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The temporal evolution of seasonal snow cover and its spatial variability in environments

such as mountains, prairies or polar regions is strongly influenced by the interactions

between the atmospheric boundary layer and the snow cover. Wind-driven coupling

processes affect both mass and energy fluxes at the snow surface with consequences on

snow hydrology, avalanche hazard, and ecosystem development. This paper proposes

a review on these processes and combines the more recent findings obtained from

observations and modeling. The spatial variability of snow accumulation across multiple

scales can be associated to wind-driven processes ranging from orographic precipitation

at large scale to preferential-deposition of snowfall and wind-induced transport of snow

on the ground at smaller scales. An overview of models of varying complexity developed

to simulate these processes is proposed in this paper. Snow ablation is also affected

by wind-driven processes. Over continuous snow covers, turbulent fluxes of latent and

sensible heat, as well as blowing snow sublimation, modify the mass, and energy balance

of the snowpack and their representation in numerical models is associated with many

uncertainties. As soon as the snow cover becomes patchy in spring local heat advection

induces the development of stable internal boundary layers changing heat exchange

toward the snow. Overall, wind-driven processes play a key role in all the different stages

of the evolution of seasonal snow. Improvements in process understanding particularly

at the mountain-ridge and the slope scale, and processes representations in models at

scales up to the mountain range scale, will be the basis for improved short-term forecast

and climate projections in snow-covered regions.

Keywords: seasonal snow, mountains, snow-atmosphere interactions, wind, snowfall, snow drift, turbulent fluxes

INTRODUCTION

The strong interaction between atmospheric boundary layer and land-surface via energy and mass
exchange processes makes the distribution of snow a key element of the Earth system (Roesch et al.,
2001; Vaughan et al., 2013) with crucial consequences for the hydrological cycle (Lehning, 2013)
and the climate of cold regions (Beniston et al., 2018). In many regions of the world, seasonal snow
cover provides the dominant source of drinking water supply (Sturm et al., 2017). A change in
this seasonal water resource is of strong importance for economies (Beniston, 2012; Sturm et al.,
2017), ecosystem function (Allan and Castillo, 2007; Wheeler et al., 2016), flood hazard (Hamlet
and Lettenmaier, 2007), and winter tourism (Abegg et al., 2007; Grünewald et al., 2018).
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Snow accumulation reveals strong variability across multiple
temporal and spatial scales. Timing and magnitude of snow melt
are strongly influenced by inter-annual variability in weather
and by climate change impact (Grundstein and Leathers, 1999;
Pedersen et al., 2013). Warmer temperatures reduce snowfall and
snow cover duration (Barnett et al., 2005; Mote, 2006; Brown
and Mote, 2009; Magnusson et al., 2010; Bavay et al., 2013) and
lead to earlier onset of snow melt (López-Moreno et al., 2013).
Musselman et al. (2017) even claim that lower net radiation
earlier in the melt season might decrease snow melt in a warmer
climate.

At smaller temporal and spatial scales, snow accumulation and
ablation are highly variable in space and time, mainly a result of
the complexity of snow processes across multiple scales (Blöschl,
1999; Clark et al., 2011). The final snow cover variability at the
end of a snow accumualtion season has shown to be critical
for capturing timing and magnitude of hydrological response
in alpine catchments (Luce et al., 1998; Warscher et al., 2013;
Winstral et al., 2013). Increased heterogenity of snow depth
at the beginning of the melt period, results in much more
differential melt over time and space, a faster runoff generation
at the beginning of a melting period from shallow snowpacks
and a prolonged melting season because of the delayed melt
from deeper snow accumualtion areas (Brauchli et al., 2017).
The change in melt dynamics of spatially variable snow covers
strongly impacts the mass balance of glaciers (Mott et al., 2008;
Dadic et al., 2010a) and run-off dynamics in alpine and glaciated
catchements (Freudiger et al., 2017).

The spatial variability of snow at the catchment scale and
at smaller scales is mainly the result of wind-driven processes
driving mass and energy fluxes between the snow cover and the
overlying atmosphere. The interaction between the wind field,
snowfall and the snow surface governs the spatial variability in
winter snow accumulation via pre- and post-depositional snow
transport processes. Wind further plays an important role in the
mass and energy balance of the snow cover, driving the turbulent
energy exchange between the snow cover and the atmosphere via
sensible and latent heat and due to blowing snow sublimation.
Furthermore, complex boundary layer flows over heterogenous
land-covers in spring strongly affect snow melt patterns (Mott
et al., 2017).

The key to predicting seasonal snow cover dynamics and
run-off generation during spring time is to adequately describe
the complex snow-atmosphere interactions with wind as the
main driver, provoking mass and energy fluxes to and from the
snow cover. In the following, we provide an overview of the
current state of knowledge on wind-driven coupling processes
between the snow cover and the atmosphere governing seasonal
snow cover dynamics, with a special focus on mountaineous
regions. The review is meant to primarily discuss more recent
research advances in this scientific field, particularly highlighting
studies of the last 10 years. Earlier studies are referenced
where required. In section Wind-driven Processes Driving Snow
Accumulation Patterns at Different Scales, we discuss winter
snow cover variability at different scales and related wind-driven
snow processes shaping snow accumulation patterns. Here we
distinguish between current knowledge on pre-depositional and
post-depositional accumulation processes as well as sublimation

of drifting and blowing snow. In sectionHeat Exchange Processes
Driving Snow Melt Patterns, we first give an overview over
scientific progress investigating heat exchange processes that
are dominant over continuous snow covers (turbulent fluxes of
latent/sensible heat and surface). Second, we discuss atmospheric
boundary layer processes that become important over patchy
snow covers, changing the energy balance during the later stages
of the melting period when the land-surface becomes very
heterogeneous.

SNOW ENERGY AND MASS BALANCE

Typically, the snowpack energy balance can be written, assuming
a continuous snow cover, as (Armstrong and Brun, 2008):

−
dH

dt
= QS +QL +Qh +Qe +Qa +QG (1)

where− dH
dt

is the net change rate of the snowpack internal energy
per unit area. At the snow-atmosphere interface the following
fluxes determine the energy balance: QS is net shortwave
radiation (incoming minus reflected shortwave radiation);
QL is the net longwave radiation (downward and upward
component of longwave radiation); Qh is the turbulent flux of
sensible heat exchanged at the surface due to the temperature
gradient between snow surface and atmosphere; Qe is the
turbulent flux of latent heat exchanged between the surface and
the overlying atmosphere due to water vapor pressure differences;
it represents the sublimation and evaporation from and the
condensation to the snow surface and is thus directly connected
with the mass balance of the snow cover; Qa is the flux of energy
advected via precipitation or blowing snow. Finally, QG is the
ground heat flux due to conduction.

The mass balance of the snow cover including blowing snow
can be written as (Armstrong and Brun, 2008):

dM

dt
= P− ∇ • Dbs − Ebs ± E− R (2)

where dM
dt

is the snowpackmass change rate; P is the precipitation
rate. Dbs is the horizontal blowing snow transport due to
redistribution of surface snow (mass per unit length per unit
time) and Ebs the rate of sublimation of blowing snow. E is the
sum of sublimation or evaporation (loss of mass) or condensation
(gain of mass) rates at the surface. R is the runoff rate (liquid
water leaving the bottom of the snowpack) and negatively
contributes to the mass balance.

WIND-DRIVEN PROCESSES DRIVING
SNOW ACCUMULATION PATTERNS AT
DIFFERENT SCALES

Large snow depth variability in winter can be observed over
a range of scales (Figures 1, 2) and is controlled by different
processes (Blöschl, 1999). We thus discuss wind-driven snow
processes shaping the snow accumulation patterns at different
scales of a mountainous area (Figure 2): (1) The Mountain
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FIGURE 1 | Snow depth variability represented by different measurement resolutions: 1,000m (b), 500m (c), 100m (d), 20m (e), and 2m (f). An overview of the

different domains is provided in (a). Same data set as used in Grünewald et al. (2014).

range-scale, ranging from kilometers (mountain massifs; e.g.,
Coastal Mountains, Dolomites, Mont Blanc massif) to thousands
of kilometers (e.g., Alps, Pyrenees, North American Rockies,
Himalaya) (Figure 2A). (2) The mountain-ridge scale ranging
from hundreds to thousands of meters depending on the size of
an individual mountain. It comprises all processes that act over
the full length of a mountain ridge, including slopes of different
aspects (windward and leeward slopes) and the mountain crest
area (Figure 2B) (3) The slope scale, ranging from few meters to
hundreds of meters, deals with local crests and single mountain
slopes, which can be either windward or leeward slopes, or
nearly flat areas characterized by small-scale topography (bumps,
depressions, gullies) (Figure 2C). In the following the discussion
on snow processes is strongly focussed on the mountain-ridge
and the slope scale as the spatial variability of the snow cover
is strongest at these scales (see discussion below). Many snow
processes shape the mountain snow cover at the mountain-ridge
and the mountain-slope scale at the same time. We therefore
discuss the spatial variability and the governing processes of these
two scales in one subsection.

The Mountain-Range Scale
At the mountain-range scale (Figures 1B,C, 2A), snow
accumulation depends on climate, elevation and vegetation
(Roe, 2005; López-Moreno et al., 2008; Clark et al., 2011;
Anderson et al., 2014). Mountain-range scale precipitation

patterns are mainly driven by orographic precipitation, which
summarizes all processes that are related to regional precipitation
patterns in mountainous terrain where the interaction of the
ambient atmospheric flow with the underlying orography
results in regions of enhanced or reduced snowfall (Colle et al.,
2013). Roe (2005), Smith and Evans (2007), and Houze (2012)
provide comprehensive reviews on regional-scale orographic
precipitation. The main driving process is the forced dynamical
lifting of air masses leading to cooling of the air column and
resulting in condensation and precipitation (e.g., Smith et al.,
2003) and a phase change from rain to snow above the zero-
degree elevation band. Dynamical and cloud micro-physical
trends tend to make leeward slopes drier than windward slopes
(Houze, 2012). Such regional trends of decreasing precipitation
are typically aligned with the prevailing synoptic wind direction
(Gerber et al., 2018a). Most numerical studies on orographic
precipitation over mountain ranges are restricted to model
resolutions of ≥1 km (e.g., Rasmussen et al., 2011; Silverman
et al., 2013; Pontoppidan et al., 2017).

Many studies based on high-resolution area wide snow
depth data (Lehning et al., 2011; Grünewald et al., 2013, 2014;
Kirchner et al., 2014; Zheng et al., 2016) show that elevation
is the most important variable for precipitation patterns at the
mountain range scale. Zheng et al. (2016) further highlighted
the strong dependency on the defined grid resolution (Figure 1),
when determining snow depth variability in both, forested and
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FIGURE 2 | Schematic description of snow accumulation processes acting on different scales: the Mountain range scale (A), the ridge scale (B), and the slope

scale (C).

open terrain. Similarly, Tennant et al. (2017) explained snow
depth variability at the regional scale by aspect, elevation, and
vegetation height, but identified elevation as the dominant factor
at all investigated regions. Very recently, Fayad et al. (2017)
reviewed literature on snow hydrology in the Mediterranean
mountains and concluded that, although the snow cover is
highly variable in space and time, the persistence of the snow
cover is mainly controlled by the interaction between elevation
and precipitation. Other studies, however, showed that such
elevation based precipitation gradients can significantly change
over a specific elevation range. Analyzing high-resolution snow
depth data for different regions, Grünewald and Lehning (2011),
Grünewald et al. (2014), and Kirchner et al. (2014) evidenced
a flattening or even decrease in the snow depth gradient above
a certain elevation. These studies were confirmed by a very
recent study of Collados-Lara et al. (2018) analyzing station
data in the Mediterranean mountains. Similar to the other
studies, they observed inverse snow depth gradients at higher
elevations. There are two explanations for the non-linearity of
precipitation at higher elevation. First, a precipitation maximum

might be reached above a certain elevation (Blanchet et al.,
2009), because decreasing air density in higher elevations reduce
the amount of moisture available for condensation. Similarly,
Kirchner et al. (2014) argued that the decline of snow depths
at high elevations might be caused by depletion of orographic
precipitation. However, nomeasurements are available that verify
such a precipitation maxima above a certain height. Second, high
elevations are usually steeper resulting in stronger gravitational
and wind-induced snow redistribution (Winstral and Marks,
2002; Winstral et al., 2002; Bernhardt et al., 2010) from higher
to lower elevations. Grünewald et al. (2014) attributed the
spatial trends of decreasing snow depths at higher elevation
sites to the dominance of steep, rocky exposures above a certain
elevation. Lehning et al. (2011) explained the spatial variability
of snow only by altitude and land surface roughness. They
statistically showed that rougher terrain holds less snow than
smooth terrain. Similarly, Grünewald et al. (2013) claimed that
the major part of snow depth variability can be predicted by
four topographic parameters: elevation gradient, slope, aspect,
and wind-sheltering. They could also show that the application
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of a global model is limited because the relationship between
snow and topography appeared to be not universal for all
landscapes.

The Mountain-Ridge and Slope Scale
Spatial Variability of Snow Accumulation
Contrary to what is observed for large mountain ranges, ridge-
scale snow accumulation patterns (hundreds to thousands of
meters) (Figures 1D,E, 2B) typically reveal much larger spatial
variability of snow and enhanced snow deposition over leeward
slopes of single mountain peaks (Lehning et al., 2008; Zängl et al.,
2008; Mott et al., 2010, 2014; Vionnet et al., 2017).

Describing the spatial structure of measured snowfall fields
(horizontal resolution of 75m) with fractal analysis, Scipión et al.
(2013) found coherent patterns up to scales of 2 km (scale break).
Similar scale breaks were found by Gerber et al. (2018a) who
concluded that precpitation patterns at the mountain-ridge scale
are dominated by smaller-scale precipitation processes that are
mainly terrain and wind-driven. Gerber et al. (2018a) highlight
the importance of using horizontal model resolutions up to 50m
in order to capture spatial variability of precipitation at the
mountain-ridge scale. Scipión et al. (2013) showed that snow
deposition at the ground revealed much larger spatial variability
than snowfall variability measured several hundreds of meters
above ground. This large difference in the spatial structure was
mainly attributed to the interaction between the near-surface
flow field and snow particles, which is also known as preferential
deposition of snowfall. This process is active in the lowest
hundreds of meters above ground and not fully captured by
radars.

Following Mott et al. (2014) and Vionnet et al. (2017) snow
deposition at the mountain ridge scale, is caused by three
processes: (i) snowfall enhancement caused by the interaction
of the local flow field and local cloud formation processes, such
as seeder-feeder mechanisms, (ii) pure particle flow interaction
(preferential deposition of snowfall) and (iii) snow redistribution
by saltation and suspension. Preferential deposition of snowfall
(Lehning et al., 2008) is active in all cases with sufficient
wind. Contrary, snowfall enhancement is limited by temperature
and moisture fields and sufficiently strong updrafts allowing
condensation to take place, provoking local feeder clouds over
single peaks and ridges (Mott et al., 2014).

The relative importance of these processes for the spatial
variability of snow accumulation appear to be scale-dependent.
Gerber et al. (2018b) applied the COSMO-WRF model chain to
simulate winter precipitation on a grid resolution of 50m. They
showed that the combined effect of cloud-dynamical effects and
particle-flow interaction at heights above 100m above ground
may alter precipitation by 20% of mean precipitation. Pure
particle-flow interaction very close to the ground (lowest 100m
above ground) appear to alter precipitation by 10% of mean
precipitation. Vionnet et al. (2017) applied the fully coupled
snowpack/atmosphere model Meso-NH/Crocus (Vionnet et al.,
2014) which allows the investigation of micro-physical processes,
such as snowfall enhancement, and preferential deposition at
the same time. Similar to Gerber et al. (2018b) their numerical
results (also 50-m resolution) indicate that spatial variability of

precipitation is more dominated by micro-physical processes
such as riming of snow particles than by the pure particle
flow interaction. The effect of model resolution on the process
representation is, however, in question. Gerber et al. (2018a)
and Roth et al. (2018) show that model resolution not only
affects precipitation amount, but also the spatial structure of
snowfall. Especially, the overstimation of updrafts over windward
side of steep mountain ridges may lead to an overprediction of
riming intensity. Gerber et al. (2018b) demonstrates that lee-side
flow separation and ridge-scale snowfall enhancement starts to
develop at a model resolution of 50m, indicating a strong need
for higher resolution precipitation modeling in complex terrain,
possibly even at resolutions higher than 50m.

Applying higher model resolutions (20m and less), Mott and
Lehning (2010) and Gerber et al. (2017) suggest that preferential
deposition of snowfall mainly drive spatial variability of snow
depths at the ridge scale (hundreds to thousands of meters),
causing snow loading on leeward slopes of mountain ridges
and reduced snow deposition on the windward slopes (slope
scale, Figure 2C). Snow accumulation patterns at the ridge
scale (Figure 2B), driven by preferential deposition, are super-
imposed by snow drift processes (acting on the scales of a few to
hundreds of meters) and snow avalanches (Gerber et al., 2017).
Grünewald et al. (2014) and Kirchner et al. (2014) pointed to
the challenges in distinguishing between these different physical
processes acting at the mountain ridge scale in the area-wide
snow depth dataset available in the community.

Snow redistribution processes, such as saltation and turbulent
suspension, are dominant drivers for snow deposition patterns
at the slope scale and the lower range of the ridge scale shaping
snow deposition patterns in a wide scale range of a few meters
to hundreds of meters across different environments (alpine,
artic, prairies; Shook and Gray, 1996; Sturm et al., 2001; Essery
and Pomeroy, 2004; Fang and Pomeroy, 2009; Mott et al., 2010;
Dadic et al., 2013a; Schön et al., 2015). Preferred loading of
snow on leeward slopes leads to more homogenous snow depth
distributions (Mott and Lehning, 2010). Contrary, snow erosion
by wind is mainly detected at flat areas such as in the prairies
or over frozen lakes where an adequate fetch to establish wind
erosion exists (Sturm and Liston, 2003; Iacozza and Barber,
2010; Dadic et al., 2013a), or at wind-exposed areas of various
size (from local bumps to large ridge crests). Snow tends to be
deposited preferentially in the lee of topographic disturbances
such as ridges or in local depressions, leading to local snow
deposition features such as snow dunes, drifts, cornices and filling
of troughs (Figures 1F, 2C).

Wind-driven snow redistribution processes result in a
smoothing of land-surface roughness (Mott et al., 2011b;
Schirmer and Lehning, 2011). Studies analyzing the fractal
behavior of snow depths at the ridge scale found scale-breaks
in the order of tens of meters, with a stronger autocorrelation
before the scale break than beyond (Shook and Gray, 1996;
Deems et al., 2006; Trujillo et al., 2007; Mott et al., 2011b;
Schirmer and Lehning, 2011). This scale break was clearly
attributed to wind-driven snow accumulation features. The
interaction of wind with vegetation leads to similar spatial
variability, with even smaller scale breaks of a few meters
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(Trujillo et al., 2012; Deems et al., 2013; Tedesche et al.,
2017; Webb et al., 2017). Schirmer and Lehning (2011) even
demonstrated that fractal parameters of snow depths were able
to distinguish between wind-protected and wind-exposed areas
and to describe the structure of snow depth change during more
and less wind-influenced snowfall periods. Mott et al. (2011b)
demonstrated that preferential deposition of snowfall and the
small-scale redistribution processes, saltation and suspension,
drive the spatial structure of snow depths, explaining the stronger
autocorrelation of snow depths at the scale of tens of meters.
The scaling analysis performed by Mott et al. (2011b) showed
that a model resolution of 5m is still insufficient to capture the
whole range of scales where driving processes are active. In Arctic
environment, vegetation such as shrubs and local topography
strongly influenced snow redistribution (Essery and Pomeroy,
2004). While snow tends to be deposited on slopes in the lee of
prevailing wind directions over bare soil or tundra, shrubs act as
snow trap both on the leeward and windward slopes.

Moreover, surface roughness has strong implications for snow
accumulation even at steep rock faces allowing more snow to
accumulate than expected by most models that assume no snow
accumulation at steep slopes (>60◦) (Blöschl and Kirnbauer,
1992). Typically, hydrological models tend to underestimate
snow accumulation in rock walls due to the strong dependency of
gravitational snow transportmodels on the slope, not considering
small-scale surface roughness (Bernhardt and Schultz, 2010;
Dadic et al., 2010a; Warscher et al., 2013). However, several
studies demonstrated high spatial variability of snow depths in
very steep rock faces and very rough rock walls with rock ledges
(Wirz et al., 2011; Haberkorn et al., 2015, 2017; Sommer et al.,
2015).

The strong relation of slope-scale and ridge-scale snow
deposition patterns to the local flow field modified by complex
topography (Helbig et al., 2017), is reflected in a high intra- and
inter-annual persistence of snow depth distribution (Deems et al.,
2008; Mott et al., 2010; Schirmer et al., 2011; Grünewald et al.,
2013; Helfricht et al., 2014; Revuelto et al., 2014; Winstral and
Marks, 2014; López-Moreno et al., 2017). Contrary, in case of
strong shift of major wind directions from year to year, such
inter-annual persistency was not observed (MacDonald et al.,
2009). Moreover, López-Moreno et al., 2013) showed that the
statistical relationship between terrain parameters and snow
depth distribution is not transferable between different regions.

Pre-depositional Processes: Orographic Effects on

Snowfall Deposition

Snowfall enhancement
Orographically-induced ascend of the near-surface airflow can
change the local condensation regime leading to low-level cloud
formation above the ridge crest. Such low-level clouds provide
an additional moisture source for the growth of snow crystals
falling from clouds advected at higher levels, promoting local
enhancement of snowfall (e.g., Choularton and Perry, 1986;
Dore and Choularton, 1992; Minder et al., 2008). The so-called
seeder-feeder mechanism was first proposed by Bergeron (1965)
to explain orographic precipitation enhancement. Analyzing a
specific snowfall event in the Swiss Alps, Mott et al. (2014)

demonstrated that such local cloud formation processes, in
the presence of a larger-scale seeding cloud aloft, typically
form small scale patterns of snowfall enhancement in the
downwind region of summits. During the seeder-feeder process,
crystals typically grow by riming and aggregation. If the particle
distribution is dominated by the seeder-feeder mechanism,
rimed and aggregated snow particles are more likely to get
deposited than non-aggregated and unrimed crystals owing to
their higher terminal velocities (Houze and Medina, 2005). Due
to higher snowfall production and higher terminal velocities,
low-level clouds can promote strong snowfall over mountain
ridges.

Preferential deposition of snowfall
Downstream advection of falling snow particles by high
horizontal wind velocities at mountain crests play a decisive
role in the final distribution of snowfall and snow deposition
(Colle, 2004; Zängl, 2008; Mott et al., 2014). This effect of
the atmospheric boundary layer flow on falling snow particle
trajectories is known as preferential deposition of snow (Lehning
et al., 2008). In the last decade, several studies confirmed this
concept to drive snow depth distribution after snowfall events in
alpine catchments (Mott and Lehning, 2010; Mott et al., 2010,
2014; Warscher et al., 2013; Vionnet et al., 2017; Wang and
Huang, 2017) and to control seasonal snow cover dynamics over
glaciers (Mott et al., 2008; Dadic et al., 2010a,b). Following Mott
et al. (2014) snow concentration fields in the atmosphere and
final snow deposition at the ground can directly be linked to
the near-surface flow field (Figure 3). In case of weakly stable
atmospheric conditions (Figure 3), streamwise flow divergence
cause strong advection of particles in downwind direction,
reducing snow deposition over windward slopes (Choularton
and Perry, 1986; Colle, 2004; Lehning et al., 2008; Zängl et al.,
2008; Winstral et al., 2013). The peak particle concentration
in the atmosphere is typically found at the ridge crest, at the
transition between streamwise flow divergence and convergence,
which is also the transition between updrafts (reduced snow
deposition) on the windward and downdrafts (enhanced snow
deposition) on leeward side of a mountain crest. Over the
leeward slope streamwise flow convergence typically coincide
with downdrafts resulting in converging particle trajectories and
thus enhanced snow deposition in this area (Figure 2B). As
the effect of near-surface flow fields on the falling particles
increase with decreasing distance to the surface, the resulting
snow deposition at the ground shows below average snow
deposition on the windward slope and an amplification of snow
accumulation on the leeward slope (Figures 2B, 3). This process
description as presented by Mott et al. (2014), is especially
valid for weak atmospheric stabilities and flow separation
forming over lee-side slopes of mountain ridges (Gerber et al.,
2018b).

Gerber et al. (2017) pointed to strong effects of the complex
nature of lee-side eddy structures and corresponding flow
separation types on small-scale precipitation distribution. Several
studies (e.g., Gerber et al., 2017; Wang and Huang, 2017)
highlight the strong dependency of preferential deposition of
snowfall to atmospheric stability and related changes in the
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FIGURE 3 | Schematic description of final snow deposition around a ridge crest driven by homogenous precipitation rate (Hs0), preferential deposition of snowfall

(Hs1), snowfall enhancement without advection by the mean wind (seeder-feeder mechanism only) (Hs2) and the combined effect of snowfall enhancement and

preferential deposition of snowfall (Hs3) (Modified after Mott et al., 2014).

local flow field. Wang and Huang (2017) investigated snowfall
deposition for stronger atmospheric stabilities and found strong
snowfall deposition over windward slopes due to flow blocking,
but report a shift of precipitation peaks from the windward to
the leeward slope for strong adjective winds. However, similar
to what has been observed for post-depositional processes (e.g.,
Aksamit and Pomeroy, 2016, 2018a; Paterna et al., 2017), the
coupling of coherent turbulent structures and snow transport in
the air is still not fully understood.

Post-depositional Processes

Drifting and blowing snow
The final pattern of snow accumulation on the ground is
strongly influenced by post-depositional processes, especially at
the slope scale (Figures 1F, 2C). This includes wind-induced
snow transport during drifting and blowing snow events and
redistribution by avalanches that may occur in steep slopes (e.g.,
Bernhardt and Schultz, 2010). In this section, we restrict our
presentation to physical processes during wind-induced snow
transport (see Equation 2). Traditionally and similarly to sand
transport (e.g., Bagnold, 1941; Kok et al., 2012), wind-induced
snow transport has been divided in three main transport modes:
creep, saltation and suspension (e.g., Pomeroy and Gray, 1995).
Creep (or reptation) is defined as the rolling of the largest snow
particles on the snow surface never rising more than a grain
diameter in height above the surface. Saltation corresponds to the
transport of snow crystals in a layer close to the ground (typical
thickness: 5–10 cm). These crystals follow ballistic trajectories
influenced by wind drag and gravity with frequent rebounds from
the snow surface (Figure 2C). Finally, smaller snow particles in
suspension are lifted up above the saltation layer by vertical gusts
and can be transported in a deep layer (from a few meters up to a
few hundred meters) over large distances of tens to hundreds of
meters without contact with the surface (Figure 2C). Mass loss
of snow particles in saltation and in suspension occurs due to

blowing snow sublimation (see section Snow Sublimation: Mass
Loss and Atmospheric Feedback).

Two main modes have been traditionally identified for the
transport of snow particles in the saltation layer and its initiation:
aerodynamic and splash entrainment (e.g., Nishimura and Hunt,
2000; Doorschot and Lehning, 2002). Aerodynamic entrainment
occurs when the wind flow has sufficient momentum to entrain
snow crystals from the surface. Splash entrainment corresponds
to the movement of incoming grains already in transport
impacting the snow surface, rebounding and/or projecting
additional grains in the saltation layer. Recent studies have
improved our understanding of the coupling between the near-
surface atmospheric turbulence and the saltation dynamics and
the unsteadiness of these processes (Naaim-Bouvet et al., 2011).
Based on wind tunnel measurements over natural snow cover,
Paterna et al. (2016) revealed the presence of two saltation
regimes: a “weak” saltation where the turbulence influences
the saltation dynamics and a turbulence-independent “strong”
saltation. A refined analysis of these experiments showed
that the “weak” saltation can be associated with aerodynamic
entrainment and the “strong” saltation with splash entrainment
(Paterna et al., 2017). Using laser-illuminated high-speed
camera deployed in natural environment, Askamit Aksamit and
Pomeroy (2016) identified an additional initiation mode for
moderate wind speed and intermittent transport and showed the
importance of creep to the initiation of transport by saltation.
Particles in an active creep layer appear as an efficient source of
saltation particles since they are already moving without cohesive
bonds with the snow surface, lowering the forces required
for aerodynamic or splash entrainment. These experiments
carried out in a mountainous environment with fully-developed
atmospheric turbulence allowed the identification of turbulent
structures responsible for saltation dynamics (Aksamit and
Pomeroy, 2018a). Sweeps, wind motions with greater than
average streamwise and less than average vertical velocities,
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were the dominant motion for both initiating blowing-snow
transport, and increasing concentration and particle number flux
near the surface. Ejections, wind motions with less than average
streamwise and greater than average vertical velocities, were not
effective in initiating snow particle motion and mainly sustained
transport, through vertical transport. In addition, large scale
turbulent motions generated by the surrounding topography
modulate the local saltation dynamics (Aksamit and Pomeroy,
2018b).

Blowing snow and the snow surface properties are strongly
coupled and influence each other. Indeed, the dynamics and the
initiation of the transport in saltation, and ultimately in turbulent
suspension, depend on the properties of the snow surface (type of
crystals, cohesion, and roughness). Schmidt (1980), Lehning et al.
(2000) and He and Ohara (2017) have proposed formulations
for the threshold wind speed of snow transport accounting for
cohesion due to sintering between snow grains at the surface.
The lowest threshold wind speeds are found for fresh-fallen
dendritic snow characterized by low cohesion (Guyomarc’h and
Merindol, 1998). Field work by Doorschot et al. (2004) and
wind tunnel experiments by Clifton et al. (2006) showed that the
threshold wind speed increased with increasing snow grain size
and increasing snow density. Li and Pomeroy (1997) found that
the threshold wind speeds for wet snow are significantly higher
than those for dry snow due to viscous forces associated with
thin layers of liquid water between snow grains in wet snow. The
snow surface hardness and cohesion modify the ability of the
snow surface to absorb wind and particle momentum (Aksamit
and Pomeroy, 2016; Comola and Lehning, 2017) and influence
the saltation dynamics. In return, wind-driven snow transport
modifies the physical properties and roughness of surface snow.
For snowfall with moderate wind, measurements by Sato et al.
(2008) showed that snowflakes break upon collisions with the
surface and that the number of fragments increases with impact
velocity. Comola et al. (2017) developed a model to represent
the fragmentation of wind-blown snow crystals and concluded
that this process is responsible for the transformation from
large dendritic snowflakes following an exponential distribution
into small wind-blown particle following a gamma distribution
(e.g., Nishimura and Nemoto, 2005; Naaim-Bouvet et al., 2011;
Gromke et al., 2014). Because of this fragmentation, deposited
snow crystals are made of fine grains which quickly gains
cohesion due to sintering increasing the hardness of surface
snow. Using wind-tunnels experiments, Sommer et al. (2017,
2018) showed that the formation of wind-packed snow at the
surface is only observed when saltation occurs. Wind hardening
does not occur in erosion zones and is found preferentially in
wind-exposed deposition zones. Vionnet et al. (2013) showed
that the wind-dependance of snow crystal properties during
snowfall and the packing and fragmentation of surface snow
during snow transport needs to be taken into account to properly
simulate the occurrence of blowing snow at an alpine site.
Blowing snow modifies also surface roughness of the snow cover
creating a large variety of shapes such as ripples, sastrugis, or
snow dunes (Filhol and Sturm, 2015). These modifications alter
the generation of atmospheric turbulence and thus modify the
wind field and the blowing snow fluxes (Amory et al., 2017).

Once emitted, wind-blown snow particles in the suspension
layer are transported without contact with the snow surface. A
strong near-surface gradient of particle concentration is found
with roughly an order-in-magnitude decrease between 0.1 and
1m and another one between 1 and 10m (e.g., Schmidt, 1982;
Gordon et al., 2010; Naaim-Bouvet et al., 2010). The snow particle
speed was always found 1 to 2m s−1 less than the wind speed in
an observation dataset collected in alpine terrain between 0.1 and
1m above the snow surface (Nishimura et al., 2014).

Snow sublimation: mass loss and atmospheric feedback
Snow sublimation is defined as the transfer of water directly
from the snow to the atmosphere through phase change. It
corresponds to a mass loss for the snowpack (Equation 2) and
an energy loss due to the associated negative latent heat flux
(Equation 1). Snow sublimation is made of three components: (i)
ground snow sublimation, (ii) sublimation of snow intercepted
by the vegetation and (iii) blowing snow sublimation (e.g.,
Pomeroy et al., 1998b; Molotch et al., 2007; Strasser et al., 2008;
Reba et al., 2012; Sexstone et al., 2018). The intensity of surface
sublimation varies as a function of wind speed, net radiation,
air temperature, and relative humidity (e.g., Hood et al., 1999;
Jackson and Prowse, 2009; Reba et al., 2012; MacDonell et al.,
2013; Sexstone et al., 2016). The diurnal cycle of these radiative
and meteorological drivers creates a strong diurnal cycle of
surface sublimation rate which tends to peak in early afternoon
(e.g., Reba et al., 2012; Sexstone et al., 2016). In addition to
these drivers, sublimation of snow intercepted by the vegetation
depends on the canopy structure (Pomeroy et al., 1998b; Svoma,
2017). During blowing snow events, part of the transported
snow is lost due to sublimation of airborne snow particles,
reducing the amount of deposited snow and modifying the
overall snowpack mass balance (e.g., Pomeroy and Gray, 1995).
The intensity of blowing snow sublimation is influenced by the
snow surface conditions that impact the occurrence of blowing
snow (see section Drifting and Blowing Snow) and on the total
amount of snow particles transported in the atmosphere, their
size distribution and the associated ventilation speeds (Thorpe
and Mason, 1966; Schmidt, 1982; Wever et al., 2009).

Sublimation rates for surface snow and snow intercepted by
the canopy have been quantified at many experimental sites
around the world. Jackson and Prowse (2009) and Svoma (2016)
summarized the findings of these studies and showed that the
large variability of measured sublimation rates not only depends
on the local meteorological conditions but also on the different
methods used to estimate these fluxes (eddy covariance, bulk
aerodynamic flux, aerodynamic profile; see section The Spatial
Variability of Energy Balance and snow Melt Processes). On the
contrary, only few field measurements or estimations of blowing
snow sublimation intensity over seasonal snow cover are available
in the literature. Using eddy covariance techniques, Pomeroy
and Essery (1999) measured sublimations rates between −1.2
and −1.8 mmSWE day−1 during a blowing snow event in the
Prairies of Central Canada. These measurements also include
the contribution of snow surface sublimation. Schmidt (1982)
measured the vertical profiles of wind speed, humidity, and
blowing snow mass at an experimental site located over gentle
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terrain in south-eastern Wyoming (USA) and derived estimates
of blowing snow sublimation rates ranging from −0.5 to −5.3
mmSWE day−1. All these field measurements or estimations of
snow sublimation rates were obtained at single sites. Numerical
models have been used to quantifymass loss due to sublimation at
large scales, especially over complex terrain, where the intensity
of snow sublimation varies greatly in time and space due to
complex boundary layer flows (Strasser et al., 2008; Groot
Zwaaftink et al., 2011; Vionnet et al., 2014).

Table 1 summarizes different estimations of mass loss due
to snow sublimation for several regions of the world. These
results concern single events or the entire winter season and
are restricted to surface and blowing snow sublimation. The
estimations vary greatly from one study to another, especially
at the seasonal scale. These differences of estimations arise
from three main reasons: (i) meteorological conditions, (ii)
topography, and (iii) model configuration and complexity. For
example, the dryer conditions in the Andes can favor larger
sublimation rates than in the Europeans Alps (Bernhardt et al.,
2012; Gascoin et al., 2013; Groot Zwaaftink et al., 2013). Reba
et al. (2012) and Sexstone et al. (2016) showed also that the
relative importance of snow sublimation strongly depends on
the total amount of snowfall in a given year. The large spatial
variability of sublimation rates in alpine terrain also explains
the different estimations reported in the literature. Strasser et al.
(2008); Groot Zwaaftink et al. (2011) and Vionnet et al. (2014)
showed that maximal sublimation losses are found nearby wind-
exposed crest where blowing snow intensity is larger. This can
explain the differences between estimation for a single crest as in
MacDonald et al. (2010) and for larger catchments as in Strasser
et al. (2008) and Bernhardt et al. (2012). Alpine terrain is also
characterized by shorter fetches compared to more gentle terrain
like the Canadian Prairies (Pomeroy and Gray, 1995) or the
Arctic (Pomeroy et al., 1997; Liston and Sturm, 1998; Liston
et al., 2002). Finally, the models used in these studies differ
in terms of configuration and complexity. For example, model
resolution has an impact on the simulated sublimations rates
since crests where high sublimations rates are simulated have a
smaller spatial extent at finer resolution (Bernhardt et al., 2010).
In addition, recent works by Huang and Shi (2017) and Sharma
et al. (2018) have suggested that blowing snowmodels should not
neglect sublimation in the saltation layer which can lead to an
underestimation of the importance of blowing snow sublimation
by the models.

Snow sublimation (surface and blowing snow) also influences
the atmospheric conditions in the surface boundary layer and
leads to an increase in relative humidity and a decrease in
air temperature. Eventually, sublimation rates can decrease and
specific and latent turbulent fluxes between the snow surface
and the atmosphere are modified (Taylor, 1998; Bintanja, 2001;
Wever et al., 2009). During blowing snow events, these feedbacks
can lead to saturation of the near-surface boundary layer as
observed in Antarctica (Mann et al., 2000; Barral et al., 2014).
In mountainous regions and in the prairies, Musselman et al.
(2015) and Pomeroy and Li (2000) showed that air humidity
did not reach saturation or even decreased due to entrainment
of dry air from layers aloft. Groot Zwaaftink et al. (2011)

and Vionnet et al. (2014) have estimated the effects of the
thermodynamics feedbacks of blowing snow sublimation on
mass and energy exchanges in alpine terrain using numerical
models accounting for these feedbacks. They found that the
increase in relative humidity due to blowing sublimation is
limited (9–15%) without saturation of the near surface layer.
Accounting for the feedbacks limits blowing snow sublimation,
resulted in a 2% difference in deposition reduction in a lee slope
(Groot Zwaaftink et al., 2011). Vionnet et al. (2014) showed that
surface sublimation is also reduced by 30% due to the feedbacks
but total sublimation (surface + blowing snow) is three times
higher when accounting for blowing snow sublimation which is
the main source of transfer of water vapor to the atmosphere
(78% of total sublimation).

Modeling Approaches of Snow
Accumulation Processes
A large variety of models have been developed to simulate
and better understand snow accumulation processes in different
environments seasonally covered by snow (e.g., alpine, arctic,
prairies). Accounting for wind-induced snow transport is
required to capture the small-scale pattern of snow accumulation.
Table 2 gives the main characteristics of models capable of
simulating snow variability influenced by wind redistribution.
These models can be divided in two main categories: (i) models
based on semi-empirical parameterizations of the physics of
snow transport and (ii) models resolving the 3D turbulent-
diffusion equation for blown snow particles in the atmosphere.
Models in the first category rely on vertically-integrated transport
rates in the saltation and the suspension layer (Pomeroy et al.,
1993; Liston and Sturm, 1998; Durand et al., 2005; Liston
et al., 2007). Due to their relatively low computational costs,
these models were applied with certain success to simulate
entire snow seasons in the Canadian Prairies and the Arctic
(e.g., Pomeroy and Li, 2000) or in mountainous terrain (e.g.,
MacDonald et al., 2010; Gascoin et al., 2013). Bernhardt et al.
(2009) andMusselman et al. (2015) have shown that these models
are very sensitive to the driving wind field, especially in alpine
terrain. Improved modeling of snow accumulation requires a
consideration of atmospheric turbulence. Therefore, for the
second category of models, computational fluid dynamics (CFD;
Naaim et al., 1998; Gauer, 2001; Schneiderbauer and Prokop,
2011) and atmospheric models in Large Eddy Simulations (LES)
mode providing libraries of flow fields as input for snow
cover process models (Lehning et al., 2008; Mott et al., 2010)
or fully coupled to a snow cover process model (Vionnet
et al., 2014) have been used. Because of their complexity, these
models are usually focusing on single blowing snow events
but can be occasionally used over an entire snow season
(Groot Zwaaftink et al., 2013). The 3D turbulent-diffusion
equation for snow particles in the suspension layer is solved
with different assumptions on the particle size distributions
(fixed or non-uniform). Description of the saltation layer varies
from semi-empirical relationships (Pomeroy and Gray, 1990;
Sørensen, 2004) to more advanced models representing the
essential characteristics of saltating snow particles (aerodynamic
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TABLE 1 | Estimation of mass loss due to surface and blowing snow sublimation for (a) single events and (b) at the seasonal scale reported in different studies.

References Region Elevation

range (m)

Size Period Surface

(%)

Blowing

snow (%)

(a) Estimation for single event

Groot Zwaaftink et al., 2011 Wannengrat (Switzerland) 2,100–2,650 2.4 km2 43-h on 16–17 March 2010 2 2.3

Vionnet et al., 2014 Col du Lac Blanc (France) 2,000–3,200 9 km2 22-h on 18 March 2011 NE 5.3

(b) Estimation at the seasonal scale

Pomeroy and Gray, 1995 Canadian Prairies 1-km fetch at 16 stations Six winters from 1970 to 1976 NE 15–41

Pomeroy et al., 1997 Trail Valley Creek (Canada) 60–190 68 km2 Oct. 1992 to May 1993 NE 19.5

Liston and Sturm, 1998 Imnavait Creek (Alaska, USA) 870–950 6 km2 Sept. 1986 to Apr. 1986

Sept. 1987 to Apr. 1987

Sept. 1988 to Apr. 1988

Sept. 1989 to Apr. 1989

NE 22

20

18

9

Liston and Sturm, 2002 Arctic Alaska (USA) 0–1,200 19,550 km2 Sept. 1994 to Apr. 1995

Sept. 1995 to Apr. 1996

Sept. 1996 to Apr. 1997

NE 21

25

18

Strasser et al., 2008 Berchtesgaden Park (Germany) 600–2,700 210 km2 Aug. 2003 to Jul. 2004 6.9 4.1

MacDonald et al., 2009 Fisera Ridge (Alberta, Canada) 2,300–2,325 Length:

220m

Oct. 2007 to April 2008

Sept 2009 to April 2009

0.6

15

19

17

Bernhardt et al., 2012 Berchtesgaden Park (Germany) 600–2,700 210 km2 Aug. 2003 to Jul. 2004 NE 1.6

Gascoin et al., 2013 Pascua-Lama area (Chile) 2,600–5,630 1,043 km2 Jan. 2008 to Nov. 2008 54 18

Groot Zwaaftink et al., 2013 Wannengrat (Switzerland) 2,100–2,650 2.4 km2 Oct 2008 to Jun. 2009 7.5 0.1

Zhou et al., 2014 Binggou basin (China) 3,440–4,400 30.3 km2 Oct. 2007 to Jul. 2009 23.3 24.0

Sexstone et al., 2018 North-central Colorado (USA) 2,261–4,345 3,600 km2 Oct. 2010 to June 2011

Oct. 2011 to June 2012

Oct. 2012 to June 2013

Oct. 2013 to June 2014

Oct. 2014 to June 2015

7.9

11.5

9.1

8.4

6.7

3.6

6.6

1.7

3.5

1.9

For (a), mass loss refers to the reduction in deposited snow mass during a blowing snow event whereas for (b) the mass loss is expressed in percentage of total winter snowfall. NE

stands for Not Estimated.

entrainment, splash) (Gauer, 2001; Doorschot and Lehning,
2002). In these models, the 3D wind field is obtained from
a library of pre-computed situations (Raderschall et al., 2008;
Mott et al., 2010) or downscaled from meteorological analysis
or forecast using a grid nesting approach (Vionnet et al., 2017).
Preferential deposition can also be explicitly simulated. An
alternative method to study terrain-flow-particles interactions
more in detail relies on Lagrangian-tracking of falling snow
particles as in Wang and Huang (2017). In addition, the coupled
snow-atmosphere modeling approach proposed by Vionnet et al.
(2014) allows to explicitly simulate local cloud dynamical effect
and to discuss the relative importance of the different processes
influencing the variability of snow accumulation in alpine terrain
(Vionnet et al., 2017). But this approach is still restricted to
intermediate resolutions (50m) due computational costs and
numerical stability in steep terrain and cannot be used to
explore patterns of snow accumulation at very high resolution
(Mott and Lehning, 2010).

Modeling snow accumulation processes at various time and
spatial scales remains a great challenge and existing models
require improvements in many ways. In particular, the physical
parameterizations used in numerical modeling of blowing snow
do not include the latest findings in the complex coupling
between turbulence and snow transport (see section Modeling
Approaches of Snow Accumulation Processes; Aksamit and
Pomeroy, 2016, 2018a; Paterna et al., 2016, 2017). In alpine

environments, real case simulations of wind-induced snow
transport will require a modeling approach that can combine
LESs in the atmosphere (Vionnet et al., 2017; Wang and Huang,
2017) to capture the complexity of the atmospheric flow with
advanced particle motion models representing the interactions
between turbulence, grain dynamics and snow surface (Nemoto
and Nishimura, 2004; Groot Zwaaftink et al., 2014; Comola and
Lehning, 2017; Comola et al., 2017). In addition, atmospheric
models in LES mode present a large potential to study local
snowfall processes and their contribution to the variability of
snow accumulation (Vionnet et al., 2017; Gerber et al., 2018a,b).
Overall, the main challenge in the future will be to develop
a model or a combination of models that can simulate the
inherently turbulent nature of the different processes driving the
spatial variability of snow accumulation across a large range of
scales.

HEAT-EXCHANGE PROCESSES DRIVING
SNOW MELT PATTERNS

The Spatial Variability of Energy Balance
and Snow Melt Processes
Complex snow-atmosphere interactions drive snow ablation at
multiple temporal and spatial scales (Dornes et al., 2008a,b;
Mott et al., 2011a; Helbig et al., 2015; DeBeer and Pomeroy,
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2017; Hock et al., 2017). The spatio-temporal ablation patterns
in mountainous terrain are controlled by spatially variable
shortwave radiation (governed by terrain slope, aspect, shading)
(Figure 4a), longwave radiation (local cloud formation) and
turbulent heat exchange (Pohl et al., 2006; Grünewald et al.,
2010; Mott et al., 2011a). Many hydrological studies, however,
have used spatially uniform melt applied to basin snow
water equivalent (SWE) distributions or snow cover depletion
parametrizations (Liston, 1999, 2004; Luce and Tarboton, 2004;
Egli et al., 2012; Helbig et al., 2015). Egli et al. (2012) for
instance argued that the spatially variable snow melt rates
caused by spatial differences in the surface energy balance, are
less important than the heterogeneity in SWE caused by snow
accumulation processes. Following this argumentation, Egli et al.
(2012) proposed that for sites with similar meteorological and
topographical conditions snow volume and snow covered area
can be well-simulated with spatially uniform melt rates if the
SWE distribution at time of peak accumulation is known.

There are, however, multiple studies demonstrating the
importance of the consideration of spatially variable snow melt
in mountainous terrain. At basin scale, (Dornes et al., 2008a,b)
found that missing representation of spatial differences in snow-
melt rates and runoff among slopes of different aspects led to
poor representation of snow cover ablation and basin runoff.
Hock et al. (2017) emphasized the importance of the boundary
layer feedback and representativeness of the spatial variability
of meteorological input variables (Schlögl et al., 2016) for
accurate snowmelt modeling. DeBeer and Pomeroy (2017) argue
that uniform melt rate approaches might produce reasonable
results in certain topographic settings and climatic conditions,
but especially for cold regions, windy conditions, increasingly
complex terrain and large model domains the consideration of
the spatial variability in the snowpack energy balance should
not be ignored. Pohl et al. (2006) demonstrated the high spatial
variability of turbulent fluxes in mountainous terrain. They
showed that, due to the high spatial variability of the near-
surface wind velocities, turbulent fluxes within the investigation
area varied by as much as 20% from the mean, leading to large
differences in potential snowmelt over the entire melt period.

Schlögl et al. (2017) particularly pointed to the high spatial
variability of melt rates during the later stages of the melt periods,
when turbulent fluxes are most sensitive to wind velocity and air
temperature variations within the lowest atmospheric boundary
layer. There are several studies showing that the turbulent flux
contribution becomes particularly important late in the season
(Essery et al., 2006; Mott et al., 2011a, 2017; Harder et al., 2017)
when the blanket of snow gradually thins and exposes bare
ground involving a high spatio-temporal variability of albedo and
surface temperature, thus, energy balance, and melt processes
(DeBeer and Pomeroy, 2009). Pohl and Marsh (2006) illustrated
that the consideration of end of winter snow cover, the spatial
variability of turbulent fluxes and local advection processes were
crucial for an accurate determination of the location and timing
of melt-water release. Additionally, several studies demonstrated
the increase in spatial energy balance variation by local flow
systems suppressing or fostering heat exchange processes at the
snow cover (e.g., Shea and Moore, 2010; Mott et al., 2015; Sauter

and Galos, 2016). Several studies pointed to the importance of
land-surface heterogeneity induced by patchy snow covers in
spring evolving high complexity in boundary layer dynamics
and exchange processes (Figure 4b) between the land-surface
and the near-surface atmosphere (Liston, 1995; Essery et al.,
2006; Pohl and Marsh, 2006; Harder et al., 2017; Mott et al.,
2017). Information on snow-covered area (SCA) and the effect
of land-surface heterogeneity on surface energy fluxes remains
a challenging part in Earth system modeling (Liston, 2004; de
Vrese et al., 2016). Essery and Pomeroy (2004) pointed to the
necessity of the representation of sub-grid snow cover in surface
schemes used in atmospheric and hydrological models, especially
when calculating snow cover depletion curves. There are several
hydrological models and land-surface schemes that parameterize
sub-grid fractional snow cover as simplified functions of mean
SWE, accumulated depth of snowmelt over time, roughness
lengths and sub-grid orography (Roesch et al., 2001; Takata
et al., 2003; Liston, 2004; Essery, 2008; Dutra et al., 2010; Best
et al., 2011; Nitta et al., 2014). The interaction between the
fractional snow cover and the overlying atmosphere is highly
simplified in such models and the variability of relevant sub-
grid processes is hard to be captured (DeBeer and Pomeroy,
2009). Experiments on snow melt dynamics conducted by Mott
et al. (2017) demonstrated that insufficient representation of
sub-grid snow cover fractions on the regional scale and simple
gradient-flux relationships at the same time lead to large biases
in flux estimates that need to be addressed in atmospheric and
hydrological models in future.

Heat Exchange Processes Over a
Continuous Snow Covers
Turbulent fluxes of sensible and latent heat (see Equation 1)
are typically small in winter, especially when averaged over
periods of weeks or months (Willis et al., 2002; Hock, 2005) but
they can exceed the radiation fluxes over short time intervals
of hours or days (Anderson et al., 2010). Often the radiative
losses over snow in winter can be compensated by the turbulent
sensible heat flux, which has been observed to be of equal
magnitude to net longwave radiation in winter (e.g., Cullen
and Conway, 2015). In spring, net radiation is still the main
driver for snowmelt, especially during the early to mid-melt
period (DeBeer and Pomeroy, 2017; Fitzpatrick et al., 2017)
and for sunny conditions (Figure 5). In mid-winter, snow mass
can be lost via turbulent energy exchange at the snow surface
via sublimation (Marks and Dozier, 1992; Marks and Winstral,
2001). Also highest melt rates often coincide with high values
of turbulent sensible and latent heat fluxes (Hay and Fitzharris,
1988; Gillett and Cullen, 2011). In arid environments turbulent
fluxes can dominate the energy balance, especially in early spring
before shortwave radiation increases in magnitude (Hawkins and
Ellis, 2007; Stoy et al., 2018). The contribution of turbulent
heat fluxes can reach and sometimes exceed 50% of the melt
energy, especially in regions with generally high wind speeds
(Funk, 1985; Pohl et al., 2006), during cloudy conditions when
the advection of warm and moisture-laden air is enhanced
(Cullen and Conway, 2015; Conway and Cullen, 2016) or when
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FIGURE 4 | Schematic description of energy exchange processes over a continuous snow cover (a) and additional processes acting over a patchy snow cover (b).

For the continuous snow cover incoming and outgoing longwave radiation (QLin, QLout), incoming and reflected shortwave radiation (QSin, QSout ), terrain radiation,

turbulent sensible and latent heat fluxes (Qh, Qe) are presented. Typical profiles of wind, air temperatures and turbulence evolving during stable atmospheric

conditions over snow are shown as well. For the patchy snow cover case, the boundary layer development (air temperature, turbulence, sensible heat fluxes) over

snow induced by local advection of heat from snow-free toward the snow-covered area is presented.

local wind systems change the local temperature fields and the
associated heat exchange between snow and the atmosphere
(Greuell and Böhm, 1998; Shea and Moore, 2010; Mott et al.,
2015). In maritime environments, melt is observed to be quite

similar during clear-sky and overcast conditions as positive
net longwave radiation and latent heat fluxes allow melt to be
maintained over a greater length of time compared to clear-sky
conditions (Conway and Cullen, 2016). Furthermore, turbulent
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FIGURE 5 | Twelve hourly-mean of daytime energy fluxes (06:00 a.m.−06:00

p.m.) modeled with SNOWPACK for the Weissfluhjoch test site (Swiss Alps,

2560m ASL) for typical cloudy and sunny days in May and June. Air

temperatures and wind velocities are mean values for the given time period of

12 h. QS is net shortwave radiation (yellow). QL is net longwave radiation

(orange). Black and gray colors indicate turbulent exchange of sensible (Qh)

and latent heat (Qe).

fluxes become important during rain-on-snow events due to
saturated conditions and dew point temperatures above 0◦C
(Dyer and Mote, 2002; Dadic et al., 2013b; Pomeroy et al., 2016;
Würzer et al., 2016), accounting 60–90% of energy available for
snowmelt at open test sites (Marks et al., 1999, 2001; Garvelmann
et al., 2014).

While direct measurements of energy balance components
typically exist only for shortwave and longwave radiation,
turbulent heat fluxes can only be measured directly using eddy
covariance that requires advanced and careful data processing,
especially in complex terrain (e.g., Reba et al., 2011). Therefore,
themost common approach to parameterize the turbulent energy
exchange from measured meteorological variables is the bulk
approach. This approach is based on Monin–Obukhov theory
and involves large uncertainties. For parametrizing turbulent
heat fluxes, the bulk aerodynamic method employs an integrated
form of the gradient transport (Stull, 1988) assuming constant
flux layer, stationarity, and negligible advection (Prandtl, 1934;
Sverdrup, 1936; Obukhov, 1946). The turbulent energy fluxes
are proportional to the time-averaged gradients of potential air
temperature (turbulent energy flux of sensible heat) and specific
humidity (turbulent energy flux of latent heat) between the snow
surface and the surface boundary layer. Exchange coefficients are
calculated as a function of roughness lengths for momentum,
temperature and water vapor, and atmospheric stability based
either on Monin–Obukhov lengths (e.g., Dyer, 1974; Beljaars
and Holtslag, 1991; Stearns and Weidner, 1993; Van den Broeke
et al., 2005) or Richardson number (e.g., Webb, 1970; Sicart et al.,
2005; Brock et al., 2010; Grachev et al., 2013; Sorbjan, 2016;
Schlögl et al., 2017). Many different forms of stability corrections

have been published, but often show poor performance over
snow in different environments (alpine, acrtic, glacierized) when
compared to measured turbulent fluxes (Andreas, 2002; Radić
et al., 2017; Schlögl et al., 2017). The simplest form excludes
a stability function (assuming neutral stability) and applies a
logarithmic wind profile (e.g., Conway and Cullen, 2013).

The prediction of the exchange coefficient over snow is
challenging due to multiple factors (Pomeroy et al., 1998a)
including the violation of constant flux layer assumption in
complex terrain (Dadic et al., 2013b; Schlögl et al., 2017),
often very high stabilities over snow (Male, 1980; Forrer and
Rotach, 1997; Fitzpatrick et al., 2017), low turbulence level
over the smooth snow surface (Yen, 1995) and uncertainties in
surface roughness variability and the invalid assumption of equal
roughness lengths for momentum, heat and water vapor (Smeets
and van den Broeke, 2008; Anderson et al., 2010; Conway and
Cullen, 2016; Fitzpatrick et al., 2017).

Fitzpatrick et al. (2017) assessed the performance of most
commonly used bulk methods to calculate turbulent heat fluxes
on a mid-latitude glacier over one melt season. They showed
that functions based on Monin-Obukhov lengths returned
smallest errors in the mean daily flux values but also displayed
poor performance on hourly time-scales, especially for periods
characterized by an overestimation of downward turbulent
sensible heat fluxes. Schlögl et al. (2017) assessed sensible heat
flux parametrizations in stable conditions over snow by analyzing
a wide range of stability correction functions for two alpine
and two polar test sites. They confirmed that stability correction
in particular need improvements for periods of overestimation,
in particular for large temperature differences and large wind
speeds. The study of Schlögl et al. (2017) emphasized that
differences between stability corrections are, however, of the
same order of magnitude as the error, which is introduced
by the Monin–Obukhov bulk formation itself. Both recent
studies assessing turbulent flux parametrizations on surface
energy balance models (Fitzpatrick et al., 2017; Schlögl et al.,
2017) pointed to the violation of the mandatory assumptions
of stationarity and horizontal homogeneity, which are rarely
fulfilled at test sites in complex terrain.

Heat Exchange Processes Over a Patchy
Snow Cover
Surface Fluxes and Flow Development Driven by

Snow Cover Fraction
In spring, surface energy, mass, and momentum fluxes are
strongly linked to horizontally heterogeneous land surfaces
(Cohen and Rind, 1991). The spatial variability in surface
energetics gets especially large as soon as snow cover becomes
patchy in the course of an ablation season. Strong differences
in surface albedo and surface emissivity between snow-free and
SCAs induce a high spatial variability in net radiation, even
over small distances of a few meters (Figure 4b). The spatial
variability in surface energetics is enhanced by the limitation of
snow surface temperatures to a maximum of 0◦C, resulting in
large surface temperature gradients. The high spatial variability in
surface characteristics coincide with significantly different fluxes

Frontiers in Earth Science | www.frontiersin.org 14 December 2018 | Volume 6 | Article 197

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Mott et al. Wind-Driven Snow Atmosphere Interactions

of longwave radiation and of turbulent sensible and latent heat.
Typical atmospheric processes acting over patchy snow covers are
summarized in Figure 4b.

The decrease in SCA during springtime and shorter snow-
cover duration can result in significant local atmospheric
heating (Chapin et al., 2005). The importance of sub-grid snow
distribution for snow-melt modeling has been demonstrated by
studies investigating the feedback between the heterogeneous
land-surface and overlying atmosphere (Ménard et al., 2014;
Letcher and Minder, 2015; Mott et al., 2015; Harder et al.,
2017; Schlögl et al., 2018a). Considering snow and snow-free
cells (including vegetation), Ménard et al. (2014) calculated
energy fluxes in vertical and horizontal direction and found
a significant warming feedback through reduction in albedo
for decreasing snow-cover fractions. Also Letcher and Minder
(2015) emphasized that snow albedo feedbacks enhance large-
scale variability of atmospheric warming and even change diurnal
wind systems. Similarly, Mott et al. (2015) showed that for
small snow-cover fractions, the dominance of upward heat fluxes
over snow-free areas result in a net warming of near-surface
atmosphere, enhancing the downward heat flux over still SCAs.
Numerical simulations performed by Schlögl et al. (2018b) for
an idealized flat test site, confirmed earlier results from Mott
et al. (2015) and Ménard et al. (2014), revealing 22–40% larger
daily snow depth depletion rates when considering the warming
feedback of patchy snow on the atmosphere.

In flat terrain, strong thermal contrasts between bare and
snow-covered ground induce snow-breeze type of circulation
(Johnson et al., 1984; Taylor et al., 1998). In mountainous terrain
snow-breeze circulations and diurnal mountain wind systems
interact (Letcher and Minder, 2017). The presence of snow at
higher elevations can even counteract the diurnal upslope flow,
changing the thermal wind system of a valley (Segal et al.,
1991). Recent numerical results presented by Mott et al. (2015)
demonstrated that large patches of snow can also have an impact
on the local wind system, similar to wind systems typically found
at mountain glaciers (Shea and Moore, 2010). Simulating the
boundary-layer flow field over patchy snow covers, Mott et al.
(2015) showed that katabatic wind systems can develop over
large snow fields located on slopes, exerting a major control on
the local energy balance. While the atmosphere adjacent to the
snow cover is decoupled (isolated) from the ambient warmer
air temperature (Mott et al., 2015), strong katabatic winds drive
heat exchange toward the snow cover, cooling the near-surface
atmospheric layers (Greuell and Böhm, 1998; Strasser et al.,
2004; Shea and Moore, 2010). Similarly, Sauter and Galos (2016)
concluded that katabatic flows at lower elevated zones of glaciers
prevent warm air advection from the surroundings prohibiting
local warming. Numerical finding ofMott et al. (2015) and Sauter
and Galos (2016) were confirmed by turbulence measurements
conducted by Mott et al. (2017) over three melting periods.
Experimental results evidenced the formation of katabatic flows
over long-lasting snow patches strongly affecting the temporal
evolution of snow surface temperature patterns. The influence of
such wind systems on the mean melt rates of snow at glaciers
or alpine catchments has not been quantified yet, but studies
point to the strong effect on local ablation rates estimates and

wrong estimations of temperature lapse rates depending on
measurement locations (Sauter and Galos, 2016).

Local Heat Advection of Sensible Heat

Internal boundary layer development
Air flow over the extremely heterogeneous land surface of patchy
snow induces the development of dynamic and thermal internal
boundary layers downwind of the transition of abrupt changes
of surface temperature, humidity and roughness (Garratt, 1990;
Savelyev and Taylor, 2005). The coexistence of stable and unstable
internal boundary layers even leads to mass and energy fluxes
with a high spatial variability not only in the horizontal but also
in the vertical direction (Essery et al., 1999, 2006; Granger et al.,
2006; Mott et al., 2013; Harder et al., 2017). Based on profile
measurements, Granger et al. (2006) and Takahara and Higuchi
(1985) suggested describing boundary-layer growth by a power
law function of the fetch distance. The boundary-layer growth
was shown to bemainly affected by the upwind surface roughness
and the change of stability from upwind to downwind conditions.

Performing turbulence measurements over three melting
periods in an alpine field site, Mott et al. (2017) identified
three stages of snow cover distribution considerably driving the
frequency of internal boundary layer development: continuous
snow cover, presence of a distinct snow-line, and patchy snow
cover distribution. In case of internal stable boundary layer
development, typically found during snow line and patchy snow
cover stage, the local stratification is typically enhanced close to
the snow surfaces resulting in atmospheric decoupling of the
air adjacent to the snow cover from the warm air above. This
subsequently limits the amount of senible and latent heat than
can be transmitted from the atmosphere to the snow. There are
mainly two factors causing such a strong atmospheric stability
(Mott et al., 2016): (i) temperature difference between melting
snow surface and air temperature and (ii) cold-air pooling in
topographic depressions. The collapse of turbulence close to the
melting snow is, thus, especially supported by sheltering effects
in complex terrain (Fujita et al., 2010; Mott et al., 2016) leading
to high differences in aerial ablation rates of neighboring snow
patches (Eveland et al., 2013) or local decrease in snow ablation
across single patches (Figure 4b).

Different models have been developed during the last decades
accounting for the effect of local advection of sensible heat
in snow melt modeling (Table 3). One approach to resolve
boundary layer development over patchy snow covers is
applying atmospheric boundary layer models (Liston, 1995) or
large-eddy simulations (Mott et al., 2015; Sauter and Galos,
2016). Such model approaches are, however, computational
expensive. Weisman (1977) applied mixing length theory to
estimate advection of heat to snow patches. This early work
showed that the efficiency of local advection of sensible heat
appears to be a function of snow cover fraction. Marsh
and Pomeroy (1996) developed a simple model, using an
empirically developed efficiency parameter to transfer heat
from snow-free toward snow-covered ground as a function of
snow-cover fraction. Similarly, Neumann and Marsh (1998)
introduced an advection efficiency term quantifying the fraction
of sensible heat originating from bare ground areas advected to
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TABLE 3 | Approaches to describe local heat advection (Literature since 1995).

Study Model type

Liston, 1995 Atmospheric boundary layer model

Marsh and Pomeroy, 1996 Empirical Efficiency parameter

Neumann and Marsh, 1998 Empirical Advection efficiency term

Granger et al., 2002 Advection model: Boundary layer integration

Essery et al., 2006 Extended Boundary layer integration approach

Mott et al., 2015 Large eddy simulation

Sauter and Galos, 2016 Large eddy simulation

Schlögl et al., 2018a Temperature footprint approach

adjacent snow patches. More recently, Pohl and Marsh (2006)
applied this concept for an arctic catchment using a regression
equation relating the efficiency term to percentage snow-free
area determined from a combination of field measurements
(Neumann and Marsh, 1998) and model data (Liston, 1995;
Marsh et al., 1999). The resulting advected energy was uniformly
distributed over SCAs, not accounting for the observed fetch
distance dependency of local heat advection (Essery et al., 2006;
Mott et al., 2011a). Despite the simple approach, they showed that
the contribution of local heat advection to the snow-melt energy
was small early in the ablation season but strongly increased late
in the ablation season, contributing about 28% to the overall melt
energy.

Areal average estimates of advection have been provided by
a more complex boundary layer integration approach applied
by Essery et al. (2006) and Granger et al. (2002). Essery
et al. (2006) applied boundary layer principles to estimate the
net flux gained from advective heat as a function of fetch
distance and boundary layer depth, using model parameters
which depend on surface roughness and atmospheric stability.
Based on a parametrized temperature profile and a flux-gradient
relationship, the horizontal advection of heat was integrated
through the depth of the stable internal boundary layer to find
the net advection and an average flux into the snow cover.
Their results showed that the standard deviation and average flux
decrease with increasing patch lengths. Although the approach
allowed a better representation of local surface fluxes at some
point of a snow patch, the approach is highly sensitive to
accurate information on atmospheric conditions and accurate
representation of roughness lengths. An alternative approach
has been developed by Schlögl et al. (2018a). They developed a
temperature footprint approach to resolve the spatial variability
of air temperature due to warm air advection by calculating
the fetch dependent near-surface air temperatures very close to
the snow surface. A prerequisite for this approach is accurate
information on the spatial distribution of snow cover at time of
peak accumulation.

Enhanced snow melt at leading edge of snow patches
The horizontal transport of sensible and latent heat with
the mean flow across a step change in surface temperatures
(Figure 4b) and moisture is called local advection of sensible
and latent heat. Snow hydrologists have been attracted by the

advective energy transport for decades, trying to quantify the
enhancing effect of local heat advection on snowmelt on the local
but also on the catchment scale. While local heat advection has
long been recognized to be an important driver for snow melt in
the mid and later stage of a melting period, the advection of latent
heat has been widely ignored or assumed to be negligible.

A number of studies tried to experimentally investigate the
effect of local advection of sensible heat on snowmelt. Measuring
snow ablation in very high resolution with a terrestrial laser
scanner (TLS), Mott et al. (2011a) and Schlögl et al. (2018a)
demonstrated the effect of local heat advection on snow melt
rates as a function of the distance to the leading edge of snow
patches, both quantifying an increase in snow ablation at the
upwind edges of snow patches by 25–30% (Table 4). Schlögl
et al. (2018a) estimated an increase in daily snow ablation rates
accounts 4–6% on a catchment scale (Table 4). Considering the
process to become more important toward the late stage of the
ablation season when the snow over becomes patchy, the pure
effect of local heat advection increases the total seasonal snow
ablation by ∼1–5%. Even larger estimates for the contribution
of advection of latent and sensible heat are suggested for the
Canadian Prairies (Harder et al., 2017), where the snow cover is
characterized by a higher frequency of small snow patches and
the presence of upwind wetted surfaces making the advection of
latent heat an additionally important process. Based on direct
measurements of the effect of local heat advection on snow-
melt rates by temperature, humidity and wind profile, their
experimental results reveal local heat advection driven by surface
temperature heterogeneity as a large source of energy available for
snow-melt. They showed that sensible heat advection accounted
for 31% (Table 4) of the net available melt energy at the leading
edge of a snow patch. Harder et al. (2017) showed that latent heat
advection can also be a substantial source of energy for snow-melt
but is conditional upon the presence of upwind ponded water or
wet exposed soils. Under conditions with wet upwind surfaces,
the local advection of latent heat was estimated to account for
another 33% (Table 4) of the net energy available for melt at the
leading edge of a snow patch.

CONCLUSION AND OUTLOOK

Wind-driven coupling processes between the snow cover and the
atmosphere govern snow accumulation and ablation via mass
and energy fluxes. In this review, we have addressed the current
state of knowledge on wind-driven snow transport, interactions
between snowfall and atmospheric flow, snow-mass loss and
feedbacks on the atmosphere due to sublimation (surface and
blowing snow), and heat exchange processes over continuous and
patchy snow covers.

We have pointed to the strong scale dependency of snow-
depth variability and dominant wind-driven processes affecting
snow accumulation. On the mountain-range scale, snow depth
patterns can be mainly attributed to orographic precipitation
patterns with elevation as the most dominant factor. Snow
patterns on the ridge-scale are mainly driven by the local
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TABLE 4 | Comparison of estimated maximum contributions of local heat advection and warming feedback on snow melt rates or net available energy melt on the local

scale (leading edge of snow patches) and on the catchments scale.

Project Type of experiment Region Process Scale Unit Estimated

contribution (%)

Schlögl et al.,

2018b

Modeling

(atmospheric boundary

layer model)

Alpine test site

Switzerland

Warming feedback Field site Daily catchment

snow ablation rate

22–40

Pohl and Marsh,

2006

Modeling

(Advection efficiency)

Arctic catchment Local heat advection

(Sensible and latent)

Catchment scale Daily local

snowmelt energy

28

Schlögl et al.,

2018a

Experimental; Snow

ablation measurements

with TLS

Alpine test site

Switzerland

Local heat advection

(Sensible and latent)

Local; leading

edge of snow

patches

Daily local Snow

ablation rate

25–30

Schlögl et al.,

2018a

Experimental; Snow

ablation measurements

with TLS

Alpine test site

Switzerland

Local heat advection

(Sensible and latent)

Catchment scale Daily catchment

snow ablation rate

4–6

Harder et al., 2017 Experimental; Profile

measurements

Canadian Praerie Sensible heat advection Local, leading

edge of snow

patches

Daily local

snowmelt energy

31

Harder et al., 2017 Experimental; Profile

Measurements

Canadian Praerie Latent heat advection Local, leading

edge of snow

patches

Daily local

snowmelt energy

33

All estimations are provided for patchy snow covers only.

wind interacting with snowfall and the snow surface. Small-
scale updrafts can produce local cloud-formation processes,
typically forming distinct patterns of snowfall enhancement in
the summit region. Downstream advection of snow particles
further causes preferential deposition of snowfall over leeward
slopes of mountains where streamwise flow convergence and
enhanced snow deposition velocities result in enhanced snow-
deposition rates. Finally, local strong winds cause redistribution
of snow via saltation and suspension leading to distinct snow
erosion and deposition patterns shaping the snow cover at the
ridge scale and the slope scale.Wind-induced snow transport also
strongly influences the physical properties of the surface snow
and its surface roughness.

There are different attempts to model snow accumulation
on various scales. At the regional scale (mountain-range scale)
most precipitation studies reproduce precipitation patterns
using horizontal grid resolutions of 1 km and coarser. Other
studies, however, showed that resolving ridge-scale precipitation
and accumulation patterns, require higher model resolutions
of 50m or less to capture the effect of local flow fields
on precipitation patterns. Even higher model resolutions of
5m and less are needed to resolve wind-induced snow-
redistribution processes. Different model approaches exist to
simulate snow-depth variability at the ridge scale and slope
scale, which can be divided in two main categories: models
relying on vertically-integrated snow-transport rates and models
resolving 3D turbulent-diffusion equations for blown snow
particles in the atmosphere. Future efforts are required to
combine LESs to capture the complexity of the atmospheric
flow with advanced particle-motion models to account for
the inherent turbulent nature of physical processes driving
the variability of snow deposition at the ridge scale and
the slope scale. Applying such models over large temporal
and spatial scales will be one of the major challenge in the

near future to improve snow prediction in complex terrain.
Furthermore, extensive measurement campaigns are required to
measure flow-precipitation interactions within the near-surface
atmospheric boundary layer. Although different measurement
devices exist to measure flow field and snow particle distribution
in the air, such as weather radars (X-band) or Doppler Wind
Lidars, the strong interferences of measurements with the solid
earth surface make measurements close to the surface difficult.

In this review, we have also summarized ablation processes
that are directly linked to the effect of the local wind field.
The estimation of mass loss due to snow sublimation at the
surface and by blowing snow is shown to be challenging. Specific
measurements can be used at local sites but models are required
to provide estimations for larger areas. The thermo-dynamical
feedback of blowing snow sublimation on the surface boundary
layer, in particular, has been discussed by several studies, and
can lead to near-surface saturation as found in Antarctica. On
the other hand, no saturation is found over seasonal snow in
mountains and in the prairies, potentially due to shorter fetch
distances over snow and entrainment of dry air from layer aloft.

This review has also discussed the complex nature of heat-
exchange processes over continuous and patchy snow covers.
While turbulent heat fluxes have been shown to considerably
contribute to the energy balance over snow, especially on shorter
temporal scales, turbulent heat flux parameterizations in stable
conditions over snow involve large uncertainties, mainly related
to errors in stability correction functions and the violation
of Monin–Obukhov similarity theory assumptions. The bulk
approach, however, leads to significant errors of the turbulent
heat flux estimation over snow even if necessary assumptions
are met. The uncertainty in turbulent heat flux predictions
dramatically increases as soon as the snow cover gets patchy.
Changes in the local wind system can enhance or suppress
heat exchange over remaining SCAs. Some studies even hint
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to a suppression of turbulence due to atmospheric decoupling
of the air adjacent to the snow cover from the warm air
above, strongly limiting the heat exchange toward the snow
cover. There are many open questions regarding boundary layer
development, local heat advection and associated heat-exchange
processes over patchy snow covers. Although, some of the
processes are acting on a very small scale, these processes also
affect snow ablation at the catchment scale as decreasing SCA
results in a net near-surface atmospheric warming. While this
effect has been recognized by many studies, the SCA is still
not satisfactorily accounted for in most hydrological models.
Also, considering glaciers as very large snow and ice patches,
similar processes such as local heat advection are assumed to
also affect snow and ice ablation. More measurement campaigns
with dense networks of energy balance stations including near-
surface turbulence measurements are required to provide new
insight into the feedback between the glacier katabatic wind
system and the lateral advection of heat from the glacier
boundary areas during the course of an ablation season. A
measurement campaign conducted in summer 2018 at the glacier
Hintereisferner, running four complete energy balance stations,
however, highlighted the challenges and strong efforts associated
with the maintenance of a dense network of such stations
at the typically rough glacier surface facing strong ice melt.
New measurement strategies in the field using laser technology
combined with further wind tunnel experiments in controlled
environments (e.g., Mott et al., 2016) need to be developed to
better understand how much energy is transported toward the
SCAs and when boundary layer decoupling is more dominant
than the local heat advection. Only a profound understanding
will allow a good parameterization of these processes in larger-
scale hydrological and land surface models.

By highlighting the impact of wind-driven processes on snow
accumulation and snow ablation, this review has attempted to
emphasize the central role of wind-driven coupling processes
in the seasonal snow dynamics across different temporal and
spatial scales. Although research on some of these processes
has a long tradition, there are still many open questions that
need to be addressed in future. Not only the observation of
processes at small scales is essential for improved knowledge
on seasonal snow cover dynamics, but also further efforts are
required to implement small-scale processes, such as wind-
induced snow transport, preferential deposition of snowfall and

energy advection in large scale and operational models with
variable model resolutions. Indeed, operational snowpack and
hydrological models are reaching resolutions where wind-driven
coupling processes need to be explicitly represented. This process
representation is not applicable to all scales so that a scaling of
process representations in different models is strongly required.
There is certainly a further need for improvements in coupling
advanced snowpack models with atmospheric models, but also
in dynamical downscaling using multi-scale atmospheric models
including snow drift resolving scales. Such efforts, however,
strongly rely on advances in computational power allowing for
more complex simulations also for longer time periods, larger
areas and higher resolution.

Fast advances in remote sensing techniques will provide more
improved model input (e.g., SCA, SWE, and albedo) on higher
temporal and spatial resolution. Limits of data availability, related
to limited temporal and spatial coverage as well as restricted
access to data is claimed by several scientific communities and
will require substantial efforts in future. Improvements in process
understanding, processes representations at different scales and
model input will be the basis for meaningful climate change
scenario runs for mountainous regions, where local climate
extremes are often connected to micrometeorlogy.
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