi.org/10.2533/chimia.2020.976 |
| The effectiveness of full actinide recycle as a nuclear waste management strategy when implemented over a limited timeframe – Part II: thorium fuel cycle
Lindley, B. A., Fiorina, C., Gregg, R., Franceschini, F., & Parks, G. T. (2016). The effectiveness of full actinide recycle as a nuclear waste management strategy when implemented over a limited timeframe – Part II: thorium fuel cycle. Progress in Nuclear Energy, 87, 144-155. https://doi.org/10.1016/j.pnucene.2014.11.016 |
| The melting behaviour of uranium/neptunium mixed oxides
Chollet, M., Prieur, D., Böhler, R., Belin, R., & Manara, D. (2015). The melting behaviour of uranium/neptunium mixed oxides. The Journal of Chemical Thermodynamics, 89, 27-34. https://doi.org/10.1016/j.jct.2015.04.031 |
| The effectiveness of full actinide recycle as a nuclear waste management strategy when implemented over a limited timeframe - part I: uranium fuel cycle
Lindley, B. A., Fiorina, C., Gregg, R., Franceschini, F., & Parks, G. T. (2015). The effectiveness of full actinide recycle as a nuclear waste management strategy when implemented over a limited timeframe - part I: uranium fuel cycle. Progress in Nuclear Energy, 85, 498-510. https://doi.org/10.1016/j.pnucene.2015.07.020 |
| Core neutronics characterization of the GFR2400 gas cooled fast reactor
Perkó, Z., Pelloni, S., Mikityuk, K., Křepel, J., Szieberth, M., Gaëtan, G., … Poette, C. (2015). Core neutronics characterization of the GFR2400 gas cooled fast reactor. Progress in Nuclear Energy, 83, 460-481. https://doi.org/10.1016/j.pnucene.2014.09.016 |
| Fuel cycle studies on the uranium utilization efficiency and minor actinide burning in gas cooled fast reactors
Halász, M., Szieberth, M., Fehér, S., & Reiss, T. (2013). Fuel cycle studies on the uranium utilization efficiency and minor actinide burning in gas cooled fast reactors. IYCE 2013 - 4th international youth conference on energy. (p. (8 pp.). Presented at the 4th international youth conference on energy, IYCE 2013. https://doi.org/10.1109/IYCE.2013.6604176 |
| Zirconia inert matrix for plutonium utilisation and minor actinides disposition in reactors
Degueldre, C. (2007). Zirconia inert matrix for plutonium utilisation and minor actinides disposition in reactors. Journal of Alloys and Compounds, 444-445, 36-41. https://doi.org/10.1016/j.jallcom.2006.11.203 |
| Production of residual nuclides by proton-induced reactions on target W at an energy of 72 MeV
Miah, M. H., Kuhnhenn, J., Herpers, U., Michel, R., & Kubik, P. (2002). Production of residual nuclides by proton-induced reactions on target W at an energy of 72 MeV. Journal of Nuclear Science and Technology, 39(Suppl. 2), 369-372. https://doi.org/10.1080/00223131.2002.10875117 |