
WIDE-AREA MAPPING OF FOREST WITH NATIONAL AIRBORNE LASER 

SCANNING AND FIELD INVENTORY DATASETS 
 

J.-M. Monnet a,*, C. Ginzler b, J.-C. Clivaz c 

 
a Université Grenoble Alpes, Irstea, UR EMGR, 2 rue de la Papeterie - BP 76, F-38402 St-Martin-d’Hères, France –  

jean-matthieu.monnet@irstea.fr 
b Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland - christian.ginzler@wsl.ch 

c Canton du Valais - Arrondissement forestier du Valais Central – Rue Traversière 3, CH-1950 Sion, Switzerland -  

 jean-christophe.clivaz@admin.vs.ch  

 

 

KEY WORDS: Forest Inventory, Airborne Laser Scanning, Wide-area Mapping, Remote Sensing, Valais 

 

 

ABSTRACT: 

 

Airborne laser scanning (ALS) remote sensing data are now available for entire countries such as Switzerland. Methods for the 

estimation of forest parameters from ALS have been intensively investigated in the past years. However, the implementation of a 

forest mapping workflow based on available data at a regional level still remains challenging. A case study was implemented in the 

Canton of Valais (Switzerland). The national ALS dataset and field data of the Swiss National Forest Inventory were used to 

calibrate estimation models for mean and maximum height, basal area, stem density, mean diameter and stem volume. When 

stratification was performed based on ALS acquisition settings and geographical criteria, satisfactory prediction models were 

obtained for volume (R2=0.61 with a root mean square error of 47%) and basal area (respectively 0.51 and 45%) while height 

variables had an error lower than 19%. This case study shows that the use of nationwide ALS and field datasets for forest resources 

mapping is cost efficient, but additional investigations are required to handle the limitations of the input data and optimize the 

accuracy.  

 

1. INTRODUCTION 

In the past decade, many studies have demonstrated the 

potential of airborne laser scanning (ALS) for forest parameter 

mapping. The area-based approach combines the 3D description 

of vegetation by the ALS point cloud with field plot data in 

order to provide statistically calibrated, continuous maps of 

forest parameters (Naesset, 2002). This method has been tested 

in different forest contexts and with various acquisitions 

settings. It is now used for operational inventory with dedicated 

ALS and field campaigns in areas of around 100 km2. Besides, 

nationwide ALS acquisitions have been performed, mainly for 

topographic purposes, and field forest plot are routinely 

acquired for national or regional statistical monitoring of forest 

resources. These data can be used in a cost-effective way as 

inputs for the ALS-based mapping workflow (Hollaus et al. 

2009, Nilsson et al. 2015) but have limitations as their 

acquisition is not designed for this purpose. In this case-study, 

we used nationwide ALS data and National Forest Inventory 

(NFI) data to derive forest parameters maps and identify the 

main limitations due to the input data. 

 

 

2. MATERIAL AND METHODS 

2.1 Study area 

The study area is the Canton of Valais (Switzerland), with a 

total area of 522 450 ha. Forests are highly heterogeneous due 

to the elevation range (390 to 3550 m above sea level) and the 

steep topography (Figure 1). The Canton is divided in three 

arrondissements: Bas-Valais, Valais-Central and Oberwallis 

from west to east. Total forest area is 127 400 ha. 

 

2.2 National forest inventory data 

The objective of the Swiss NFI is to evaluate the current state  

 

Figure 1. Map of study area 

 

and monitor the dynamics of Swiss forests, based on a network 

of field sample plots. The sampling (Keller 2005) is based on a 

1.4 km grid. Trees with a diameter at breast height (DBH) 

above 12 cm are inventoried up to a distance of 7.98 m from the 

grid node, and trees with DBH larger than 36 cm up to 12.62 m. 

From the tree-level measures, the Swiss Federal Institute for 

Forest, Snow and Landscape Research (WSL) derives plot-level 

forest parameters. In this study, mean height, maximum height, 

mean diameter, stem density, stem volume and basal area are 

considered.  

 

Table 1 presents the statistics of the 688 plots located in the 

study area and measured in 2006 during the NFI III campaign. 

On 47 plots, no tree was measured. Height parameters are not 

calculated in 229 plots, due to sampling procedures. Forest 

parameters are highly variable, with volumes from 0 to 

1439 m3/ha and basal areas from 1 to 139 m2/ha. This 
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variability is due to both the heterogeneity of forests and to the 

small size of inventory plots (500 m2). 

 

Mean 

height 

(m) 

Max. 

height 

(m) 

Volume 

(m3/ha) 

Stem 

density 

(/ha) 

Mean 

diameter 

(cm) 

Basal 

area 

(m2/ha) 

 Min. 7.0 7.0 0.0 20 12.0 1.0 

 1st Qu. 16.0 17.0 117.0 230 22.7 16.0 

 Median 21.0 23.0 228.2 400 30.2 28.0 

 Mean 20.6 22.8 291.6 492 31.9 32.2 

 3rd Qu. 25.5 28.0 428.3 690 39.0 45.0 

 Max. 36.2 40.0 1439.3 3694 73.0 139.0 

 No data  229 229 47 47 47 47 

Table 1. Forest parameters statistics for the 688 NFI plots  

 

NFI data result from a well-documented protocol and are 

available for the whole Swiss territory. However, their use for 

the calibration of estimation models from remote-sensing data 

has some limitations:  

- the number of plots might not be sufficient for small 

surfaces (< 100 km2); 

- the temporal difference between the field and remote 

sensing acquisitions; 

- the spatial accuracy of the field plot position. 

 

Strunk et al. (2012) showed that the minimum number of plots 

to avoid the over-estimation of model accuracy is 50. Regarding 

position accuracy of the NFI data in Valais, a study carried on a 

sample of 44 plots demonstrated a mean absolute position error 

of 4.6 m, with a standard error of 3.5 m. Previous studies 

showed that positions errors below 5 m have limited effect on 

models accuracy. But those results were obtained with larger 

plots and in more homogeneous forests (Gobbakken & Naesset 

2009). Besides, when models are calibrated with shifted data, 

model error is rather over-estimated (Monnet & Mermin, 2014). 

 

2.3 Airborne laser scanning data 

ALS data was acquired for the whole Swiss territory between 

2000 and 2008, for areas with altitude below 2000 m. ALS data 

are available as point clouds with X, Y and Z coordinates 

without other attributes. Point classification is not specified but 

the swissALTI3D digital terrain model (2-m resolution) was 

derived from this dataset. Flight metadata are limited to the 

following information: year and period of flight (spring / 

autumn / summer). The ALS point cloud in the study area was 

acquired in 2001 and 2005, and actually contains points up to 

an altitude of 2100 m. Average pulse density is around 0.5 m-2, 

which is sufficient for an area-based approach (Monnet et al. 

2015). 

 

2.4 Model stratification 

Interaction between the canopy cover and the laser pulses 

highly depends on the vegetation structure, type of scanner, 

acquisition parameters and flight date. In order to limit the 

variations induced by those factors, stratum-specific models are 

calibrated. Strata are designed a priori to be more homogeneous 

while containing a sufficient number of calibration plots. Six 

strata are considered depending on the flight date, 

arrondissement and altitude (Table 2). 

 

Flight date Arrondissement Altitude 

(m) 

Stratum 

code 

2001 or 2002 All  1 

2005 - autumn All  51 

2005 - spring Bas-Valais 

Valais Central 

<1518 5211 

>=1518 5212 

Haut-Valais <1590 5221 

>=1590 5222 

Table 2. Strata for model calibration 

 

For model calibration, NFI plots located across ALS tiles 

acquired in different years or seasons are discarded (24 plots). 

Plots with missing or partial point clouds (altitude superior to 

2100 m) are also discarded (32 plots). A visual comparison of 

the point cloud and corresponding NFI data was performed to 

remove NFI plots where the temporal or spatial difference 

between field and airborne acquisition leads to a flagrant 

discrepancy (15 plots). 

 

2.5 Metrics computation and modelling 

The software FUSION (McGaughey, 2014) is used to compute 

ALS metrics. They are calculated on the one hand for the point 

cloud extracted for each NFI plot, based on their center 

coordinates and radius, and on the other hand for pixels 

obtained by applying a 20-m square grid on the whole study 

area. Only ALS points with height larger than 2 m above 

ground are considered for metrics calculation, in order to limit 

the influence of herbs and shrubs. Points higher than 50 m are 

considered as outliers and are also discarded. For each stratum 

and each forest parameter, only plots with positive values are 

used for calibration. The dependent variable is first transformed 

by a Box-Cox transformation of parameter λ to normalize its 

distribution. Then linear regressions with at most four 

independent variables are tested. The regression with the 

highest adj-R2 is retained as prediction model: 

 

 
iii

λ

+xa+a=
λ

y
 


0

1
  (1) 

 

with εi model residuals and ai the coefficients. 

 

The following metrics are considered as candidate variables: 

Elev.minimum, Elev.maximum, Elev.mean, Elev.mode, 

Elev.stddev, Elev.variance, Elev.CV, Elev.IQ, , Elev.skewness, 

Elev.kurtosis, Elev.AAD, Elev.MAD.median, , Elev.MAD-

mode, Elev.L1, Elev.L2, Elev.L3, , Elev.L4, Elev.L.CV, 

Elev.L.skewness, Elev.L.kurtosis, , Elev.P01, Elev.P05, 

Elev.P10, Elev.P20, , Elev.P25, Elev.P30, Elev.P40, Elev.P50, , 

Elev.P60, Elev.P70, Elev.P75, Elev.P80, , Elev.P90, Elev.P95, 

Elev.P99, Canopy.relief.ratio, Elev.quadratic.mean, Elev.cubic-

mean, Percentage.all.returns.above.2.00, Percentage.all.returns-

above.mean, Percentage.all.returns.above.mode. The altitude 

extracted from the swissALTI3D digital terrain model is also 

used as candidate variable. 
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Once the models are calibrated, parameter estimates y~ are 

obtained by applying model coefficients to the selected ALS 

metrics and applying the Box-Cox inverse transformation: 

  










λ

+xa+aλ=y ii

1

1~
0   (2) 

 

A bias correction (Pu & Tiefelsdorf 2015) is applied to obtain 

the final estimate ŷ : 

 

 
  









 
2

1~2

1
1~ˆ

+yλ

λvar
+y=y    (3) 

 

with var the variance of model residuals. 

 

2.6 Accuracy evaluation 

In absence of validation data, accuracy assessment is performed 

by leave-one-out cross validation. The root mean square error 

(RMSE) and its coefficient of variation (CVRMSE) are computed: 

 

  
2ˆ

1
ii yy

n
=RMSE   (4) 

 

y

RMSE
=CVRMSE with  iy

n
=y

1
 (5) 

 

where iŷ and iy are respectively the estimated and observed 

values for plot i, and n is the total number of plots. The bias and 

the mean absolute error (MAE) are also calculated. 

 

   ii yy
n

=MAE ˆ
1

 ;    ii yy
n

=Biais ˆ
1

 (6) 

 

 

3. RESULTS AND DISCUSSION 

3.1 Plot-level accuracy 

The Table 3 presents aggregated statistics of the models. 

  

Variable Plot # Bias RMSE 

CVRMSE 

(%) MAE 

R2 

(%) 

Mean height 418 0 3.8 18.3 2.9 62.3 

Max height 416 0 4.2 18 3.2 66.6 

Volume 576 1.2 139 46.7 101 61.4 

Stem density 582 1 284 57.5 214 32.8 

Mean diameter 582 0 9.3 29.3 7 37.0 

Basal area 582 0.1 14.6 45.3 11 50.6 

Table 3. Global accuracy statistics of prediction models 

 

Approximately 418 NFI plots were used for model calibration 

of height variables, and 582 for the other variables. For height 

 

 

 

 
 

Figure 2. ALS estimates plotted against field measures, symbol 

color refers to the different strata 
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variables and stem volume, models account for more than 61% 

of variability, even though the root mean square error remains 

important (47%). A similar error is obtained for basal area, but 

with a lower coefficient of determination (51%). Models for 

mean diameter and stem density have little relevance. No bias is 

significant. 

 

Accuracies are lower than usual values found in the literature, 

where there are typically 5 to 10% for height variables, 20 to 

30% for volume and basal area. In the nationwide study in 

Sweden (Nilsson et al. 2015), accuracies were 17.2 to 23.3% for 

stem volume, 15.0 to 18.3% for basal area and 6.2 to 9.7% for 

tree height. The heterogeneity of forest stands and of the ALS 

data in the Valais might explain the lower accuracies. 

 

Graphical displays of results (Figure 2) show that models tend 

to overestimate small values and underestimate large values, 

whatever the forest parameter. This could be linked to a 

saturation of the ALS signal in highly stocked forest stands or 

to the effect of temporal and spatial shifts between field and 

airborne acquisitions.  

 

3.2 Wall-to-wall mapping 

The ALS metrics are calculated for each pixel of a 20-m 

resolution raster covering the whole study area. Each pixel is 

affected to the corresponding stratum depending on its ALS 

flight date, arrondissement and altitude, according to the same 

criteria as for the NFI plots. Stratum-specific models are then 

applied to compute the forest parameter estimates.  

Extreme values are obtained due to ALS point outliers. 

Thresholds are applied to the final map to remove such 

artefacts. Moreover, pixels located outside the forest mask 

defined by the “wooded area” reference shapefile are set to 

NULL. 

  

3.3 Arrondissement-level accuracy 

For each arrondissement, the mean value for stem volume and 

basal area are computed, from the NFI data alone, and from the 

ALS-derived maps. 

 

From the n NFI plots located in a given area of interest, the 

mean M and the error E corresponding to the 95% confidence 

interval [M-E, M+E] are computed as: 

 

 iIFN y
n

=M
1

 ;  
n

σ
nt=E

y

IFN 10.975,  (9) 

 

with t(0.975, n-1) the quantile 0.975 of a Student distribution 

with n-1 degrees of freedom, and σy the standard deviation of 

the n IFN values. 

 

From the N pixels contained in the same area, the synthetic 

regression estimator (SRE) defined by Breidenbach & Astrup 

(2012) can be calculated as: 

 

 jSRE y
N

=M ˆ
1

   (10) 

 

Altitudes higher than 2050 m are discarded, because the ALS 

coverage might be incomplete. ALS estimates are an indirect 

but comprehensive measure of the study area. While the 

uncertainty of the NFI estimate results from the sampling, 

uncertainty of the ALS value is due to the model error. Indeed, 

models can be mis-specified if the calibration data are not 

representative of the area of interest. An arrondissement-level 

bias correction is introduced to compute the generalized 

regression estimator (GREG) by removing the arrondissement-

level bias calculated on the n local NFI plots:  

 

    iiSREGREG yy
n

M=M ˆ
1

 (11) 

 

Its confidence interval is computed similarly to formula (9) by 

using the standard error of model residuals instead of σy. Table 

3 presents the results for the whole Valais. Results at the 

arrondissement level are displayed on Figure 3. The confidence 

intervals are smaller for the ALS-derived values, compared to 

those calculated from the NFI. 

 

 NFI SRE GREG 

Volume (m3/ha) 281±19 326 307±14 

Basal area (m2/ha) 30.6±1.8 36.2 34.2±1.4 

Table 3. Mean volume and basal area estimates for the Valais 

 

 

 
 

 
Figure 3. Mean volume and basal area for each arrondissement 
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4. CONCLUSION 

Existing methodology for the calibration of prediction models 

with airborne laser scanning was successfully implemented in 

the case of a wide-area mapping of forest variables. Using NFI 

sample plots and existing ALS datasets is cost-effective and the 

resulting maps have high added-value for local forest managers, 

despite higher errors compared to values obtained in 

specifically designed ALS-based inventories.  

Regarding data acquisition, it seems important to have better 

meta data about acquisition parameters in order to be able to 

appropriately stratify the models in subsequent analysis. 

Besides, if statistical estimates have to be derived at some 

administrative level, attention should be paid to ensure 

homogeneous acquisition settings inside each administrative 

entity.  

 

Temporal and spatial differences between field and remote 

sensing acquisitions still remain troublesome. Methods have 

been proposed to improve field data co-registration (Monnet & 

Mermin 2014), but they are not always applicable due to data 

quality. A better co-registration would benefit to many 

applications with remote sensing, so that special attention 

should be paid to GNSS geolocation during field measures. The 

effects of temporal difference have received little attention in 

the literature. Along with sampling issues, it might contribute to 

prediction models being mis-specified, and advanced statistical 

tools might be required to improve the estimation of domain-

level attributes and of their associated uncertainty. 
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