Active Filters

  • (-) Keywords = zeolite
Search Results 1 - 20 of 30
Select Page
Quantifying the hydration‐dependent dynamics of copper migration and activity in zeolite omega for the partial oxidation of methane
Wieser, J., Wardecki, D., Fischer, J. W. A., Newton, M. A., Dejoie, C., Knorpp, A. J., … van Bokhoven, J. A. (2024). Quantifying the hydration‐dependent dynamics of copper migration and activity in zeolite omega for the partial oxidation of methane. Angewandte Chemie. https://doi.org/10.1002/ange.202407395
CO cofeeding affects product distribution in CH<sub>3</sub>Cl coupling over ZSM-5 zeolite: pressure twists the plot
Zhang, Z., Vanni, M., Wu, X., Hemberger, P., Bodi, A., Mitchell, S., & Pérez-Ramírez, J. (2024). CO cofeeding affects product distribution in CH3Cl coupling over ZSM-5 zeolite: pressure twists the plot. Angewandte Chemie International Edition, 63(17), e202401060 (6 pp.). https://doi.org/10.1002/anie.202401060
Case study 1: modulation excitation spectroscopy (MES)
Nuguid, R. J. G., & Ferri, D. (2023). Case study 1: modulation excitation spectroscopy (MES). In I. Wachs & M. A. Bañares (Eds.), Springer handbooks. Springer handbook of advanced catalyst characterization (pp. 979-989). https://doi.org/10.1007/978-3-031-07125-6_43
Conversion of sugar diacetyls to bio-hydrocarbons by the catalytic cracking in a fixed bed with fresh and deactivated Beta zeolite
Cardoso, C., Lam, Y. L., San Gil, R. A. S., Van Bokhoven, J. A., & Pereira, M. M. (2022). Conversion of sugar diacetyls to bio-hydrocarbons by the catalytic cracking in a fixed bed with fresh and deactivated Beta zeolite. Catalysis Communications, 171, 106519 (10 pp.). https://doi.org/10.1016/j.catcom.2022.106519
TEMPO-Ru-BEA composite material for the selective oxidation of alcohols to aldehydes
Deng, J., Ben Tayeb, K., Dong, C., Simon, P., Marinova, M., Dubois, M., … Ordomsky, V. V. (2022). TEMPO-Ru-BEA composite material for the selective oxidation of alcohols to aldehydes. ACS Catalysis, 12(15), 8925-8935. https://doi.org/10.1021/acscatal.2c01554
Methane transformation over copper-exchanged zeolites: from partial oxidation to C-C coupling and formation of hydrocarbons
Artsiusheuski, M. A., Verel, R., van Bokhoven, J. A., & Sushkevich, V. L. (2021). Methane transformation over copper-exchanged zeolites: from partial oxidation to C-C coupling and formation of hydrocarbons. ACS Catalysis, 11(20), 12543-12556. https://doi.org/10.1021/acscatal.1c02547
On the promotional and inhibitory effects of water on Wacker-type ethylene oxidation over Pd-Cu/zeolite Y
Imbao, J., van Bokhoven, J. A., & Nachtegaal, M. (2021). On the promotional and inhibitory effects of water on Wacker-type ethylene oxidation over Pd-Cu/zeolite Y. ACS Catalysis, 11, 8684-8691. https://doi.org/10.1021/acscatal.1c00507
Activity of Cu-Al-oxo extra-framework clusters for selective methane oxidation on Cu-exchanged zeolites
Lee, I., Lee, M. S., Tao, L., Ikuno, T., Khare, R., Jentys, A., … Lercher, J. A. (2021). Activity of Cu-Al-oxo extra-framework clusters for selective methane oxidation on Cu-exchanged zeolites. JACS Au, 1(9), 1412-1421. https://doi.org/10.1021/jacsau.1c00196
Stable palladium oxide clusters encapsulated in silicalite-1 for complete methane oxidation
Li, T., Beck, A., Krumeich, F., Artiglia, L., Ghosalya, M. K., Roger, M., … van Bokhoven, J. A. (2021). Stable palladium oxide clusters encapsulated in silicalite-1 for complete methane oxidation. ACS Catalysis, 11(12), 7371-7382. https://doi.org/10.1021/acscatal.0c04868
Water inhibition of oxymethylene dimethyl ether synthesis over zeolite H-beta: a combined kinetic and &lt;em&gt;in situ&lt;/em&gt; ATR-IR study
Baranowski, C. J., Fovanna, T., Roger, M., Signorile, M., McCaig, J., Bahmanpour, A. M., … Kröcher, O. (2020). Water inhibition of oxymethylene dimethyl ether synthesis over zeolite H-beta: a combined kinetic and in situ ATR-IR study. ACS Catalysis, 10(15), 8106-8119. https://doi.org/10.1021/acscatal.0c01805
Are Fe based catalysts an upcoming alternative to Ni in CO&lt;sub&gt;2&lt;/sub&gt; methanation at elevated pressure?
Franken, T., & Heel, A. (2020). Are Fe based catalysts an upcoming alternative to Ni in CO2 methanation at elevated pressure? Journal of CO2 Utilization, 39, 101175 (8 pp.). https://doi.org/10.1016/j.jcou.2020.101175
Synthesis and crystal structure of ABW-type SrFe&lt;sub&gt;1.40&lt;/sub&gt;V&lt;sub&gt;0.60&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt;
Gstir, T., Kahlenberg, V., Krüger, H., & Penner, S. (2020). Synthesis and crystal structure of ABW-type SrFe1.40V0.60O4. Acta Crystallographica Section E: Crystallographic Communications, 76, 664-667.sup-5. https://doi.org/10.1107/S205698902000496X
Nature of the synergy between Brønsted and Lewis acid sites in Sn‐Beta zeolites for polyoxymethylene dimethyl ethers synthesis
Baranowski, C. J., Roger, M., Bahmanpour, A. M., & Kröcher, O. (2019). Nature of the synergy between Brønsted and Lewis acid sites in Sn‐Beta zeolites for polyoxymethylene dimethyl ethers synthesis. ChemSusChem, 21(19), 4421-4431. https://doi.org/10.1002/cssc.201901814
Real-time observation of fibrous zeolites reactivity in contact with simulated lung fluids (SLFs) obtained by atomic force microscope (AFM)
Giordani, M., Cametti, G., Di Lorenzo, F., & Churakov, S. V. (2019). Real-time observation of fibrous zeolites reactivity in contact with simulated lung fluids (SLFs) obtained by atomic force microscope (AFM). Minerals, 9(2), 83 (23 pp.). https://doi.org/10.3390/min9020083
Operando spectroscopic studies of Cu–SSZ-13 for NH&lt;sub&gt;3&lt;/sub&gt;–SCR deNOx investigates the role of NH&lt;sub&gt;3&lt;/sub&gt; in observed Cu(II) reduction at high NO conversions
Greenaway, A. G., Lezcano-Gonzalez, I., Agote-Aran, M., Gibson, E. K., Odarchenko, Y., & Beale, A. M. (2018). Operando spectroscopic studies of Cu–SSZ-13 for NH3–SCR deNOx investigates the role of NH3 in observed Cu(II) reduction at high NO conversions. Topics in Catalysis, 61(3-4), 175-182. https://doi.org/10.1007/s11244-018-0888-3
Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques
Ma, Z., Ghosh, A., Asthana, N., & van Bokhoven, J. (2018). Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques. ChemCatChem, 10(19), 4431-4437. https://doi.org/10.1002/cctc.201800670
Deactivation aspects of methane oxidation catalysts based on palladium and ZSM-5
Petrov, A. W., Ferri, D., Tarik, M., Kröcher, O., & van Bokhoven, J. A. (2017). Deactivation aspects of methane oxidation catalysts based on palladium and ZSM-5. Topics in Catalysis, 60(1-2), 123-130. https://doi.org/10.1007/s11244-016-0724-6
The SCR of NOx with NH<sub>3</sub> examined by novel X-ray emission and X-ray absorption methods
Günter, T., Doronkin, D. E., Boubnov, A., Carvalho, H. W. P., Casapu, M., & Grunwaldt, J. D. (2016). The SCR of NOx with NH3 examined by novel X-ray emission and X-ray absorption methods. Topics in Catalysis, 59(10-12), 866-874. https://doi.org/10.1007/s11244-016-0561-7
The variety of Brønsted acid sites in amorphous aluminosilicates and zeolites
Caillot, M., Chaumonnot, A., Digne, M., & van Bokhoven, J. A. (2014). The variety of Brønsted acid sites in amorphous aluminosilicates and zeolites. Journal of Catalysis, 316, 47-56. https://doi.org/10.1016/j.jcat.2014.05.002
Structure of aluminum, iron, and other heteroatoms in zeolites by X-ray absorption spectroscopy
van Bokhoven, J. A., & Lamberti, C. (2014). Structure of aluminum, iron, and other heteroatoms in zeolites by X-ray absorption spectroscopy. Coordination Chemistry Reviews, 277-278, 275-290. https://doi.org/10.1016/j.ccr.2014.05.013