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Abstract

Background: Microsatellite markers are widely used for estimating genetic diversity within and differentiation
among populations. However, it has rarely been tested whether such estimates are useful proxies for genome-wide
patterns of variation and differentiation. Here, we compared microsatellite variation with genome-wide single
nucleotide polymorphisms (SNPs) to assess and quantify potential marker-specific biases and derive recommendations
for future studies. Overall, we genotyped 180 Arabidopsis halleri individuals from nine populations using 20
microsatellite markers. Twelve of these markers were originally developed for Arabidopsis thaliana (cross-species markers)
and eight for A. halleri (species-specific markers). We further characterized 2 million SNPs across the genome with a
pooled whole-genome re-sequencing approach (Pool-Seq).

Results: Our analyses revealed that estimates of genetic diversity and differentiation derived from cross-species and
species-specific microsatellites differed substantially and that expected microsatellite heterozygosity (SSR-He) was not
significantly correlated with genome-wide SNP diversity estimates (SNP-He and θWatterson) in A. halleri. Instead,
microsatellite allelic richness (Ar) was a better proxy for genome-wide SNP diversity. Estimates of genetic differentiation
among populations (FST) based on both marker types were correlated, but microsatellite-based estimates were
significantly larger than those from SNPs. Possible causes include the limited number of microsatellite markers
used, marker ascertainment bias, as well as the high variance in microsatellite-derived estimates. In contrast, genome-
wide SNP data provided unbiased estimates of genetic diversity independent of whether genome- or only
exome-wide SNPs were used. Further, we inferred that a few thousand random SNPs are sufficient to reliably
estimate genome-wide diversity and to distinguish among populations differing in genetic variation.

Conclusions: We recommend that future analyses of genetic diversity within and differentiation among populations
use randomly selected high-throughput sequencing-based SNP data to draw conclusions on genome-wide diversity
patterns. In species comparable to A. halleri, a few thousand SNPs are sufficient to achieve this goal.
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Background
Genetic diversity is essential for organisms to adapt to
changing environmental conditions and is recognised as a
key component of biodiversity (e.g. [1, 2]). Microsatellite
markers (also known as simple sequence repeats, SSRs)
are a widely used marker system to estimate genetic diver-
sity in population genetic studies and are often implicitly
assumed to reflect the genome-wide diversity of a taxon
[3]. The use of microsatellites has increased linearly since
their detection in the 1980s [4], and they are nowadays ex-
tensively applied, for example in conservation genetics
(e.g. [5]), forensic DNA profiling, paternity analyses, and
studies of neutral genetic population structure (for reviews
see [3, 6, 7]). However, the challenge of correctly interpret-
ing microsatellite data is often strongly underrated [8],
and the question whether a limited number of microsatel-
lite markers accurately reflects genome-wide diversity re-
mains a contentious issue (e.g. [9–12]). Single nucleotide
polymorphisms (SNPs) on the basis of traditional DNA
sequencing [13] have long been known, but in contrast to
microsatellites, were relatively rarely used in population
genetics until recently because of the difficulties associated
with their characterization and genotyping in non-model
organisms [14]. Moreover, their (mostly) bi-allelic state
limits the information content per locus compared to the
more polymorphic microsatellite markers [15–17]. In
recent years, the use of SNPs has been exponentially
increasing [7], mainly because newly developed high-
throughput sequencing techniques can efficiently be ap-
plied to a wide range of organisms. These techniques
allow for the identification of thousands to millions of un-
biased SNPs, and the simultaneous estimation of SNP fre-
quencies across the genomes of individuals, populations
and species [18–20].
Microsatellites have unique properties that distinguish

them from the rest of the genome, and these should be
taken into consideration when analysing and interpreting
them [8]. Microsatellites are codominant markers and typ-
ically consist of simple sequence repeats varying in length
between one and six base pairs. Their variability originates
from DNA polymerase slippage during replication, leading
to the formation of shorter or longer alleles (for further
details see [21–23]). In plants, microsatellite mutation
rates range between 10−6 and 10−2 per locus and gener-
ation (for a review see [24]), thus varying approximately
10,000-fold, and are affected by various factors, including
repeat type, repeat copy number, marker location in the
genome, and taxon [23]. In contrast, spontaneous muta-
tion rates for SNPs only vary about 100-fold [25]. Know-
ledge of direct estimates of SNP mutation rates is limited,
but the rate has been accurately estimated e.g. in Arabi-
dopsis thaliana to be 7 × 10−9 substitutions per site per
generation [26]. Microsatellite mutation rates are there-
fore several orders of magnitude higher and much more

variable than those of SNPs. In combination with the
often small number of markers used, microsatellite-based
studies typically sample a narrow fraction of the genome
with unusually high mutation rate [21]. This may be ag-
gravated when only the most polymorphic microsatellite
markers are selected for further analysis after initial
screening of a small subsample of individuals or popula-
tions. Estimates of genetic diversity may then suffer from
ascertainment bias [15, 27]. Additionally, amplification
variation of primers [28] and fragment size homoplasy
[29] potentially reduce the accuracy of genetic estimates
inferred from microsatellite markers. The use of microsat-
ellite markers may thus lead to estimates of genetic diver-
sity and differentiation that do not well reflect genome-
wide patterns of variation.
Despite these potential caveats, a large number of

studies has relied on microsatellite markers to estimate
genetic diversity and genetic differentiation, not only
within and among populations, but also among species
(e.g. [3, 7, 10, 30]). In a conservation context, microsatel-
lites are also used to identify conservation units (CUs),
whose genetic variation and distinctness is potentially
relevant for species survival (e.g. [5, 31, 32]). Well-
known case studies are the Florida panther [33, 34] or
the African elephant from Eritrea [35], for which man-
agement decisions were taken based on genetic data de-
rived from few microsatellites.
To date, only few studies have explored in detail to

what degree microsatellite variation reflects genetic vari-
ation at other nuclear loci, and which genetic diversity
estimator for microsatellites provides the most accurate
prediction of genome-wide diversity. Positive but some-
times weak correlations between expected microsatellite
heterozygosity (SSR-He) and SNP diversity in nuclear
gene sequences have been reported at the population
level in salmon [11, 36, 37] and several carnivore species
[10], as well as different rice varieties and sheep breeds
[38, 39]. Most of these studies, however, have investi-
gated only a limited number of SNPs (ranging from tens
to a few thousand). The outcome of the comparison of
SNP versus microsatellite diversity in these studies was
strongly affected by the number of SNP markers used.
Studies in which low SNP numbers (<300) were com-
pared to microsatellites found that the latter had more
power to infer differences in genetic summary statistics
[10, 38–46] or found similar results when approximately
400 SNPs were used [47]. In contrast, studies using lar-
ger numbers of SNPs (~3000) found that SNPs per-
formed better than microsatellites [11, 12, 37]. Many of
these studies used existing genotyping arrays for SNP
detection. These may, however, cause ascertainment bias
as a consequence of the overrepresentation of common
SNPs [8]. To date, no unbiased whole-genome re-
sequencing approach has been used for comparison.
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Studies based on reduced representation libraries (e.g.
restriction-site associated DNA sequencing; RADseq),
which sample a subset of all SNPs of the genome,
showed that SNPs have more power than microsatellites,
e.g. to detect heterozygosity–fitness correlations in nat-
ural populations of oldfield mice [9]. Further, demo-
graphic inferences drawn from RADseq-derived SNPs in
bumble bees reflected important long-term differences
in population size better than microsatellites, which in-
stead signalled either recent demographic changes or
mutational processes [48].
Because of the widespread application of microsatellite

markers both in basic research and practical conserva-
tion, it is important to evaluate the tenet that microsatel-
lite variation adequately reflects genome-wide genetic
diversity, especially for situations in which only a limited
number of markers are used, as is often the case in con-
servation genetics, where on average only 12 microsatel-
lites are used per study [49]. It is further relevant to
evaluate the power of next-generation sequencing (NGS)
based genotyping approaches to infer genome-wide di-
versity and population structure, e.g. to estimate the
number of SNPs required to achieve accurate and con-
sistent estimates of genome-wide diversity.
We used two types of microsatellite markers (markers

developed for the same species and cross-species markers)
as well as genome-wide SNP variation in the meadow rock
cress, Arabidopsis halleri (L.), to compare estimates of
genetic diversity and differentiation. Overall, we genotyped
180 individuals of A. halleri from nine natural populations
using 20 microsatellite markers, which is above the aver-
age number of microsatellites typically used in population
and conservation genetic studies [49]. We compared them
to a pooled whole-genome re-sequencing approach
(Pool-Seq; [50, 51]) and tested whether estimates of genetic
variation derived from microsatellite polymorphisms are
valid and useful proxies of genome-wide genetic variation
and differentiation. Specifically, we tested whether estimates
from both marker types were correlated (relative compari-
son) and had similar absolute values (absolute comparison).
Further, we used down-sampling to assess how many ran-
dom and presumably unlinked SNPs are required to calcu-
late accurate estimates of genome-wide diversity.

Methods
Study system
Arabidopsis halleri is a perennial, insect-pollinated,
strictly outcrossing and functionally self-incompatible
herb [52] with a wide geographic distribution from central
Europe to eastern Asia [53]. It grows in diverse habitats
including mountain slopes, grassy meadows, forest mar-
gins and rocky crevices [54, 55] and has been widely used
as a model to study heavy metal tolerance (e.g. [55, 56]).

The species is diploid with 2n = 16 [54] and has an esti-
mated genome size of 255 Mbp [57].

Sampling and DNA extraction
Leaf tissue from 20 individuals each of nine populations
of A. halleri was sampled in south-eastern Switzerland
and northern Italy (Additional file 1: Table S1). The se-
lected samples size per population should allow to ac-
curately estimate population-specific genetic diversity
and differentiation [58]. A minimal distance of two, but
preferably 4 m, was maintained between collected indi-
viduals, as genetic structure and diversity may be
affected by clonal growth when plants are separated by
less than one meter [59]. Leaf samples were dried in
silica gel, and DNA was extracted with the DNeasy Plant
Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol. DNA concentrations were mea-
sured with a Qubit® 1.0 Fluorometer (dsDNA BR, Carlsbad,
USA), and DNA quality was examined using a NanoDrop
8000 Spectrophotometer (Thermo Scientific, Waltham,
USA) as well as 1.5% agarose gels stained with GelRed
(Biotium, Hayward, USA).

Microsatellite analyses
The 180 samples were genotyped using 20 microsatellite
markers in three multiplex PCRs, each amplifying either
six or eight microsatellite markers (Additional file 2:
Table S2). The first two multiplex sets included 12
microsatellite loci that were originally developed for A.
thaliana [52, 60, 61], hereafter referred to as “cross-spe-
cies” microsatellites. Some of these primer sequences
were adapted to A. halleri by comparing them to our
own de-novo assembly of the A. halleri genome [51]
using IGV 2.1 [62], identifying potential mismatches and
changing the primer sequences accordingly (Additional
file 2: Table S2). Further, eight microsatellite primer
pairs that were specifically developed for A. halleri [63]
were combined in a third multiplex set. These markers
are hereafter referred to as “species-specific” microsa-
tellites. Detailed lab protocols can be found in the
Additional Methods (Additional file 3). Alleles were
called using GeneMapper 4.1 (Applied Biosystems).

Estimating microsatellite-based genetic diversity
For every marker and population, we assessed the fol-
lowing population genetic parameters. The inbreeding
coefficient FIS and its p-value, which indicate whether
markers or populations deviate from Hardy–Weinberg
equilibrium, were calculated with GenoDive 2.0b23 [64]
using the heterozygosity-based GIS statistic with 999 per-
mutations and applying Bonferroni correction for mul-
tiple testing. Null allele frequencies were calculated with
FreeNA [28]. Pairwise values of genetic differentiation
among populations, FST, were calculated based on allele
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identity with Genepop 4.2.2 [65, 66], whereas allele fre-
quencies, expected heterozygosity (SSR-He) and mean
number of alleles (allelic richness, Ar) per locus were
quantified with Genetix 4.05 [67]. We consistently ge-
notyped 20 individuals per population, therefore, Ar did
not have to be corrected with a rarefaction approach.
All population parameters were computed for three dif-
ferent marker sets including (i) all, (ii) the cross-
species, and (iii) the species-specific microsatellite
markers (Additional file 2: Table S2). To infer marker
bias, we tested for quantitative differences in estimates
of SSR-He and Ar estimated in each population from
cross-species and species-specific markers using a
paired t-test (function ‘t.test’) in R 3.2 [68]. For the rela-
tive comparison of SSR-He derived from cross-species
and species-specific markers, we used a Pearson’s cor-
relation test (function ‘cor.test’) in R. To test whether
population-specific estimates of SSR-He obtained from
the different microsatellite types differ [69], we used a
pairwise Wilcoxon signed-rank test (function ‘pairwise.-
wilcox.test’) in R. By plotting SSR-He medians and
quantiles for each population, we inferred whether
non-significant differences were caused by high vari-
ance. When the absence of significant differences be-
tween populations was obviously caused by overly high
variances in the genetic diversity estimates computed
per microsatellite marker and population, we inter-
preted this as variance bias. P-values were adjusted for
multiple testing using Bonferroni correction.

Pool-Seq and Illumina read processing
Pooled next-generation sequencing (Pool-Seq) has
been shown to produce accurate population-specific
allele frequencies [20, 51, 70]. For NGS, individually
extracted high-quality DNA was equimolarly pooled
using the same 20 individuals from the nine popula-
tions as for the microsatellite genotyping presented above.
These nine pools were high-throughput sequenced and
further processed as described below and, in more detail,
in Fischer et al. [50]. For a subset of SNPs and populations
of the present dataset, the accuracy of exactly the same
Pool-Seq approach had been validated [51]: differences in
estimates of population-specific allele frequencies com-
pared to those from individual genotyping were on aver-
age less than 4%. Library preparation (~170–250 bp
insertion size; 100-bp paired-end reads) and sequencing
on an Illumina HiSeq2000 (Illumina, San Diego, USA)
were performed by GATC Biotech (Constance, Germany)
and the Quantitative Genomics Facility (D-BSSE, ETH
Zürich, Switzerland). Forward and reverse raw reads were
trimmed for tags and adaptors with Cutadapt [71]. Phred-
type quality scores Q20 were used for quality trimming
with the FASTX toolkit (http://hannonlab.cshl.edu/fas-
tx_toolkit). The separately trimmed forward and reverse

reads were then re-synchronized to pairs with an in-house
perl script. Only paired sequences were used for further
analysis [50].

Read mapping, SNP calling and genome-wide population
genetic estimates
To estimate genome-wide genetic diversity and differen-
tiation for all nine populations of A. halleri, reads were
mapped to the A. thaliana reference genome (TAIR10,
from which organellar DNA was excluded [72–74])
using BWA aln, allowing for 10% mismatch, and sampe
[75]. All ambiguously mapped reads were removed and
the remaining high-quality reads were sorted with
SAMtools 0.1.18 [76]. SNPs were called for the nine
populations by producing mpileup files with SAM-
tools (for details see [50, 76]).
To obtain population-specific genome-wide estimates

of genetic diversity, we first calculated Watterson’s theta
(θWatterson), an estimator that takes into account the
number of segregating sites to estimate the population
mutation rate. θWatterson was calculated on a gene-by-
gene basis (only exons) for each population using the
gene and exon annotation of TAIR10 (GFF3_genes.gff;
[74]). The perl script ‘Variance-at-position.pl’ of the soft-
ware package PoPoolation [77] was used with the mpi-
leup file of each population and the.gtf annotation file
(transformed from GFF3_genes.gff file) to calculate ex-
onic θWatterson. This approach provides unbiased esti-
mates for pooled samples as it corrects for coverage.
Exon based θWatterson is a conservative estimate of gen-
etic diversity as it infers diversity from genomic regions
that are predominantly under purifying selection, hence
from slightly less diverse regions than the rest of the
genome. Exon-based diversity estimates are of direct
relevance for the adaptive potential of a population, be-
cause exons harbour functionally relevant polymor-
phisms that allow populations to adapt to changing
environments. To accurately estimate allele frequencies
for estimating θWatterson, minimum counts for minor al-
leles were set to two to account for sequencing errors,
leading to a minor allele frequency threshold of 0.05.
The minimum coverage per site within populations was
set to 20×, which mimics the number of individuals. To
further correct for potential errors caused by repeated
sequences, a maximum coverage of 400× per population
was used as threshold for SNP identification. In order to
be included in the genome-wide estimates of gene diver-
sity, 50% of all SNPs within a gene had to reach the
above-mentioned thresholds in all nine populations [50].
For all analyses, pool size per population was set to 40
because 20 diploid genomes were represented in each
population pool.
Second, we calculated genome-wide SNP-based ex-

pected heterozygosity (SNP-He), taking all SNPs into
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account, not only those located in exons. Mpileup files
were synchronized and filtered for base quality (Q20)
with the perl script ‘mpileup2sync.pl’ of PoPoolation2
[78]. Next, major and minor allele frequencies were cal-
culated with the script snp-frequency-diff.pl. The cover-
age threshold was the same as mentioned above, except
that the minor allele count was set to four, as all nine
populations were jointly used to infer minor allele fre-
quencies [50], leading to a more sensitive, but less error-
prone minor allele frequency threshold of 0.011. We
only used bi-allelic SNPs and calculated the average
genome-wide SNP-He as

SNP�He ¼ 1
n

Xn

i¼1

2pið1−piÞ

where n is the number of SNPs, and pi is the minor al-
lele frequency of the ith allele. This approach assumes
Hardy–Weinberg equilibrium within populations.
To infer potential demographic events that could

strongly influence genetic diversity within populations,
we calculated exome-wide Tajima’s D using the TAIR10
gene annotation and the perl script ‘Variance-at-posi-
tion.pl’ in PoPoolation [77]. It is suggested to use a
coverage threshold of less than three times smaller than
the pool size [79], which is in our case 13×. A negative
genome-wide Tajima’s D is indicative of an expansion
after a bottleneck, whereas a positive D is compatible
with a scenario of a decrease in population size [80, 81].
To test whether the average of the resulting distribution
of Tajima’s D was significantly different from zero, we
used t-tests against random normal distributions (func-
tions ‘t.test’ and ‘rnorm’ in R) with an average of zero
and the same standard deviation as observed in the real
data of each population.
Estimates of pairwise population genetic differentiation

(FST) were calculated with ‘fst-sliding.pl’ in PoPoolation2
[78, 82]. Average values of pairwise FST were calculated
using the same parameters as mentioned above for the
estimates of SNP-He as explained in detail in Fischer
et al. [50].

Comparisons of genetic diversity and differentiation
derived from microsatellites and genome-wide SNPs
To explore associations between estimates of genetic
diversity derived from microsatellites and SNPs, we
performed Pearson’s correlations (‘cor.test’ in R) of
microsatellite-based allelic richness (Ar) and expected
heterozygosity (SSR-He). Estimates of genome-wide SNP
diversity were derived from exon sequences (θWatterson)
and genome-wide SNP expected heterozygosity (SNP-
He). Further, to account for possible confounding effects
due to linkage, associations were also tested for a subset
of SNPs, consisting of every 50th SNP.

We performed Mantel tests to check for correlations
between values of FST derived from genome-wide SNPs
and (i) all, (ii) cross-species, (iii) and species-specific
microsatellite markers. The same analysis was used to
assess correlations between values of FST derived from
species-specific and cross-species microsatellite markers.
All analyses were performed with 1001 permutations
using Ecodist 1.2.7 [83] in R. Finally, we used paired
t-tests implemented in R to quantitatively evaluate
whether He and FST derived from microsatellite
markers and SNPs significantly differ.

Estimating the number of unbiased SNPs required for
accurate estimates of genetic diversity
We used a down-sampling procedure to estimate SNP-He

with the aim to infer the required number of randomly se-
lected and unlinked SNP markers to obtain accurate esti-
mates of genetic diversity and to reliably rank populations
according to their genetic diversity (e.g. for CU identifica-
tion). Thus, each population was resampled for the same k
random SNP markers drawn from the pool of more than
2 million SNPs. For each value of k varying between 100
and 400,000, we created 1000 random subsamples of k
SNP markers (starting from k 100 up to 10,000 we sam-
pled k at steps of 100 and from k 10,000 to 400,000 SNPs
we sampled k in steps of 1000). We then computed the
mean expected heterozygosity (He) and 95% confidence
intervals for each value of k observed in each of the 1000
subsamples. Obtained results were used to draw curves
representing the variation of the estimated He as a func-
tion of genotyping effort in each population. We then
identified the number of SNPs for which the upper and
lower confidence intervals for expected heterozygosity
(SNP-He) fell below ±0.01, ±0.005, and ±0.001.

Results
Microsatellite diversity
Twenty microsatellite loci were initially used to character-
ise 180 A. halleri individuals from nine populations. We
excluded marker ah59 from further analyses, because it
deviated significantly from Hardy–Weinberg equilibrium
and exhibited an estimated null allele frequency of 10%
(Additional file 4: Table S3). The remaining 19 microsatel-
lite markers harboured 83 alleles and only 0.3% missing
data. Allelic richness per locus (Ar) ranged between 2.2
and 3.1 per population, with an average of 2.71 (±0.29
SD), and expected heterozygosity (SSR-He) ranged from
0.025 to 0.717 per microsatellite marker. Further details
are given in Table 1 and Additional file 4: Table S3. Popu-
lation allele frequency distributions were fairly noisy, see
Additional file 5: Figure S1A. None of the nine popula-
tions showed significant deviation from Hardy–Weinberg
equilibrium after Bonferroni correction (Table 1).
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All twelve cross-species microsatellite markers, initially
developed for A. thaliana, successfully amplified in A.
halleri. Ar at cross-species microsatellite markers was
2.2 alleles per marker and population and thus signifi-
cantly lower than Ar at species-specific markers (3.7 al-
leles, p < 0.0001, paired t-test; Fig. 1a). The same pattern
(p < 0.0001, paired t-test; Fig. 1b) was observed for SSR-
He, which was 0.32 and 0.47, respectively. No significant
correlation was observed among estimates of He inferred
from cross-species and species-specific microsatellite
markers (Pearson’s r = 0.439, p = 0.237; Fig. 1c).
The variance in the estimates of SSR-He among micro-

satellite markers within and among population was so
high that no significant differences in genetic diversity
among populations could be inferred after Bonferroni
correction (pairwise Wilcoxon signed-rank test). With-
out Bonferroni correction, only populations Aha11 and
AhaN3 differed significantly in their estimates of He

(Fig. 1d). Similar results were found when cross-species
and species-specific microsatellites were analysed separ-
ately and corrections for multiple testing were per-
formed (Additional file 6: Figure S2).
Average pairwise FST for the 19 microsatellite loci was

0.173 (range: 0.021–0.375); species-specific (mean: 0.169;
range: 0.00–0.381) and cross-species microsatellites
markers (mean: 0.173; range: 0.021–0.418) did not deviate
significantly from each other (p = 0.743, paired t-test).

Illumina sequencing and genome-wide diversity
The Illumina sequencing yielded a total of 1,247,939,483
100-bp paired-end reads corresponding to 249,587,896,600
nucleotides. After quality filtering and trimming,
1,197,105,373 paired-end reads were mapped to the A.
thaliana reference genome (TAIR10), from which

organellar DNA was excluded. The average coverage per
site, after filtering with the defined thresholds, was 60.7×
with a range of population-wise coverage of 52.7 to 69.3 × .
We detected 2,178,204 SNPs, which were used for the

calculation of pairwise FST, and 2,064,681 bi-allelic SNPs,
which were used for the calculation of population-
specific SNP-He. All populations had even population-
specific allele frequency distributions (Additional file 5:
Figure S1B). Values of pairwise FST ranged between 0.02
and 0.09, and population-specific SNP-He was between
0.12 and 0.16. Overall, 20,617 and 22,210 genes fulfilled
our thresholds of coverage for calculating θWatterson and
Tajima’s D, respectively. θWatterson ranged from 0.0067 to
0.0093, and Tajima’s D values were all slightly negative,
ranging from −0.01 to −0.17. Only two of the nine popula-
tions showed no significant deviation from zero. In other
words, most populations showed weak demographic
changes probably related to a bottleneck with later expan-
sion (Table 1 and Additional file 7: Figure S3).

Comparisons of genetic diversity estimates derived from
microsatellites and genome-wide SNPs
No significant correlation was observed between
population-specific estimates of He derived from micro-
satellites and genome-wide SNPs (Pearson’s r = 0.550,
p = 0.125; Fig. 2a), independent of whether all SNPs
or a subset of presumably unlinked SNPs (every 50th
SNP) were used (Pearson’s r = 0.572, p = 0.108; Additional
file 8: Figure S4). Estimates of SNP-He were overall
significantly lower than those of SSR-He (paired t-test,
p < 0.0001; Fig. 2a insert). SSR-He was also not signifi-
cantly correlated with θWatterson (Pearson’s correlation:
r = 0.553, p = 0.123; Fig. 2b). The correlation coeffi-
cient was higher when using only species-specific

Table 1 Population genetic parameters inferred from 19 microsatellites and genome-wide SNPs for nine populations of Arabidopsis
halleri. Allelic richness (Ar), expected heterozygosity (SSR-He) and inbreeding coefficient FIS including its one-sided p-value (i.e. hetero-
zygote deficiency) are given. No FIS value was significantly different from zero after Bonferroni correction. θWatterson was calculated
for 20,617 genes. Expected heterozygosity (SNP-He) was calculated from all SNPs across the genome. Tajima’s D was calculated for
22,210 genes, p-values refer to deviations from zero (t-test)

Population Microsatellites SNPs

Ar SSR-He FIS FIS p-values θWatterson SNP-He Tajima’s D Tajima’s D p-values

Aha09 2.7 0.392 0.073 0.051 0.0088 0.154 −0.029 <0.001

Aha11 2.6 0.318 0.043 0.217 0.0081 0.138 −0.114 <0.001

Aha18 2.6 0.360 −0.015 0.386 0.0086 0.152 −0.009 0.743

Aha19 2.8 0.332 −0.084 0.027 0.0086 0.150 −0.033 <0.001

Aha21 2.7 0.404 0.075 0.075 0.0083 0.148 −0.021 0.106

Aha31 3.1 0.387 0.068 0.082 0.0093 0.157 −0.119 <0.001

AhaN1 2.9 0.465 0.081 0.030 0.0092 0.155 −0.169 <0.001

AhaN3 3.1 0.399 0.110 0.010 0.0089 0.154 −0.151 <0.001

AhaN4 2.2 0.343 0.058 0.151 0.0067 0.119 −0.103 <0.001

Mean 2.7 0.378 0.045 0.0085 0.148 −0.083
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markers (Pearson’s r = 0.640, p = 0.063), but lower
when only cross-species markers were used (Pearson’s
r = 0.263, p = 0.494; Fig. 2b), though neither of the
two correlations was significant.
In marked contrast to heterozygosity, Ar of microsatel-

lite markers was significantly correlated with θWatterson

(Pearson’s r = 0.925, p = 0.0004; Fig. 2c). The correlation
based on ranks was still significant (Spearmen’s ρ =
0.817, p = 0.0108), but slightly weaker than non-ranked
comparisons.
The SNP-based genome-wide diversity estimates,

θWatterson and SNP-He, were highly correlated (Pearson’s
r = 0.979; p < 0.001; Fig. 3), even though values of
θWatterson were derived exclusively from coding regions
(exons), and estimates of SNP-He were calculated from
more than two million SNPs across the entire genome.
In fact, θWatterson estimates inferred from introns and
intergenic regions were highly correlated to estimates of

exon-based θWatterson (Pearson’s r = 0.988; p < 0.001; see
Additional file 9: Figure S5).

Comparison of genetic differentiation estimates derived
from microsatellite versus genome-wide SNP variation
Mantel tests revealed highly significant correlations be-
tween values of pairwise FST derived from genome-wide
SNP data and microsatellite markers (Fig. 4). The best
correlation was achieved when using all 19 microsatel-
lites (rMT = 0.947, p = 0.001; Fig. 4a). However, values of
FST derived from microsatellite markers were 3.35-fold
higher than those from SNPs and were significantly dif-
ferent (p < 0.0001, paired t-test; Fig. 4b). If we split the
microsatellite markers into species-specific and cross-
species, the correlations were slightly weaker for cross-
species microsatellites (rMT = 0.942, p = 0.001; Fig. 4a)
and for species-specific microsatellites (rMT = 0.866, p =
0.008; Fig. 4a). The correlation among species-specific

Fig. 1 Comparison of estimates of genetic diversity derived from cross-species (developed for Arabidopsis thaliana) and species-specific microsat-
ellite markers (developed for Arabidopsis halleri) for a allelic richness (Ar, p < 0.0001, paired t-test) and b expected microsatellite heterozygosity
(SSR-He, p < 0.0001, paired t-test). c Estimates of SSR-He inferred separately from cross-species and species-specific microsatellite markers were not
significantly correlated (Pearson’s r = 0.439, p = 0.237). Dots are labelled with population codes (Additional file 1: Table S1). d No significantly differ-
ent estimates of He were observed among populations after Bonferroni correction (pairwise Wilcoxon signed-rank test). Without correction for
multiple testing only population Aha11 and AhaN3 showed significantly different estimates of He (indicated with different colouring and letters)
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and cross-species microsatellites was high (rMT = 0.829,
p = 0.004; Additional file 10: Figure S6).

Estimating the number of unbiased SNPs required for
accurate estimates of genetic diversity
SNP down-sampling revealed that the upper and lower
confidence intervals for expected heterozygosity (SNP-
He) fell below ±0.01, ±0.005, and ±0.001 with 1000, 4000
and 93,000 random SNPs, respectively. To accurately
and consistently rank all A. halleri populations accord-
ing to their genome-wide diversity (i.e. non-overlapping

95% confidence intervals), 300,000 SNPs were required
(Fig. 5). However, populations Aha09 and AhaN3 could
not be distinguished, as they have the same genome-
wide SNP-He (Table 1).

Discussion
The application of microsatellite markers is widespread
in population and conservation genetic studies. However,
NGS-based SNP genotyping approaches are rapidly de-
veloping and can be applied to a wide diversity of model
and non-model organisms. Our comparative analysis of
genetic diversity estimates based on microsatellites and
genome-wide SNPs revealed interesting differences.
Most importantly, we found no significant correlation
between expected microsatellite heterozygosity (SSR-He),
an estimator of genetic diversity that is widely used and
reported in microsatellite studies, and genome-wide SNP
diversity (Fig. 2a and b). This finding indicates that SSR-
He does not adequately reflect genome-wide genetic di-
versity in the investigated populations of A. halleri. In
contrast, microsatellite allelic richness (Ar) was a much
better proxy for genome-wide diversity (Fig. 2c). Further,
genetic differentiation in terms of FST estimated from
microsatellite variation correlated reasonably well with
that based on genome-wide SNP data. However, absolute
values of the different summary statistics inferred from
different marker types varied considerably (Figs. 2a
and 4b). Our results do not question the usefulness
of microsatellites per se, but point to research ques-
tions for which SNPs may be better suited than
microsatellite markers, given the availability of robust
and cost-effective high-throughput sequencing-based
SNP genotyping approaches.

a b c

Fig. 2 Relationships between population genetic parameters for nine populations of Arabidopsis halleri estimated on the basis of 19 microsatellites
and 2 million genome-wide single nucleotide polymorphisms (SNPs). a Relationship between expected genome-wide SNP heterozygosity (SNP-He)
and expected microsatellite heterozygosity (SSR-He). The insert illustrates differences in He between SNPs and microsatellites across the nine A. halleri
populations. b Relationship between genome-wide diversity estimated by average θWatterson across 20,617 genes and expected heterozygosity for all
19 microsatellites (filled circles) and separately for species-specific (open triangles) and cross-species microsatellites (open squares). c Comparisons of
allelic richness (Ar) with genome-wide SNP variation estimated by θWatterson

Fig. 3 Pearson’s correlation (dashed line) between exome-wide
θWatterson and genome-wide expected SNP heterozygosity (SNP-He)
in Arabidopsis halleri
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Fig. 4 Comparison of pairwise population genetic differentiation (FST) among nine populations of Arabidopsis halleri estimated with different
genetic markers. a Comparison of FST derived from 2,178,204 genome-wide SNPs with FST inferred on the basis of all 19 microsatellite markers
(filled circles), and separately for 12 cross-species (open triangles), and seven species-specific microsatellites (open squares). Given are correlation co-
efficients (rMT) and p-values from Mantel tests. b Estimates of FST inferred from SNPs were significantly lower than those based on microsatellites
(p < 0.0001, paired t-test)

Fig. 5 The effect of the number of randomly selected SNP markers on the estimation of He represented for each of nine populations of
Arabidopsis halleri. Light colours indicate the 95% confidence intervals as inferred from 1000 randomly drawn replicates. Dashed horizontal lines
(marked by arrows) indicate the numbers of SNPs for which 95% confidence intervals for SNP-He are below ±0.01, ±0.005, and ±0.001
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Thanks to the massive advances in sequencing tech-
nology, thousands of SNPs can efficiently be genotyped
in any given organism, and these may improve our abil-
ity to adequately estimate genetic diversity and differen-
tiation. Previous studies found that the potential of SNPs
to resolve population genetic structure strongly depends
on their number. Indeed, in studies using a low number
of assay-based SNPs, microsatellites performed similarly
well or better than SNPs [10, 38–47]. However, in stud-
ies using larger SNP numbers, especially when they were
derived from NGS-based approaches, the relative per-
formance of SNPs clearly improved [9, 11, 12, 37, 48].
These studies show that a large number of SNPs com-
pensates for the lower information content of these typ-
ically bi-allelic markers compared to more polymorphic
microsatellite markers. Our study shows that a few thou-
sand SNPs are enough to accurately estimate genome-
wide diversity in terms of He (Fig. 5, see below).
Evidence available from animal species [10, 36, 46]

as well as from this study reveals that there is no or
only weak congruence between estimates of heterozy-
gosity derived from microsatellites and SNPs. Indeed,
theory suggests that an association of heterozygosity
estimates between microsatellites and genome-wide
SNPs is not expected a priori. According to Ljungq-
vist et al. [84], this association is shaped by identity
disequilibrium, i.e. the non-random association of dip-
loid genotypes between loci. Simulations indicated
that a strong positive correlation only emerges when
the studied populations are characterized by substantial
identity disequilibrium, as was the case in the studies on
salmon and carnivores [10, 36]. The absence of this correl-
ation in A. halleri suggests that identity disequilibrium is
weak or absent, which is compatible with the existence of
a strong self-incompatibility system in this species and ob-
served non-significant values of FIS. This finding indicates
that heterozygosity estimates based on microsatellites
(SSR-He) might not be good surrogates for genome-wide
diversity in outbreeding species. Further, we found that
the marker-specific variation of SSR-He is too high to dis-
tinguish populations based on their levels of genetic diver-
sity (Fig. 1d) and that even among microsatellite markers
originally developed for different taxa, important discrep-
ancies can be observed (Fig. 1c and Additional file 6:
Figure S2). This variance bias is especially strong when a
low number of microsatellites is used, as is the case in
many population and conservation genetic studies (on
average about 12 markers [49]). The larger sampling vari-
ance associated with a limited number of microsatellite
markers is evidenced by their allele frequency distribu-
tions, which are much noisier than those derived from the
SNP data set (Additional file 5: Figure S1).
An alternative estimator to He is microsatellite allelic

richness (Ar), one of the simplest estimators of genetic

diversity available. Ar was significantly correlated with
genome-wide SNP diversity in our study (Fig. 2c) and
thus appears to be a useful proxy of genome-wide gen-
etic diversity. Congruent results of Ar and SNP diversity
were also reported in other studies [10, 36, 49] and
might be explained by several reasons. First, SSR-He esti-
mates are based on few markers with noisy allele fre-
quency distributions (Additional file 5: Figure S1A) and
represent a proportion, ranging between 0 and 1,
whereas allelic richness is an infinite count. Accordingly,
one additional allele, especially when it is rare and many
alleles are already present, does not strongly influence
SSR-He, but will affect Ar estimates, making the latter a
more sensitive estimator of diversity. Moreover, espe-
cially for microsatellites with a high number of alleles,
accurate estimates of population-specific heterozygosity
can be problematic [85, 86], and stochasticity may have
a strong impact on estimates of He at the lower range of
allelic diversity. Finally, Ar is more sensitive to popula-
tion bottlenecks than He [49]. Therefore, Ar better re-
flects the population’s demographic history and hence is
a more relevant estimator of genetic diversity to predict
the short-term survival of a population.
Despite the good performance of Ar as a proxy of

genome-wide diversity, it was not sufficient to accurately
rank populations according to their genetic diversity
(Fig. 2c). Consequently, the identification of conserva-
tion units (CUs) or decision taking for conservation
actions based on microsatellite-derived rankings of genetic
diversity may be misguiding. Nevertheless, using
microsatellite-derived Ar rather than SSR-He provides
more accurate estimates of genome-wide genetic diversity
derived from a limited number of microsatellite markers.
These considerations are strengthened by a simulation
study [87], which found allelic richness to be two to four
times more powerful than He for the identification of a
temporal genetic decline in a population.
A possible reason for the deviation of estimates of gen-

etic diversity derived from microsatellite and genome-
wide SNP data could be the influence of very recent
demographic changes. As a consequence of their higher
mutation rate [21], microsatellites respond more
strongly to recent demographic events than genome-
wide SNPs [48], and SNPs uncover a different and likely
older demographic history. Evidence for this hypothesis
has also been presented for bumble bees [48] and may
indicate a fruitful application of microsatellites in ana-
lyses of populations that may have undergone very re-
cent demographic changes. However, it is important to
note that loci with high mutation rate (e.g. microsatel-
lites) may violate demographic model assumptions, such
as mutation–migration–drift equilibrium [8]. Further,
for the long-term survival of populations, genetic diver-
sity in coding and regulatory sequences is arguably more

Fischer et al. BMC Genomics  (2017) 18:69 Page 10 of 15



relevant than microsatellite diversity, because most
microsatellites are located in non-coding regions and
are mostly selectively neutral, hence of less evolutionary
importance. Consequently, estimates of genome-wide
SNP diversity better reflect functionally important and po-
tentially adaptive genetic variation [88], and should there-
fore be used preferentially, especially in conservation
genetics studies. In A. halleri the long-term demographic
history inferred from genome-wide data indicates a bottle-
neck with later expansion for most populations, as values
of Tajima’s D were slightly negative and significantly differ-
ent from zero (Table 1 and Additional file 7: Figure S3).
The origin of the microsatellite markers used, i.e.

whether they are species-specific or cross-species
markers, may further impact estimates of genetic diver-
sity [27]. In this study, species-specific microsatellites
displayed significantly higher Ar and SSR-He than cross-
species markers (Fig. 1a, b) originally developed for A.
thaliana [52, 60, 61]. Further, species-specific markers
resulted in more accurate estimates of genetic diversity
(Ar; Fig. 2b), but less accurate estimates of divergence
(FST; Fig. 4a) among populations of A. halleri. Hence,
the practicability of microsatellites for population gen-
etic studies is limited and difficult to assess a priori [8].
High estimates of genetic diversity derived from species-

specific microsatellite markers may be a consequence of
ascertainment bias caused by selecting the most poly-
morphic markers [15, 27], whereas cross-species microsa-
tellites are mostly chosen based on their amplification
success in the study species. The consequence of this as-
certainment bias is evident in this study, as estimates of
SSR-He for cross-species microsatellites are not signifi-
cantly correlated with SSR-He for species-specific microsa-
tellites (Fig. 1c). These differences further emphasize our
inference that marker choice may substantially bias esti-
mates of genetic diversity and may invalidate comparisons
between populations or species, most notably when differ-
ent microsatellite loci are assessed [10].
A different pattern emerges for estimates of popula-

tion genetic differentiation in terms of pairwise FST.
We found a significant positive correlation between
values of pairwise FST derived from microsatellites and
genome-wide SNPs (Fig. 4). Similar findings were reported
for salmons and threespine sticklebacks [36, 37, 46]. A
reason for the better correlation between estimates of gen-
etic differentiation compared to estimates of genetic diver-
sity may be that more values are involved in pairwise
comparisons, and that differences in allele frequencies of
the common alleles are more important for the accurate
estimation of genetic differentiation than those of rare al-
leles. Importantly, estimates of FST derived from microsa-
tellites were consistently and substantially higher than
those based on genome-wide SNPs. This seems counterin-
tuitive, because multi-allelic microsatellite markers with

high mutation rates (and thus high genetic diversity)
should cause lower FST values than low-diversity markers
like SNPs [89]. However, pooled whole-genome re-
sequencing studies with high coverage, such as this one,
also detect rare variants; these low-frequency SNPs reduce
overall FST [90]. Overall, we consider pairwise population
genetic differentiation estimated from microsatellites a
useful proxy for genome-wide differentiation, but only in
relative and not in absolute terms (Fig. 4b). This finding
has serious implications, because absolute values of FST
continue to be frequently used to infer indirect estimates
of gene flow and migration, even though estimates of
gene-flow should not be derived from FST [91]. Further,
this marker-specific difference in FST estimates has a
major impact on comparative studies of the divergence of
quantitative traits, known as QST–FST comparisons, be-
cause the inference of the role of natural selection and
genetic drift as causes of population genetic differentiation
in complex polygenic traits is biased [92].
While our results suggest that microsatellites should

not be used for estimating genome-wide heterozygosity,
we emphasize that microsatellites remain useful molecu-
lar markers for other applications. For example, microsa-
tellites perform very well in genetic stock identification
or paternity analysis owing to their high variability
[15, 93–96] and may therefore continue to play an
important role in molecular ecology. However, before
embarking on a molecular analysis, it remains a key issue
to carefully assess the inherent strengths and limitations
associated with different molecular markers [8]. Only then
it is possible to select the most appropriate method for a
given ecological or evolutionary question [46].
In contrast to microsatellite-derived data, estimates of

genome-wide diversity inferred from whole-genome re-
sequencing data, e.g. exome-wide θWatterson, intronic and
intergenic θWatterson, or genome-wide SNP-He, were highly
correlated with each other and led to the same ranking of
populations (Fig. 3; Additional file 9: Figure S5). Even
though values of θWatterson were either derived exclusively
from coding regions or intronic and intergenic regions,
and SNP-He was calculated from positions across the
whole genome, their estimates were highly congruent. The
slight variation observed among θWatterson and SNP-He

(Fig. 3) might be explained by differences in the demo-
graphic history among populations (Tajima’s D in Table 1),
because the demographic history of a population has a
stronger influence on θWatterson (the number of segregat-
ing sites) than on SNP-He or SNP nucleotide diversity es-
timates [49], as rare alleles are more likely to be lost
during a bottleneck than common ones. Further, we found
in our whole-genome re-sequencing study that the con-
founding effects of genetic linkage are negligible in the
highly outcrossing and self-incompatible A. halleri, most
likely because the small-scale linkage effects are

Fischer et al. BMC Genomics  (2017) 18:69 Page 11 of 15



compensated by the large numbers of unlinked SNPs.
Thus, our SNP-He estimates based on a subset of puta-
tively unlinked SNPs were nearly identical to the estimates
inferred for all SNPs, see Fig. 2a and Additional file 8:
Figure S4 . Similar to our genome re-sequencing study,
approaches that use reduced representation libraries
(e.g. RADseq) to sample a subset of genome-wide SNPs
can accurately estimate genome-wide heterozygosity.
As a consequence of the much smaller proportion of
the genome surveyed with such approaches, however,
care should be taken to avoid confounding effects of
linkage, for example by considering only one SNP per
RAD-locus [97]. For example, the inbreeding coefficient
of a known pedigree in oldfield mice showed strong
concordance with the inferred estimates of heterozygosity
obtained from 13,198 RADseq SNPs [9]. This result indi-
cates that, as long as a sufficiently large number of un-
biased NGS-based SNPs is analysed across the genome,
SNP estimates accurately reflect genome-wide diversity in
natural populations. Therefore, approaches like RADseq
[98], Pool-Seq [20] and whole-genome re-sequencing at
low coverage [99, 100] are more appropriate than array-
based SNP approaches, which may be affected by strong
ascertainment bias [17, 101].
An important question to consider in many studies

may be the number of SNPs that are needed to estimate
genetic diversity. Our down-sampling approach indi-
cated that the number of random SNPs that are required
to resolve genetic diversity difference among populations
range from 1000 (confidence intervals ± 0.01 SNP-He) to
93,000 SNPs (±0.001 SNP-He). This number is in the
range of SNPs that can be inferred with standard RAD-
seq protocols also in non-model organisms [98]. How-
ever, to differentiate among populations with very
similar levels of genetic diversity, we required approxi-
mately 300,000 SNPs (Fig. 5). Thus, large SNP datasets
that are ideally identified de novo through NGS ap-
proaches (to prevent ascertainment bias) are highly suit-
able to distinguish, for example, between populations
differing in genetic diversity and may therefore support
decision-making in conservation management. A fur-
ther advantage of genome-wide SNP data is that they
not only allow one to estimate neutral genetic diver-
sity, but also to identify adaptive genetic variation
(e.g. [50, 102–104]), which is considered essential for
delimitating conservation units (CUs; [5, 32, 105]). The
large technical advances in nucleotide sequencing technol-
ogy in recent years have not only massively increased the
number of nucleotides that can be sequenced per individ-
ual or population, but have also led to reduced costs per
nucleotide to the extent that screening a handful of micro-
satellite markers may be as expensive as surveying thou-
sands of SNPs using latest NGS-based genotyping
technologies (e.g. [19, 98]).

Conclusion
This case study in the perennial and outcrossing plant
A. halleri reveals that genetic diversity estimated from
microsatellite markers, notably expected heterozygosity,
may not adequately reflect genome-wide genetic diver-
sity estimated from single-nucleotide polymorphisms
and may therefore be a poor proxy for genome-wide es-
timates of genetic diversity. Possible causes include the
limited number of microsatellite markers used, marker
ascertainment bias, as well as the high variance in
microsatellite-derived diversity estimates. Interestingly,
microsatellite allelic richness (Ar) was found to be a rea-
sonable proxy for genome-wide diversity, but the abso-
lute ranking of populations was still inconsistent.
Estimates of genetic differentiation (FST) among popula-
tions derived from microsatellites were consistently
higher than SNP-based estimates but were significantly
correlated with the latter.
Our results do not question the usefulness of microsa-

tellites per se, but point to research questions for which
NGS-derived SNPs may be better suited than microsat-
ellite markers, given the availability of robust and cost-
effective SNP genotyping approaches based on high-
throughput sequencing. As a consequence, we recom-
mend using genome-wide analyses of SNP diversity
when the inference and comparison of genetic diversity
within and among populations and species is the goal of
a study. A few thousand NGS-derived SNPs are suffi-
cient for this purpose and this number of unbiased SNPs
can nowadays easily been obtained also for non-model
species, for example by using a reduced representation
sequencing approach such as RADseq [98].
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genotyped in Arabidopsis halleri. For cross-species microsatellites (left,
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