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Globally accelerating trends in societal development and human environmental 82 

impacts since the mid-20th century1-7 are known as the Great Acceleration and 83 

discussed as a key indicator of the onset of the Anthropocene6. While reports on 84 

ecological responses (e.g. species range shifts or local extinctions) to the Great 85 

Acceleration are multiplying8,9, it is unknown whether such biotic responses are 86 

undergoing a similar acceleration over time. This knowledge gap stems from the limited 87 

availability of time series data on biodiversity changes across large temporal and 88 

geographical extents. Here, we use a unique dataset of repeated plant surveys from 302 89 

mountain summits across Europe, spanning 145 years of observation, to assess the 90 

temporal trajectory of mountain biodiversity changes as a globally coherent imprint of 91 

the Anthropocene. We find a continent-wide acceleration in the rate of plant species 92 

richness increase, with five times higher species enrichment over the last decade 93 

compared to fifty years ago. This acceleration is strikingly synchronized with 94 

accelerated global warming, and not linked to alternative global change drivers. The 95 

accelerating increases in species richness on mountain summits across this broad spatial 96 

extent demonstrate that acceleration in climate-induced biotic changes is occurring even 97 

at remote places on Earth, with potentially far-ranging consequences not only for 98 

biodiversity, but also for ecosystem functioning and services.  99 
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Mountains are particularly sensitive to ecological change and are experiencing some 100 

of the highest rates of warming under anthropogenic climate change10,11. Numerous reports of 101 

species re-distribution towards the summits8,12-14 and warming-induced changes in 102 

biodiversity on summits13,15,16 suggest that mountain biota are highly sensitive to increasing 103 

temperatures17. The current accelerating trends in temperature increase1,6 should therefore also 104 

affect the velocity of changes observed for mountain biota. Appropriate empirical 105 

assessments of the rate of change in the velocity of ecological responses (biodiversity and 106 

ecosystem trajectories) to accelerated global warming require long-term resurveys (e.g. time 107 

series) of species communities, but these are scarce and localized. Mountain summits are 108 

especially suited for long-term studies of biotic responses to environmental changes because 109 

they represent natural permanent study sites that are easy to re-locate over time18,19, thus 110 

allowing to record reliable time series. By repeatedly resurveying alpine plant communities 111 

on 302 European mountain summits dating back as far as 1871, we generated time series for 112 

century-scale and continent-wide biodiversity dynamics to assess potential acceleration trends 113 

in plant diversity dynamics (Fig. 1). Using these time series data, we tested whether the recent 114 

acceleration of climate change is driving a similarly accelerating change in species richness 115 

on mountain summits across the continent. 116 

Here we show that plant species richness has strongly increased over the past 145 117 

years on the vast majority (87%) of Europe’s summits (generalized linear mixed effects 118 

model: p<0.001; Fig. 2; Extended Data Table 1) and the increase has accelerated in the most 119 

recent years. This trend is consistent across all nine covered geographical regions, with no 120 

single region showing the opposite pattern. Across all summits, this increase in plant species 121 

richness has accelerated over time (linear mixed effects models: p<0.001; Fig. 3; Extended 122 

Data Table 2), and the acceleration has been particularly pronounced during the last 20-30 123 

years (Figs 2 and 3). Fifty years ago (1957 to 1966), the rate of increase in species numbers 124 

averaged 1.1 species per decade (Fig. 3), while during the last decade (2007 to 2016) the 125 

summits gained 5.4 additional species on average (Fig. 3). There is a positive relationship 126 
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between the magnitude of increase in plant species richness and the rate of warming across all 127 

302 time series (linear mixed effects models: p<0.001; Fig. 4a and Extended Data Figure 2a; 128 

Extended Data Table 3). The temporal and spatial congruence between the velocity of climate 129 

change and the species accumulation rates on mountain summits across Europe corroborates 130 

the hypothesis that warming is the primary driver of locally observed upward shifts of species 131 

ranges in mountains (Fig. 2)12,13,20 and their recent acceleration16,21. Our findings thus align 132 

with those of shorter-term studies demonstrating plant community thermophilization15,17 and 133 

range shifts driven by warming7. 134 

The observed relationship between temperature change and species richness change 135 

over the past 145 years is consistent across all nine regions. Changes in precipitation and 136 

nitrogen deposition also correlate with species richness changes regionally, but the direction 137 

and magnitude of these effects differ strongly between regions (Extended Data Figure 2b, c). 138 

While precipitation change (ΔP/year) has a moderate (positive) effect on species richness 139 

trends across Europe (Extended Data Table 3; Fig. 4b, c), its effect is not consistent and 140 

significant across all analysed regions (Extended Data Table 6; Extended Data Figure 2b) and 141 

is minor compared to the effect of temperature change (ΔT/year; Extended Data Table 4 and 142 

6). Changes in grazing and tourism could also affect changes in plant species richness on 143 

summits21. Local studies suggest that grazing22 and frequent disturbance by tourists15 may 144 

suppress the elevational advance of alpine plants in response to warming in mountains. While 145 

quantification is challenging, locally declining levels in domestic livestock are often in 146 

synchrony with recovery of wild ungulate populations. Hiking tourism increased on some 147 

summits, but intensities vary strongly. Land-use changes may thus explain parts of the local 148 

variation in species richness trends, however, they vary greatly within and between regions. 149 

Without a consistent impact on species re-distribution, it is unlikely that changes in grazing 150 

and tourism can account for the consistent, continent-wide increase in plant species richness 151 

evident in our data. 152 
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Some previous observations suggest that upslope species migration in mountains 153 

occurs almost in synchrony with climate warming17, while other studies indicate strong lags in 154 

dispersal, establishment, and extinction expected for many alpine plant species23,24. We 155 

systematically tested for time-lags (up to 10 years) in species richness increase following 156 

climate changes, but found that time-lags did not significantly improve the explanatory power 157 

of our models (Extended Data Table 5). This finding suggests that increases in species 158 

richness on European summits are a direct and immediate response to climate warming (see 159 

also Fig. 2) and, thus, can be expected to further accelerate as climate warming continues to 160 

accelerate1. Because we focus on the average trend, and by not accounting for non-colonizing 161 

lower-altitude species, we cannot, however, exclude the possibility that only a fraction of 162 

species responded quickly to climate change, thus creating the observed relationship, while an 163 

unknown number of species lags behind the change in climate. Our observations may, 164 

therefore, underestimate the expected long-term species turnover on summits. 165 

The accelerated increase of species richness on mountain summits likely results from 166 

an upward shift of the upper range limits of an increasing number of species. Trait analyses 167 

indeed show that new colonizers exhibit growth strategies characterizing lower elevations, 168 

having larger size (p<0.001), higher specific leaf area (p<0.01) and a general association with 169 

warmer temperatures (p<0.001; Extended Data Table 7). Ultimately, the lower range limits of 170 

species will also shift upwards, but these limits are often determined and changed by biotic 171 

interactions and are, therefore, only indirectly related to temperature25. As more species 172 

establish at high-elevation sites, local extinctions will likely occur due to competitive 173 

replacement of slow-growing, stress-tolerant alpine species by more vigorous generalists that 174 

benefit from warming, rather than by direct adverse effects of warming on the summit 175 

species26. However, competitive replacement of resident species requires that colonizers build 176 

up sufficiently large populations. Local extinctions should hence follow colonization with a 177 

time-lag. Consequently, accelerating plant species richness increases would be a transient 178 

phenomenon which hides the accumulation of a so-called extinction debt23,27. The relaxation 179 
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time until this debt is paid off is likely characterized by continuous shifts in abundance ratios 180 

which may serve as sensitive early-warning signals of upcoming extinctions15. The length of 181 

the relaxation time likely depends on factors such as the longevity of high-elevation species, 182 

plant clonal abilities, and the local microhabitat diversity, supporting the persistence of cold-183 

climate microrefugia for high-alpine species28,29. Although these processes, along with others 184 

such as the species’ intrinsic ability to tolerate changing climates, may buffer local 185 

extinctions, rapid loss of alpine-nival species may occur under accelerated climate warming. 186 

Additionally, if major changes and extinctions in alpine systems are not gradual, but initiated 187 

by threshold-like dynamics (e.g. shrub and tree encroachment), critical tipping points may be 188 

approached with increasing speed under accelerated climate warming. 189 

Our results underline the link between accelerating climate warming and species 190 

richness change in mountains. We thus provide a particularly compelling example of the 191 

human-driven impact on terrestrial biota that is highly consistent with the recently reported 192 

Great Acceleration in Earth system trends in the Anthropocene and strikingly synchronous 193 

with the recent accelerating trends observed in many socio-economic indicators6. The 194 

observed acceleration of biodiversity change in mountain ecosystems highlights the rapid and 195 

widespread consequences of human activities on the biosphere, with important consequences 196 

for ecosystem functioning, human well-being, and the dynamics of climate change30. 197 

 198 
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Figures 318 
 319 

 320 
 321 

Figure 1 | The study is based on 698 surveys from 302 summits in nine mountain regions 322 

across Europe dating back to 1871. Each sampled summit is indicated by one line, with 323 

black crosses indicating survey dates. The historical surveys were often conducted by leading 324 

pioneers in vegetation ecology in Europe (B. Pawlowski, J. Braun-Blanquet, E. Rübel, E. Du 325 

Rietz etc.). Numbers in brackets beside the region names indicate the number of 326 

summits/surveys. Picture references for Pawlowski (Zemanek, 2012, Florist. Geobot. Polon.), 327 

Braun-Blanquet (Ellenberg 1982, doi 10.1111/j.1438-8677.1982.tb02874.x) and Rübel (ETH-328 

Bibliothek Zürich, doi 10.3932/ethz-a-000073833). 329 

 330 
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 331 
Figure 2 | Average species richness change (in species numbers) on mountain summits 332 

over time (lower part of panels) compared to mean annual temperature over time (upper 333 

part of panels). “Nobs” indicates the number of summits/surveys within the mountain region 334 

providing data for the respective panel. Correlation between rate of change in species richness 335 

and rate of change in temperature (ΔTcor) is positive for all mountain regions (see also 336 

Extended Data Figure 2a). Orange shading marks the 5th and 95th percentiles of the resulting 337 

richness change values from a bootstrapping approach across all summits in one region; see 338 

Extended Data Figure 1 for methodological details. 339 

 340 

 341 
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 342 

 343 
 344 

Figure 3 | Rate of species richness change over time (black line, b). Positive values indicate 345 

an increase in species richness on summits and negative values indicate a decrease. Rates 346 

(ΔSR/year = (SRt2-SRt1)/(t2-t1)) [SR = species richness, t = time] were averaged across all 347 

summits and inversely weighted by the number of years between observations (t2-t1) to 348 

account for temporal resolution as a longer period between surveys might mask short-term 349 

fluctuations. The black line interpolates across all summits with a generalized additive 350 

(spline) smooth model (R package mgcv version 1.8-17, the smooth term (k = 50) was chosen 351 

to allow enough degrees of freedom to closely represent the underlying pattern). The shaded 352 

grey area represents ±1 standard error around the mean value (black solid line). a) The 353 

histogram at the top of the figure indicates the number of slope parameters per year (N; 354 

comparisons of earlier survey and later sampled resurvey) that support the line graph.  355 
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 356 

 357 
 358 
Figure 4 | Rate of species richness change (ΔSR/year = (SRt2-SRt1)/(t2-t1)) related to the 359 

rate of: a) temperature change; and b) precipitation change across all sampled 360 

mountains in Europe. Note that this pattern differs considerably among regions (see 361 

Extended Data Figure 2 for more details at the regional level). Dots are semitransparent, with 362 

darker symbols indicating overlapping points. Trend lines and R2 values are based on 363 

univariate linear regressions and significance, indicated by stars, is based on F-statistics (see 364 

text and Extended Data Table 3 for multivariate analysis). The relationship between change in 365 

species richness and accumulated nitrogen (not shown) is not significant, because nitrogen 366 

deposition varies strongly across Europe whereas the change of species richness shows the 367 

same trend across the continent. See text and methods section for more detailed analyses with 368 

generalized mixed effects offset models including regional differences. 369 

  370 
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METHODS 371 

Vegetation resurveys on European mountain summits. Precise relocation of vegetation 372 

records is possible on mountain summits. European botanists, fascinated by the limits of plant 373 

life, noted this potential more than a century ago (Fig. 1)18: “On the basis of a comprehensive 374 

description of locations, it will not be difficult to verify my species lists, and an increase or 375 

decrease of species richness in the future will be possible to detect with high certainty” 376 

(Josias Braun-Blanquet in 1913, translated from 31, p. 329). The foresight and the data they 377 

gathered on mountain summits gives us the opportunity to study the effect of accelerated 378 

warming on plant species richness. Thus, summits are optimal for resurveys of species 379 

occurrences and for detecting change in plant species richness over time, even when the first 380 

surveys were carried out prior to the GPS era. In this study, 302 summits with historical 381 

vegetation records were resurveyed between one and five times, resulting in a total of n = 698 382 

surveys. All vegetation surveys were conducted in summer. For each survey, all plant species 383 

occurring on the summit (generally delineated by the uppermost 10 meters of elevation)32 384 

were noted. Vegetation surveys were compared for each summit. Species names were 385 

standardized to the nomenclature of Flora Europaea (or local floras for species absent in the 386 

Flora, see online Supplementary Information at www.nature.com/nature). 387 

 388 

Environmental data. For each summit, mean monthly temperature and precipitation were 389 

calculated following the established change factor methodology33, which combines statistical 390 

downscaling with temporal trend analyses. First, temporal data available from CRU TS 3.23 391 

(0.5 degree resolution, 1901-2015)34 and the European Gridded Monthly Temperature (0.5 392 

degree resolution, 1765-2000)34 were statistically related to the higher spatial resolution of 393 

WorldClim monthly mean climatic grids (30 arc-second resolution) for the overlapping period 394 

of 1950 to 2000 using the change factor method33. We assumed that anomalies (cf. mean 395 

value over the period 1950-2000 of the coarse-grained climatic conditions minus the climatic 396 

conditions within each smaller pixel of WorldClim) computed for the overlapping period 397 

(1950-2000) remain the same prior to 1950 and after 2000. Second, elevational differences 398 
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between summits and the mean elevation of the corresponding WorldClim digital elevation 399 

model were included as an additional correction term (-0.006°C x Δelevation in m) for mean 400 

temperature data. By combining the two corrections, temporal trends available from the 0.5 401 

degree resolution temporal data were corrected for i) differences originating from scale and 402 

climate model and ii) the precise elevation of the summit (temperature only). While we 403 

consider the resulting temporal trends for the temperature data to be reliable due to the 404 

generally higher spatial and temporal autocorrelation and a higher correlation with elevation, 405 

the precipitation data do not show a systematic change with elevation and are less predictable 406 

over small spatial distances36 and, therefore, need to be interpreted more cautiously. 407 

Environmental variables were included in the models after calculating temporal changes (see 408 

end of the Methods section). Consequently, environmental variables are unbiased by 409 

weaknesses in the spatial interpolations. For temperature and precipitation, time series from 410 

CRU TS 3.23 (1901-2015) and the European Gridded Monthly Temperature (1765-2000) 411 

were combined to match the study period (1880-2016) by taking the mean per grid cell for the 412 

overlapping years (Spearman r = 0.97 for the overlapping period 1901-2000). As none of the 413 

two data sources extends to 2016, climate values for 2015 were taken again for 2016 for the 414 

19 affected summits. Further, historical nitrogen deposition data (NHx and NOx modeled 415 

from 1850-2010) were extracted from the European Fluxes Database (www.europe-416 

fluxdata.eu) and interpolated for the missing five years (2011-2016). The data originate from 417 

the global chemistry Transport Model version 5 (TM5, annual data with a 0.25° lat/long 418 

resolution)37. Data handling and all subsequent analyses were conducted in R version 3.3.138. 419 

 420 

Statistical analyses. 421 

The velocity of species richness changes: Species richness (SR) on mountain summits was 422 

analyzed for its change with time (t: year of record) across all summits by implementing a 423 

generalized linear mixed effects model (GLMM) with a Poisson family error distribution (SR 424 

~ t) and a random effect (intercept) of mountains to account for repeated samples (GLMM 1 425 

in Extended Data Table 1, mixed effects models always built with R package lme4 version 426 
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1.1-12)39. Further, we ran the models including random effects (intercept) of region 427 

(mountains nested in region; GLMM 2 in Extended Data Table 1) and observation ID (to 428 

account for over dispersion; see reference 40; GLMM 3 in Extended Data Table 1). All 429 

models provided qualitatively equivalent results (Extended Data Table 1). 430 

We repeated all GLMMs allowing a breakpoint (bp) in the relationship between 431 

species richness and time by fitting independent slope coefficients for the time period prior 432 

and after the breakpoint (SR ~ ifelse(t < bp, bp - t, 0) + ifelse(t < bp, 0, t - bp) + random 433 

structure). The breakpoint was fitted independently by minimizing the model deviance 434 

(Extended Data Table 1). It is likely that the real breakpoint (cf. the onset) of the acceleration 435 

trend in the increase in plant species richness happened slightly later than the estimated 436 

breakpoint suggested by this particular analysis. Indeed, the estimated breakpoint 437 

approximates the timing of change as the year between two sequential surveys and thus 438 

mechanistically moves every change temporally towards the median of the time series. 439 

 440 

Acceleration of species richness changes: The potential acceleration in the average velocity 441 

of species richness changes on mountain summits between 1871 and 2016 was tested by 442 

means of a linear mixed effects model (LMM) with a Gaussian family error distribution 443 

(∆SR/∆t ~ tMP). With the model, we analyzed the rate of change in species richness over time 444 

(midpoint year between two surveys tMP = (t1+t2)/2). The dependent variable ΔSR/∆t was 445 

calculated based on the difference in species richness and the difference between years of 446 

observation of two consecutive surveys on the same summit ((SRt2-SRt1)/(t2-t1)). A random 447 

effect (intercept) of mountain was included to account for repeated samples. We also ran the 448 

model including a random effect (intercept) of mountain nested within region but found 449 

qualitatively similar results (Extended Data Table 2). Mathematically, ΔSR/∆t is independent 450 

from richness on the summits as well as from time elapsed between sequential visits on the 451 

summit. However, more species-rich systems seemed to be associated with higher rates of 452 

changes, as indicated by a significant positive effect if baseline (cf. the first survey) species 453 

richness of the summit was included as an explanatory variable in the fixed component of the 454 
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LMM (Extended Data Table 2). We also tested if there was an effect of the number of years 455 

between two consecutive surveys on ΔSR/∆t, as a longer period between surveys might mask 456 

short-term fluctuations, but this effect was not significant (Extended Data Table 2). 457 

A linear increase in the rate of change with time (ΔSR/∆t ~ tMP) corresponds to an 458 

accelerated richness increase. As Fig 2 and Fig 3 indicate a non-linearity in the relationship, 459 

we also run all models allowing a breakpoint in the relationship between the rate of change 460 

and the time between surveys (Extended Data Table 2). 461 

In the raw data, the average rate of species richness increase per summit was found to 462 

be much higher in the last decade (2007–2016; +2.9 species) compared to fifty years earlier 463 

(1957–1966, +1.1 species). When the slopes are averaged across all summits with an 464 

observation prior and after a respective year, inversely weighted by the number of years 465 

between observations (to account for temporal resolution, as a longer period between surveys 466 

might mask short-term fluctuations), the differences become even more apparent (+5.4 467 

species in the last decade as opposed to +1.1 species per decade fifty years earlier). 468 

 469 

Visualization of temporal changes in richness: The average richness change per year (ΔSR/∆t 470 

= (SRt2-SRt1) / (t2-t1)) across all summits was calculated (see Extended Data Figure 1a for 471 

method). Fig. 3 displays how the average in ΔSR/∆t across all summits changed over time. As 472 

values for ΔSR/∆t originating from summits with a higher temporal sampling density better 473 

represent the instant rate of change for that specific year (t), we inversely weighted the 474 

calculated values for ΔSR/∆t by the difference in years between observations (t2-t1) to account 475 

for temporal resolution. 476 

The changes in species richness per year (ΔSR/∆t) accumulated over time and result 477 

in an absolute change in species richness (Extended Data Figure 1b). These absolute changes 478 

in species richness are visualized for each region in Fig. 2 (black line). In order to also 479 

visualize variability within regions, confidence intervals were calculated based on the 480 

standard deviation of richness change among summits in a region (see Extended Data Figure 481 

1c and 1d and related figure caption). 482 
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 483 

Importance of environmental drivers: The average velocity of species richness changes 484 

(ΔSR/Δt) was related to the change in mean annual temperature (ΔT/Δt; T = temperature) and 485 

precipitation (ΔP/Δt; P = precipitation) for the same period (see below for further details), as 486 

well as to the accumulated nitrogen deposition (Naccum; N = nitrogen, details explained 487 

below) across all summits, by implementing LMMs with a Gaussian family error distribution 488 

that included each of the three potential explanatory variables (different rows in Extended 489 

Data Table 3, model formula can be seen in table caption). Variable performance was 490 

compared using the corrected version (for small sample size) of the Aikaike Information 491 

Criteria (AICc41). All LMMs consistently detected a clear positive relationship between 492 

species richness changes and temperature changes while a slightly weaker positive 493 

relationship with precipitation changes was also detected. Particularly the relationship with 494 

temperature changes is surprisingly strong considering that climate models are built on long-495 

term air temperature measurements at two meters above ground in climate stations that are 496 

mainly located in valleys and can only approximate changes in growth conditions for summits 497 

species. No relationship with the accumulated nitrogen deposition was detected across Europe 498 

(Extended Data Table 3). 499 

The explanatory variables ΔT/Δt and ΔP/Δt were calculated as the mean change per 500 

year (e.g. ΔT/∆t = Tt2-Tt1 / t2-t1). Climate variables like temperature and precipitation are 501 

usually integrated over longer time periods to level out short-term fluctuations. As we were 502 

interested in the effect of such shorter-term fluctuations, we systematically tested which 503 

periods would provide the best fit within our LMM framework (1–30 years). Besides mean 504 

annual temperature and precipitation, we further tested alternative measurements of the 505 

climate variables. If species’ ranges are limited primarily by growing season temperatures, we 506 

would expect spring and summer warming to best explain temporal changes in species 507 

richness. Alternatively, if many alpine species are limited not by growing season temperature, 508 

but rather by climatic extremes, winter temperatures or precipitation might be more important 509 

in determining which species can survive in a given location. We therefore systematically 510 
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pre-analyzed temperature and precipitation variables by testing for the effect of winter 511 

precipitation (Dec–Feb) and of snow accumulation (precipitation in months with a mean 512 

temperature below freezing). 513 

Further, nitrogen from deposition may accumulate in the soil, particularly in high 514 

elevation systems with limited resource cycling42,43. In our data, nitrogen deposition has 515 

declined sharply in recent decades36, although its accumulated effect may still influence 516 

community dynamics43. We thus calculated accumulated deposition of both NH4 and NO3 517 

since 1850 for each vegetation survey. 518 

The systematic test of different variables and time periods (Extended Data Table 4) 519 

identified annual summer temperature (15-year mean), annual precipitation (1-year mean) and 520 

NO3 (referred to as Naccum) as the most suitable predictors, and these variables were then used 521 

in all subsequent analyses. As this type of variable selection biases analyses towards 522 

significant relationships, all analyses were repeated with mean annual values (10-year mean), 523 

resulting in qualitatively similar results. Model residuals were visually checked for temporal 524 

autocorrelation signal without any sign of a temporal trend in the residuals. 525 

 526 

Time-lags in richness change: Biotic responses may show a delayed response to climate 527 

change17,24. Therefore, observed species richness on a mountain summit at given point in time 528 

could reflect climatic conditions from several years earlier, as species may need considerable 529 

time to spread and establish (cf. migration and establishment lags). A systematic time-lag was 530 

therefore implemented between our observation and the climate period used to relate the 531 

average velocity of species richness changes with changes in climatic conditions and tested 532 

for a potential increase in explanatory power (tested lags 5 and 10 years; Extended Data Table 533 

5). Final results are presented without time-lags, because including them did not increase the 534 

power in our analyses to explain the average velocity of species richness changes. 535 

An alternative approach to analyzing the average velocity of species richness changes 536 

(ΔSR/Δt) with rates of change in environmental predictors (ΔT/Δt; ΔP/Δt, see Extended Data 537 

Table 3) is to directly relate species richness changes (ΔSR) to changes in environmental 538 



 

 23 

variables over the same time period (ΔT; ΔP). This approach is more intuitive (and closer to 539 

the data) but ignores differences in time between sampling events. Analyses with this 540 

approach yielded results qualitatively similar to the results of the main analysis (Extended 541 

Data Table 3), with the exception that the effect of precipitation changes was not significant 542 

(Extended Data Table 6). 543 

 544 

Trait based analyses. 545 

Differing trait signal in colonizing species: Changes in plant life strategies as well as 546 

dispersal constrains would be indicated by a systematic difference in indicative traits. We thus 547 

compared specific leaf area (SLA)45, plant height45 as well as seed mass45 between colonizing 548 

species as well as species in the resident community in a LMM framework setting resurvey as 549 

a random effect. To test for the colonization and establishment, within the recipient 550 

community, of warmth tolerating species from lower elevations, we used Landolt species 551 

indicator values for temperature45. Temperature indicator values45 were available for 91% of 552 

the observations. For 364 resurveys (altogether 20583 observations for 871 species) direct 553 

comparisons of plant trait values of species in a resurvey that were newly established 554 

colonizers with those species that had been present already in the previous survey (recipient 555 

community) indicate significantly increased SLA (p<0.01) and plant height (p<0.001) of 556 

successful colonizers but no significant difference in seed mass (p=0.053). Colonizers are 557 

more adapted to warmer climates than species of the resident communities (p<0.001; 558 

Extended Data Table 7). 559 

 560 

Data reliability 561 

Sampling intensity: Our analysis of the rate of change is relatively robust with respect to 562 

different sampling periods. The increasing sampling intensity over time (Fig. 1) helped to 563 

reliably quantify the rates of change in later time periods and thus to support our conclusion 564 

on an acceleration in richness change. Consistent continent-wide and short-term fluctuations 565 

in species richness that might have occurred in the early 20th century would likely go 566 
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undetected due to the lower data availability in the early 20th century of our time series data, 567 

but long-term trends would be well visible. We thus have no evidence that the unbalanced 568 

sampling effort over time and different sampling intervals hide unobserved fluctuations in 569 

early periods. In line with this, the summits for which we have a high number of repeated 570 

surveys show little short-term fluctuations but confirm the detected steady increase of 571 

richness over time and an acceleration in recent years16. 572 

Observer errors: Previous studies explicitly addressing observer errors of summit resurveys, 573 

have demonstrated a reliable quantification for vegetation change over long time periods32. 574 

Many of the early records have been collected by expert botanists with a scientific interest in 575 

long-term changes and the explicit aim to allow a later resurvey. To further reduce potential 576 

sampling and observer errors, recent records were done without knowledge of the past species 577 

lists, because surveyors who know the historical species composition have a higher chance of 578 

finding certain species again. Approximately 15 % of all summits of this dataset have species 579 

records collected in the 1980s and 1990s (partly they were even done by the same people). 580 

Even if these early re-surveyors also considered the above methodological issues, we cannot 581 

rule out that the observer effort of the early re-surveyors was higher than the historical one. 582 

However, we are sure that our recent observer effort did not exceed that of the early re-583 

surveyors during the 1980s and 1990s. Given this, the clear signal that most of the increase in 584 

species richness occurred after 1980s/1990s is a strong indication that a possible increase in 585 

observer effort, if present, is only responsible for a limited amount of the increase in species 586 

richness. We are, thus, confident, that observer errors did not systematically influence our 587 

analyses. 588 
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Extended Data Tables and Figures 629 

Extended Data Table 1 | Results of generalized linear mixed effect models (Poisson family 
error distribution), showing an increase in species richness with time (richness ~ year of 
record) when different random error structures are applied. The lower panel included a 
breakpoint in the relationship between rate of richness change and time. The breakpoint was 
fitted independently by minimizing model deviance and was estimated around the year 1970. 
All models are based on 698 observations. Significant effects are indicated by asterisks 
(*p<0.05, **p<0.01, ***p<0.001). “GLMM” = Generalized linear mixed-effects model, 
“GLM”= Generalized linear model, “BPGLMM”= Generalized linear mixed-effects breakpoint 
model,“ID”= Observation ID. 
 Fixed effect (coefficients ±std. error) Random effects (std. deviations) 
Model Intercept Year of record Mountain Region:Mountain ID AICc 
GLMM 1 -5.78  ±0.35*** 0.004 ±0.0002*** 0.97 - - 5785 
GLMM 2 -5.78 ± 0.35*** 0.004 ±0.0002*** 0.86 0.41 - 5787 
GLMM 3 -7.33 ± 0.58*** 0.005 ±0.0003*** 0.47 0.84 0.23 5596 
GLM -7.52± 0.33*** 0.006 ±0.0002*** - - - 18299 
Model       
 Intercept Time < BP Time > BP Mountain Region:Mountain ID AICc 
GLMBM 2.71 ±0.07*** 0.001 ±0.001 0.013 ±0.001*** 0.96 - - 5709 
GLMBM 2.71 ±0.07*** 0.001 ±0.001 0.013 ±0.001*** 0.87 0.41 - 5711 
GLMBM 2.64 ±0.08*** 0.001 ±0.001 0.014 ±0.001*** 0.42 0.86 0.21 5560 
 630 

Extended Data Table 2 | Results of linear mixed effects models (Gaussian family error 
distribution) showing an acceleration of the increase in species richness over time (ΔSR/∆t~t), 
where different random-effects structures are implemented (see Random effects below). Baseline 
richness of the summit and the number of years between two consecutive observations (Period) were 
included as additional explanatory variables. The lower panel further included a breakpoint in the 
relationship between rate of richness change and time. The breakpoint was fitted independently by 
minimizing model deviance and was estimated for the year 1971. All models were based on 396 
observations (comparison of survey and resurveys). Significant effects are indicated by asterisks 
(*p<0.05, **p<0.01, ***p<0.001). Note that models without random structure performed best.  
 
Fixed effect (coefficients ±std. error) Random effect (std. deviations) 

Intercept Time Richness Period Mountain Region: Mount. AICc 
-15.5±2.03*** 0.008±0.001*** - - 5.2×10-8 - 570.3 
-15.5±2.06*** 0.008±0.001*** - - 9.6×10-8 4.8×10-8 572.4 
-13.4±2.05*** 0.007±0.001*** 0.004±0.001*** - 1.8×10-8 - 562.6 
-11.7±4.77* 0.006±0.002* 0.004±0.001*** n.s. 1.1×10-7 - 576.0 
-13.4±2.05*** 0.007±0.001*** 0.004±0.001*** - - - 530.7 
       
Intercept Time < BP Time > BP Richness Period Mountain Region: Mount. AICc 
0.07±0.05 0.002±0.003 0.013±0.002*** - - 0.0 . 571.3 
0.07±0.05 0.002±0.003 0.013±0.002***   0.0 0.0 573.3 
0.02±0.05 0.0001±0.003 0.011±0.002*** 0.004±0.001*** - 0.0 - 568.5 
-0.09±0.14 0.0004±0.004 0.012±0.004*** 0.004±0.001*** n.s. 1.1×10-8 - 581.5 
0.02±0.05 0.0001±0.003 0.010±0.002*** 0.004±0.001*** - - - 527.8 
 631 
 632 
Extended Data Table 3 | Results of linear mixed effects models (Gaussian family error) showing 
the relationship of the average velocity in species richness changes with the change in potential 
explanatory variables (temperature, precipitation, nitrogen deposition). Initial species richness on 
the summit was added as a further independent variable and indicated that species-rich systems showed 
a larger net change. The implemented model formula was lmer(ΔSR/Δt ~ ΔT/Δt +  ΔP/Δt + Naccum + 
richness +  (1|mountain)). Variable performance was compared using AICc, which also sets the order 
of models, with the best one on top. In addition, significant results from tests using F statistics are 
indicated by asterisks (*p<0.05, **p<0.01, ***p<0.001). Rerunning the analyses after centering 
(subtracting the means) and scaling (dividing by standard deviations) the explanatory variables 
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indicated a larger coefficient and thus stronger effect of temperature than that of precipitation (ΔSR/Δt 
~ 0.00 (±0.04) + 0.39 (±0.05) x ΔT/Δt*** + 0.21 (±0.04) x ΔP/Δt***+ 0.21 (±0.05) x Richness***). 
The analyses presented in the table were performed on a subset of the data, as no nitrogen data were 
available for the 7 summits of Svalbard. This subsetting resulted in 389 temporal comparisons 
(summits and revisits that resulted from 684 observations). We further repeated the full model 
combining all summits sampled over the same time period and falling in the same grid cell of climate 
data that were not downscaled (by taking the mean) to account for spatial autocorrelation. Results of 
this model were qualitatively similar (ΔSR/Δt ~ -0.006 (±0.05) + 9.5 (±1.1) x ΔT/Δt***+ 0.005 
(±0.001) x ΔP/Δt*** - 0.13 (±0.08) x Naccum + 0.005 (±0.05) x Richness***). 
 
Intercept ΔT/Δt ΔP/Δt Naccum Richness AICc AICWt 
0.01 ±0.06 9.6 ±1.1*** 0.005 ±0.001*** -0.15 ±0.09 0.004 ±0.001*** 491.9 0.59 
-0.06 ±0.04 9.4 ±1.1*** 0.005 ±0.001*** - 0.005 ±0.001*** 492.7 0.41 
0.03 ±0.06 10.1 ±1.1*** - -0.16 ±0.09 0.004 ±0.001*** 512.6 0.00 
0.14 ±0.06* - 0.004 ±0.001*** -0.06 ±0.10 0.006 ±0.001*** 560.4 0.00 
 633 

Extended Data Table 4 | Model evaluation for linear mixed effects models (Gaussian 
family error distribution) showing the relationship between average velocity of species 
richness changes and the change in potential explanatory variables (temperature, 
precipitation, nitrogen deposition). The implemented model formula was lmer(ΔSR/Δt ~ 
ΔT/∆t + ΔP/∆t + Naccum + richness + (1|mountain)). During each model run, the focal variable 
(left column) was exchanged while the remaining model was held constant. Variables were 
calculated as the mean value across a period prior to the survey (Period). 
 
Temperature 
Explanatory 
variable 

Period AICc ΔAICc AICc weights 

Summer temperature 15 491.9 0.0 1.0 
Annual temperature 15 501.1 9.2 0.0 
Spring temperature  10 511.4 19.4 0.0 
Annual temperature  7 513.4 21.5 0.0 
Spring temperature  7 516.7 24.8 0.0 
Summer temperature  7 518.7 26.8 0.0 
Annual temperature  30 520.7 28.8 0.0 
Annual temperature  10 521.2 29.3 0.0 
Spring temperature  15 521.3 29.3 0.0 
Annual temperature  3 530.5 38.6 0.0 
Spring temperature  30 531.8 39.9 0.0 
Summer temperature  5 532.0 40.1 0.0 
Summer temperature  1 534.9 43.0 0.0 
Summer temperature  30 536.0 44.1 0.0 
Annual temperature  1 538.9 47.0 0.0 
Annual temperature  5 539.2 47.2 0.0 
Summer temperature  10 549.4 57.4 0.0 
Spring temperature  5 550.4 58.5 0.0 
Summer temperature 3 551.2 59.3 0.0 
Spring temperature 1 552.4 60.5 0.0 
Spring temperature 3 555.7 63.8 0.0 
Precipitation 
Explanatory 
variable 

Period AICc ΔAICc AICc weights 

Annual precipitation 1 491.9 0.0 1.0 
Winter precipitation 15 504.3 12.4 0.0 
Annual precipitation 30 505.5 13.6 0.0 
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Winter precipitation 1 508.1 16.2 0.0 
Snow precipitation 30 508.4 16.5 0.0 
Winter precipitation 5 508.6 16.7 0.0 
Summer precipitation 30 508.9 17.0 0.0 
Snow precipitation 7 509.4 17.5 0.0 
Summer precipitation 5 510.7 18.8 0.0 
Winter precipitation 30 510.9 19.0 0.0 
Snow precipitation 1 511.9 20.0 0.0 
Snow precipitation 10 512.3 20.3 0.0 
Annual precipitation 15 513.0 21.1 0.0 
Snow precipitation 15 513.1 21.1 0.0 
Annual precipitation 5 513.1 21.2 0.0 
Winter precipitation 3 513.4 21.5 0.0 
Annual precipitation 10 513.7 21.8 0.0 
Summer precipitation 10 513.7 21.8 0.0 
Summer precipitation 15 513.7 21.8 0.0 
Summer precipitation 7 514.2 22.2 0.0 
Winter precipitation 10 514.3 22.4 0.0 
Summer precipitation 3 514.3 22.4 0.0 
Snow precipitation 5 514.4 22.5 0.0 
Snow precipitation 3 514.5 22.6 0.0 
Annual precipitation 3 514.6 22.7 0.0 
Summer precipitation 1 514.6 22.7 0.0 
Annual precipitation 7 514.6 22.7 0.0 
Winter precipitation 7 514.7 22.8 0.0 
Nitrogen 
Explanatory 
variable 

Period AICc ΔAICc AICc weights 

NO accumulation - 491.9 0.0 0.59 
NH accumulation - 492.6 0.7 0.41 
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Extended Data Table 5 | Model evaluation for linear mixed effects models (Gaussian 
family error distribution) showing the relationship between average velocity of species 
richness changes and the change in potential explanatory variables (temperature, 
precipitation, nitrogen deposition). The implemented model formula was lmer(ΔSR/Δt ~ 
ΔT/∆t + ΔP/∆t + Naccum + richness + (1|mountain)). Variables were calculated as the mean 
value across a period prior to the survey. During each model run, the focal variable 
implemented with a differing time-lag (time between the period and first survey; left column) 
was exchanged while the rest of the model was held constant. 
 
Summer Temperature (15-year mean) 
Time lag AICc ΔAICc AICc weights 
0 501.1 0.0 1.0 
5 535.6 34.5 0.0 
10 550.2 49.1 0.0 
Annual precipitation (1-year mean) 
Time lag AICc ΔAICc AICc weights 
0 510.7 0.0 0.76 
5 514.1 3.4 0.14 
10 514.7 4.0 0.10 
Nitrogen accumulation 
Time lag AICc ΔAICc AICc weights 
0 491.9 0.0 0.34 
5 492.0 0.1 0.33 
10 492.0 0.1 0.33 
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Extended Data Table 6 | Linear mixed effects models (Gaussian family error distribution) 
showing the direct relationship between species richness changes and change in potential 
explanatory variables (temperature, precipitation, nitrogen deposition). Initial species richness on 
the summit was not added as a further independent variable, as it did not show significant effects in 
any of the models. The implemented model formula was lmer(ΔSR ~ ΔT + ΔP + Naccum + richness + 
(1|mountain)). Variable performance was compared using AICc, which also sets the order of models, 
with the best one on top. Additional significance tests using F statistics are indicated by asterisks 
(*p<0.05, **p<0.01, ***p<0.001). Rerunning the analyses after centering (subtracting the means) and 
scaling (dividing by standard deviations) indicated a larger coefficient and thus stronger effect of 
temperature compared to that of precipitation (ΔSR ~ 0.05 (±0.06) + 0.25 (±0.05) x ΔT*** + 0.05 
(±0.04) x ΔP  -  0.11 (±0.05) x Naccum*).  
 
Intercept ΔT/Δt ΔP/Δt Naccum Richness AICc AICWt 
7.6 ±1.6*** 5.9 ±1.2*** - -5.4 ±2.3* - 3002.8 0.57 
7.2 ±1.7*** 6.3 ±1.3*** 0.002 ±0.002 -5.1 ±2.3* - 3003.8 0.34 
2.23 ±1.15 8.25 ±1.92*** -0.011 ±0.010 - -  3006.5 0.09 
11.8 ±1.48*** - -0.001 ±0.002 -3.7 ±2.4 - 3023.2 0.00 
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Extended Data Table 7 | Results of linear mixed effects models (Gaussian family error 
distribution) analyzing systematic trait differences between colonizing species and the 
resident community. Analyses are implemented for 258 mountains (750 species) with a random 
effect on mountain. Significant effects are indicated by asterisks (*p<0.05, **p<0.01, ***p<0.001). 
Trait data were log transformed before analysis.  
 
Trait Fixed effect (coefficients ±std. error) Random effect 

(std. deviations) 
Trait Intercept Difference of colonizer relative to established 

species 
Mountain 

Plant height -1.92 ±0.02*** + 0.20 ±0.02*** 0.20 
SLA 2.870 ±0.006*** + 0.021 ±0.008** 0.04 
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Seed mass -1.50 ±0.03** non sign. 0.08 
Temperature indicator 2.60 ±0.05*** + 0.37 ±0.05*** 0.53 
 638 

 639 

Extended Data Figure 1 | Conceptual figure showing the approach implemented in the 640 

main text to visualize richness change over time based on the raw data (Fig. 2 and 3). a) 641 

The mean richness change per year (ΔSR/∆t = (SRt2-SRt1) / (t2-t1)) across all summits was 642 

taken (see Fig. 3 for result). b) The mean richness change per year accumulates with time to 643 

yield absolute changes in species richness (see black line in Fig. 2 for results). c) and d) 644 

variability in the absolute change in species richness was visualized by randomly sampling 645 

ΔSR from all mountains available each year, but adding the standard deviation within a 646 

region and year. The displayed range in Fig. 2 illustrates the 5th and 95th percentiles of the 647 

resulting richness change values from 1000 runs (orange shading in Fig. 2). This approach 648 

reveals changes in variability among mountains over time while also showing overall 649 

variability for time steps where only a few summits were sampled (particularly in early time 650 

periods).  651 

 652 
 653 

  654 
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