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Abstract The reliance on distributed energy- and mass-balance snow models as runoff forecasting tools
has been increasing. Compared to traditional, conceptual forecasting approaches, these physics-based tools
are robust to conditions that deviate from historic norms and offer improved performance in potentially
dangerous rain-on-snow events. The physics-based simulations, however, depend on a large suite of accurate
forcing data. Current numerical weather prediction products are capable of supplying the full range of
required data, but systematic biases are often present. Data assimilation presents a means of compensating
for such errors as well as potential snow model errors, yet currently available data assimilation techniques
have limited usefulness in these snow models. This study introduced an alternative technique that similarly
uses observations to update and improve simulations. As such, it is the first method to incorporate point
snow observations in a fully distributed, physics-based, multilayer snow model while conserving mass and
maintaining physically consistent layer states that are in accord with observations. At the core of this
technique is an ensemble of predetermined perturbations to the model forcings termed the bias-detecting
ensemble. Ensemble members were evaluated using observed snow depths to ascertain potential biases at
nearly 300 sites across Switzerland. The bias assessments were distributed to 38 independent sites and
incorporated into the model. Tests were conducted over three winter seasons using two numerical weather
prediction-based products with varying quality. Averaged across the 38 sites and 3 seasons, the
Nash-Sutcliffe efficiency score for bias-detecting ensemble-corrected snow depth was 0.98 compared to 0.81
without the bias-detecting ensemble method.

1. Introduction

Distributed energy- and mass-balance snow models are increasingly being applied in operational runoff
forecasting (e.g., Hedrick et al., 2018; Magnusson et al., 2017; Painter et al., 2016). The increased depen-
dence on physics-based solutions in these models makes them an attractive alternative to the simpler,
conceptual models traditionally relied upon. The conceptual models typically have a historic component
(e.g., regressions or parameter fittings) and are based on a smaller set of input variables. These simpler
models are capable of producing accurate forecasts in a computationally efficient manner (Anderson,
1973; Franz et al., 2008). However, the reliability of these models comes into question when conditions
are encountered that differ from the historical norms that they are based on (Dozier, 2011; Milly et al.,
2008). The need for physically-based solutions becomes increasingly important as climate changes affect
traditional snowfall and snowmelt patterns (Dozier, 2011; Nayak et al., 2010) and increase the likelihood
of extreme events such as rain-on-snow (Freudiger et al., 2014; Musselman et al., 2018; Surfleet & Tullos,
2013). The latter can be particularly difficult to accurately simulate using temperature-based solutions
(Kumar et al., 2013).

The classic limitations of the physics-based solutions have been their high computational demands and
increased dependence on a wider array of spatially distributed meteorological forcings (Anderson,
1976). Today, increased computer processing capabilities have helped to overcome the former, yet the
quality and accuracy of the latter remain a limiting factor. Observations of precipitation, wind, humidity,
and radiation are often scarce and rarely capture the scale of known heterogeneities, particularly in
mountain regions (Bales et al., 2006; Strachan et al., 2016). Numerical weather prediction models
(NWPs) are increasingly available, yet even the most highly resolved (e.g., 1-km resolution) are
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incapable of fully capturing hydrologically relevant accumulation and melt heterogeneities (Blöschl, 1999;
Winstral et al., 2014). Furthermore, NWP forecasts invariably contain errors, some of which are systematic
due to forcing data quality, computational limitations, or faulty boundary conditions (Dee, 2005; Schirmer
& Jamieson, 2015; Sweeney et al., 2013). Another potential error source in the physics-based solutions is
the models themselves. Essery et al. (2013) and Rutter et al. (2009) have shown that largely due to neces-
sary parameterizations of complex and poorly understood physical processes (e.g., turbulent energy
fluxes, snow albedo, and internal hydrologic properties), different energy-balance models can exhibit a
large spread in modeled outcomes even when forced with the same input data.

Data assimilation (DA) techniques, whereby observations are used to update model simulations, are com-
monly used to overcome such errors particularly in operational modeling. DA techniques can vary from sim-
ple approaches that directly insert observations and force the model to the observed state(s) to more
advanced statistical techniques often based on Bayes’ theorem that account and correct for errors in the
entire modeling chain from forcing data to model parameterizations and physics. These more complex meth-
ods can also account for potential errors in the observations used to update the model and to spatially cor-
relate errors to improve model performance at sites without observations (Reichle & Koster, 2003). DA has a
rich history of applications in hydrologic (e.g., Clark et al., 2008; Fan et al., 2017; Moradkhani et al., 2012;
Rasmussen et al., 2016; Reichle et al., 2002) and atmospheric models (e.g., Auligné et al., 2007; Harris &
Kelly, 2001). Many of the more advanced DA approaches are based on derivatives of the Kalman filter
(Kalman, 1960), which assumes that model responses are relatively linear. One example of such a develop-
ment is the ensemble Kalman filter (Evensen, 2003). Observation-based updates for unobserved states and
sites are a function of covariances and averaging operations conducted across an ensemble of model out-
comes. These approaches apply observations either with or without their potential errors to directly update
model states at the end of each evaluation period. As further detailed below, this can lead to physical incon-
sistencies and subjective modeling choices when these methods are applied to the dynamic layering system
present in complex snow models.

Distributed, complex, multilayer snow modeling in mountain environments presents unique challenges to
ensemble-based DA approaches. Snow distributions exhibit a high degree of spatial heterogeneity that is
the product of nonlinear, interacting processes. Additionally, snow physics models are composed of a dyna-
mically evolving set of snow layers. While hydrologic and atmospheric applications generally have a static
number of layers, whose boundaries have fixed positions in space or pressure levels, multilayered snowmod-
els have dynamic layering properties whose numbers and thicknesses exhibit spatiotemporal variability
reflective of the aforementioned heterogeneities. These layers actively interact with one another and can
be added, removed, merged, and split through time. This is especially pronounced in avalanche forecasting
models that can have as many as 50 (CROCUS; Brun et al., 1992) to hundreds (SNOWPACK; Bartelt and
Lehning, 2002) of layers. Whereas snow hydrology models are relatively simpler—often having maximums
of two to four layers—how each boundary layer interacts with the soil below and atmosphere above is gov-
erned by internal layer dynamics. For instance, snowpacks with similar bulk properties but dissimilar internal
dynamics will have differing responses to the same boundary forcings. Thin and thick snowpacks with the
same bulk temperatures will likewise respond differently to identical forcings. These heterogeneities make
transference or distribution of bulk or averaged state properties for even commonly available observations
such as snow depth (HS) and snow-water-equivalence (SWE) a nontrivial matter. Updating rarely observed
states like snow temperatures and liquidwater contents that areweakly correlatedwith HS and SWE can intro-
duce large uncertainties. Since snowpack runoff during potential rain-on-snow flood events (e.g., Rössler et al.,
2014; Wayand et al., 2015) is largely controlled by antecedent snow temperatures, liquid water contents, and
remaining water holding storages (Trubilowicz & Moore, 2017; Würzer et al., 2016), it is vital that these snow
states, which are rarely measured, are accurately rendered in snowmelt runoff simulations.

Nevertheless, DA remains a powerful tool for snowmodelers. Liston et al. (1999), Fletcher et al. (2012), and Xu
and Shu (2014) used the simple DAmethod of direct insertion of observation-based spatial products into spa-
tial snow models. In these applications, the snow models were forced to observations that varied from HS to
SWE to snow-covered-area (SCA). Optimal interpolation has been used to update snow depths (Brasnett,
1999), solid precipitation fluxes (Magnusson et al., 2014), and SWE (Liston & Hiemstra, 2008); however, this
method has static, predetermined error structures (Slater & Clark, 2006) and like direct insertion is only appro-
priate for updating observed states or fluxes (Magnusson et al., 2014). The ensemble Kalman filter (EnKF)
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introduces a means of establishing covariances between states and observations that enable the unobserved
state variables to be updated as well. The EnKF can also account for potential errors in the observations and
models. The EnKF has been used to incorporate point SWE observations (Slater & Clark, 2006), point HS obser-
vations (Magnusson et al., 2014), and satellite retrievals of SCA and SWE (Andreadis & Lettenmaier, 2006) into
snow models. Sun et al. (2004) used a one-dimensional (i.e., observations available at every model point),
extended Kalman filter to assimilate remotely sensed, passive microwave SWE into a land surface model.
The United States National Weather Service assimilates ground-based, airborne, and satellite data into their
operational mass- and energy-balance snow model (SNODAS); however, these procedures remain
largely unpublished.

Most of the aforementioned snow DA studies used conceptual or single-layer snow models where the
need to account for layering complexities and updating unobserved states was limited. Though Slater
and Clark (2006) employed a single-layer snow model, it still tracked nine internal states. They noted that
in allowing the EnKF to update unobserved states using ensemble averages and covariances, one must set
bounds in order to ensure that physical principals are not violated. One modeling necessity was to fix the
ratios of the multiple water storage terms in the background (i.e., prior) and updated states. The snow sub-
model in the Sun et al. (2004) application had up to three snow layers and tracked three state variables:
SWE, cold content, and snow depth. They found that estimated correlations from the EnKF between
observed SWE and the unobserved states were not well defined due to the dynamically changing snow
layers. In a similar fashion to Slater and Clark (2006), they fixed the updated snow temperatures and den-
sities to their background, model-predicted values. These background values were then used in conjunc-
tion with the updated SWE to update the unobserved states (i.e., cold content and snow depth). Fixing
water storages or snow temperatures to their modeled values may only weakly affect seasonal runoff eva-
luations, but they can have strong implications on short-term snowmelt forecasts (see Trubilowicz &
Moore, 2017; Würzer et al., 2016). The influences of assumptions such as these are magnified when consid-
ering increasingly more complex snow models. Yet another drawback common to all of these methods is
that mass is not necessarily conserved. In cases where SWE is reduced after assimilation, it cannot be ascer-
tained whether this was due to incorrect precipitation inputs or underestimated melt—an important con-
sideration when linkages to a hydrological model are present.

In evaluating DA techniques compatible with the CROCUS avalanche forecasting model, Charrois et al. (2016)
concluded that the dynamic snow layering and nonlinear physics did not lend itself to the assumptions and
state-averaging methods at the core of the EnKF. Due to this reasoning, they chose to use a particle filter (PF)
to assimilate reflectances in a synthetic modeling experiment. One essential advantage of the PF is that each
particle or ensemble member maintains layering and states physically consistent with the snow model.
Dechant and Moradkhani (2011) found the PF to be more effective than the EnKF in assimilating brightness
temperatures to improve SWE predictions and streamflow modeling using the single-layer SNOW-17 model.
They attributed the improved performance of the PF to being robust to the Gaussian error assumptions and
linear updating schemes present in the EnKF. Leisenring and Moradkhani (2011) and Magnusson et al. (2017)
reached similar conclusions regarding the advantages of the PF in respectively assimilating SWE into SNOW-
17 and snow depth into the multilayer JULES Investigation Model (JIM) snow model. The PF, however, has
been limited to applications where observations are available; an efficient means of extrapolating these suc-
cesses to sites lacking observations has yet to be developed. Computational costs associated with PFs can
also be considerable due to the large number of particles required.

Given the drawbacks of traditional DA techniques in this modeling realm, this research sought to develop a
new method more appropriate for distributed, multilayer, physics-based snow models. The method incorpo-
rates the information contained in observations to remove potential biases in the NWP forcing data and snow
model constructs. Through adjustments to the model forcings rather than updating model states, mass is
conserved, and physical consistency in layering dynamics and modeled states is maintained. The technique
bears some resemblance to those of Magnusson et al. (2014) and Vögeli et al. (2016) who also used snow
observations to update model forcings. The former, however, employed a conceptual snow model while
the latter used only a single lidar retrieval to correct integrated seasonal precipitation forcings to the
physics-based SNOWPACK model. In the presented methodology, we use continuously available data from
automatic weather stations for independent, daily assessments and updates of both precipitation and energy
biases. Station observations in combination with model simulations are used to discriminate snow
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accumulation and melt days to obtain the independent bias assessments. There are also some methodologi-
cal similarities to the PF approach, but rather than a set of randommodel forcings used to evaluate and adjust
posterior states, we apply prescribed perturbations and assess the forcing perturbations that produce the
best states.

The ensemble of perturbations given to the snow model is referred to as the bias-detecting ensemble (BDE).
The BDE methodology shares some features of the bias-corrected ensemble (BCE) approach for correcting
NWP air temperatures and wind speeds introduced by Stensrud and Yussouf (2005), yet there are substantial
differences. The bias-corrected ensemble was based on bias correcting multimodel ensembles of NWP data
using direct observations of air temperature and wind. The BDE approach is an indirect method of bias-
correcting precipitation and energy snow model forcings using observed snow data and evaluation of the
predefined ensemble of perturbations.

The BDE procedure addresses a pressing need in the snow modeling community and is appropriate for both
operational and research applications. It has the capabilities to dynamically adjust to any changes in the sys-
tem, whether these are functional changes in the forecasting procedures (e.g., updated processing proce-
dures and changing boundary conditions), seasonal adjustments necessitated by the shifting prominence
of energy terms, or episodic events such as albedo-reducing dust storms (e.g., Skiles et al., 2012). The proce-
dure takes into consideration the full modeling system integrating the effects of model forcings and snow
model parameterizations correcting for systematic errors in the combined product without specifically deter-
mining the error source. In this study we present the BDE methodology, perform BDE evaluations at one set
of observational sites, and test the spatiotemporal resiliency of these bias evaluations at a set of independent
sites. The sites comprise a broad network of observational data available throughout Switzerland. Two sets of
input data with a wide range in accuracy were evaluated to test the capabilities of the BDE approach: (1)
2 years of native, 24-hr lead time forecast data from a 2-km resolution NWP model and (2) 1 year of hindcast
reanalysis data from a 1-km resolution NWP product with air temperatures and precipitation forcings further
enhanced with additional station observations.

2. Data and Snow Model
2.1. Point Observations

The observational data consisted of data from 334 sites with daily monitored snow depth (HS) across
Switzerland (Figure 1). These stations are part of either SLF’s (WSL Institute for Snow and Avalanche
Research) IMIS (Intercantonal Measurement and Information System) or the MeteoSwiss (Federal Office for
Meteorology and Climatology) snow monitoring networks. HS measurements were extracted at a daily time-
step and were manually edited where necessary. Implausible data (assessed against neighboring stations at
similar elevations) were removed and either replaced with interpolated data from nearby stations or entered
as not available. Of these observation sites, 38 also had manual measurements of SWE taken approximately
every 2 weeks. Most of the manually measured sites were sampled on a consistent bimonthly basis whereas
others were measured in a more sporadic fashion. In the presented analysis, the 296 sites that do not have
SWE data are referred to as the HS stations. The BDE bias assessments, whereby observations were incorpo-
rated into the modeling framework to evaluate potential precipitation and energy biases in the modeling
chain, were conducted using data from these HS stations. The 38 stations that had both automated HS
and manual SWE data are referred to as the SWE stations. The SWE stations were treated as an independent
set that were not part of the BDE evaluations and were used only for validation purposes. The SWE stations
were used to determine whether HS-station bias assessments could improve simulations at these represen-
tative “unobserved sites.” The range of elevations of the HS stations is 225–2,950 m and that of the SWE sta-
tions is 1,195–2,690 m (Figure 4). Whereas the elevations of the HS stations nicely envelope those of the SWE
stations, the HS stations are spatially spread across Switzerland with the SWE stations concentrated in the
Alps (Figure 1).

For modeling purposes, the observations were considered error free. The assumption of error-free observa-
tions is analogous to direct insertion methods yet contrasts traditional DA methods that include observa-
tional errors in the updating framework. The data used here are from established and well-maintained flat
field sites where errors should be dominated by instrument limitations. Manufacturer-stated accuracies of
the sonic depth sensors are ±1–2 cm depending on instrument height and should occur randomly. By
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comparison NWP forcing data often contain systematic biases (e.g., Dee, 2005; Schirmer & Jamieson, 2015)
that can lead to simulated snow depth (SWE) errors of tens of centimeters (millimeters) (Magnusson et al.,
2014, 2017) exhibiting spatial coherency (e.g., Magnusson et al., 2014). The BDE technique is currently set
up to assess these larger scale biases under the assumption that observational errors are minimal in
comparison. Liston and Hiemstra (2008), Vögeli et al. (2016), Hedrick et al. (2018), and others have shown
that incorporating snow data without accounting for observational errors can still greatly improve snow
model outcomes. The BDE technique is certainly capable of accounting for observational errors that could
further enhance and refine this methodology. However, this is left for future research with the current
work serving as an initial proof of concept. The station data used in this application are not representative
of the heterogeneity of snow conditions encountered in alpine terrain (Molotch & Bales, 2006), but they
are analogous to the conditions represented in the NWP forcing data and those where snow models are
typically developed and tested (e.g., Anderson 1976; Bartelt & Lehning, 2002; Vionnet et al., 2012; Essery
et al., 2013). Hence, the introduced procedures should accurately reflect biases in these modeling aspects.
Capturing the spatially variable patterns present across the landscape is left to other techniques (e.g.,
Havens et al., 2017; Helbig et al., 2015; Winstral et al., 2009, 2013).

2.2. Forcing Data

The NWP forcing data were Consortium for Small-Scale Modeling (COSMO) products. The COSMO models
are nonhydrostatic, limited-area atmospheric prediction models (www.cosmo-model.org). COSMO forecast
products are used in operational applications throughout Switzerland by agencies including MeteoSwiss
and the Swiss Federal Office for the Environment. The COSMO models provide all of the forcing data
required of most energy balance snow models. In WY14 (i.e., the 2013–14 winter season) and WY15,
model forcing data consisted of 24-hr lead time forecasts from the COSMO-2 product (horizontal resolu-
tion ~2.2 km). These products are representative of what is typically available in forecast situations and
are identical to the forcing data applied in Magnusson et al. (2017). A third year, WY17, was also included
in the analysis, with the intent of establishing a best-case scenario of model forcings to further test the
capabilities of the BDE process. The foundation of the WY17 forcing data were hindcasts taken from the
COSMO-1 analysis model (horizontal resolution ~1.1 km), which became fully operational in March 2016.
The COSMO-1 forcing data were further enhanced with observation-based precipitation and air tempera-
ture reanalysis products detailed below. The COSMO data as well as the RhiresD raster product men-
tioned below were linearly interpolated to the observation points for modeling purposes. Downscaling
of temperature products included a fixed linear lapse rate (0.006 °C/m).

Figure 1. Map of Switzerland with the HS stations where biases were assessed and the snow-water-equivalence (SWE) sta-
tions where the bias-detecting ensemble was evaluated. WFJ is the Weissfluhjoch station referenced in the text.
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RhiresD gridded daily precipitation products and solid precipitation
inferred from observed snow depths were used to enhance the
COSMO-1 precipitation product in WY17. RhiresD is a gridded daily pre-
cipitation product produced by MeteoSwiss using data from approxi-
mately 440 precipitation gauges across Switzerland. The RhiresD gauge
network, however, underrepresents elevations above 1,200 m (Frei &
Schär, 1998). Daily solid precipitation mass fluxes, inferred from observed
snow depth changes (Magnusson et al., 2014) at the HS/SWE stations
(Figure 4) complemented the lower elevation RhiresD data and further

enhanced the WY17 precipitation forcings. Daily increases in snow depth were converted to mass fluxes
using a density model based on Martinec and Rango (1991). The original Martinec and Rango model, based
on snow settling and densification over time, has been modified and recalibrated using data from over
10,000 snow profiles (Jonas et al., 2009). Daily precipitation for WY17 was ultimately determined by passing
the RhiresD data through a temperature index snow model that assimilated the observation-inferred solid
precipitation data (see Magnusson et al., 2014). The daily-integrated COSMO-1 hourly data were then
forced to match the daily analysis fields from the aforementioned DA. To further enhance the air tempera-
ture forcings, daily mean air temperature observations from approximately 250 stations across Switzerland
were interpolated to the COSMO-1 grid. As with the precipitation forcings, the integrated hourly COSMO-1
data were forced to match the daily observational product. In theWY17 test, where snow depths from both
the HS and SWE stations were used to enhance the snow model precipitation and temperature forcings,
the sensitivity of the BDE bias evaluations should have greater sensitivity to COSMO radiation fluxes,
COSMO winds, and snow model structures.

2.3. Water Year Descriptions

In order to assess relative climatic conditions during the three evaluation years, SWE data taken from a Swiss-
wide, 1-km operational product (based on the model framework described by Magnusson et al., 2014) were
assessed. Averaged across the entire country, SWE in WY14 and WY15 were very close to the 20-year average
(1998–2017; Figure 3). WY17 had well below average wintertime SWE yet had similar melt rates in May and
June in comparison to the other years. ThoughWY14 and WY15 had similar spatial averages, WY15 tended to
have less snow in the regions south of the central spine of the Alps and more to the north. Interannual SWE
distribution correlation coefficients based on grid cells with snow in either year’s 1 April grids were 0.92, 0.82,
and 0.96 for WYs14/15, WYs14/17, and WYs15/17, respectively. Despite monthly air temperature differences
between the 3 years, mean November thru May differences were less than 0.1 °C (Table 1).

2.4. JIM Snow Model

The physics-based, mass- and energy-balance snowmodel used in this application consisted of single config-
urations containedwithin themultimodel framework of JIM (Essery et al., 2013). JIMwas originally designed to
test the sensitivity of simulations to process parameterizations and models the snowpack with up to three
snow layers. There are a total of 1,701 potential combinations of different process parameterizations available
in JIM. The model configuration for WY14 and WY15 was based on an optimization to snow, lysimeter, and
radiation observations at the Weissfluhjoch site (2,536 m) in Switzerland (Figure 1), whereas the WY17 model
configuration was based on a broader optimization to observations throughout Switzerland. Both model
configurations can be found below with a full description of JIM available in Essery et al. (2013)

• Snow Compaction:

○ WY14/15: Physical snow compaction parameterization (Anderson, 1976)
○ WY17: Time-based empirical snow compaction parameterization (Verseghy, 1991)

• Fresh snow density:

○ All: A function of air temperature (Anderson, 1976)

• Snow Albedo

○ WY14/15: Time-based empirical parameterization with a linear decay rate for cold snow and an
exponential decay rate for melting snow (Douville et al., 1995)

○ WY17: Same as above but with decay parameters calibrated to Swiss-wide observations as a func-
tion of elevation

Table 1
Average Monthly Air Temperatures Based on Station Observations Upscaled to
a National 1-km Grid

Nov Dec Jan Feb Mar Apr May Mean

WY14 0.7 0.1 �0.2 0.0 3.2 6.3 7.8 2.6
WY15 4.6 �0.2 �1.5 �2.9 2.2 5.6 9.5 2.5
WY17 2.0 0.3 �4.9 0.8 4.5 4.5 10.0 2.5
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• Surface energy exchanges

○ All: parameterization based on Richardson number (Louis, 1979)

• Snow cover fraction

○ All: Since these were all point simulations, not implemented

• Snow hydrology

○ All: Excess water drains immediately from layer when maximum liquid water mass fraction is
reached (Anderson, 1976; Boone & Etchevers, 2001)

• Thermal conductivity of snow

○ All: Power function of snow density (Douville et al., 1995)

3. The BDE Method
3.1. Overview

This research was designed to test if snow depth observations can be used to detect potentially systematic
NWP and snowmodel biases to improve snow simulations. The JIM snowmodel was forced with the data sets
described in section 2.2 at the full set of HS stations. Simulated and observed HS were compared on a daily
basis at the HS stations to evaluate biases. These daily biases were then back-averaged to establish greater
consistency and spatially distributed to the set of independent SWE stations. If the detected biases are repre-
sentative of persistent biases in the modeling system, they should exhibit spatiotemporal consistencies (e.g.,
Reichle & Koster, 2003; Shrestha et al., 2013) that can be used to improve simulations at sites where observa-
tions are not available. JIM was subsequently run at the SWE stations with the same forcing data and the addi-
tional bias information gathered at the HS stations. Analyses and conclusions were based on the impact the
estimated biases had on model performance at the SWE stations. Evaluations of 5-day lead time forecasts
with and without the bias adjustments were also made. Experiments were conducted for two different input
data scenarios: (1) point forcing data downscaled from the COSMO-2 24-hr forecasts and (2) forcing data
downscaled from the hindcast COSMO-1 reanalysis products further enhanced with observations from a
dense network of automated weather stations across Switzerland. The expectation was that the former con-
tains larger errors and biases than the latter and that the latter would provide a much more rigorous test of
the presented approach. In this section, the BDE methodology is presented in general terms followed by
descriptions of how the derived biases were incorporated into the snow model at the SWE sites. A flow chart
depicting all the described steps in the procedure can be found in Figure 2.

At the core of the BDE technique is an ensemble of fixed perturbations to the forcings of the JIM snowmodel.
Potential biases in the snow modeling framework including forcing data and snow model are simplified to
mass and energy terms that were independently evaluated at the HS stations. Biases in the mass forcings
were evaluated in terms of fixed multipliers to the precipitation forcings. Precipitation multipliers (P) ranged
from 0.6 to 1.75 in increments of 0.05. The energy flux perturbations were an additional energy flux added to
the energy balance calculations. The energy perturbation (EB) ranged from�75 to 75 W/m2 in 5 W/m2 incre-
ments. In total there were 744 ensemble members based on all combinations of the precipitation and energy
perturbations. Perturbations remained static over 24-hr periods. At the end of each day, the model inputs,
outputs, and observations were used to determine if the day would be considered for BDE evaluation and
whether the precipitation or energy terms would be assessed (section 3.2). Evaluation day decisions (i.e., P,
EB, or neither) were station-specific and mutually exclusive to limit potential equifinality or compensating
effects (e.g., P and EB terms interacting to produce similar results). The performance of the ensemble mem-
bers was evaluated by comparing simulated and observed HS (section 3.3). Model states for simulations at
the HS sites were then adjusted to optimize the subsequent day’s bias assessments (section 3.4). At the
end of each day, the library of daily and back-averaged biases (section 3.5) at the HS stations was updated.
The back-averaged biases were then spatially distributed to the SWE sites (section 3.6) for the bias-enhanced
simulations and validation of the methodology.

3.2. Daily Criteria for Bias Evaluations

Data assessments at each HS site were made at the end of each day to determine which, if either, of the BDE
perturbation terms would be evaluated. A day met the initial criteria for P bias consideration if either the
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forcing data or the observations indicated a snowevent occurred. On the forcing data side, if daily precipitation
forcings multiplied by the back-averaged P bias (section 3.4) at the site was greater than 2.0 mm and the daily
air temperature was less than 1 °C, it was considered a snow day. If there was an observed daily increase of
2.0 cm or more, then the day would similarly be considered a potential snow day. If neither of these
stipulations were met and there was a decrease in observed HS, the EB biases were considered for
evaluation. If the day did not fall into either of these two categories, biases were not estimated at the site.
Additional criteria, further detailed below, were also required before a daily bias evaluation was made.

A day would meet the final criteria for P bias evaluation only if the snow-day forcings criteria were met and
precipitation phase partitioning errors were not evident. The former was necessary to ensure that there
was a sufficient snow mass present in the simulation to be evaluated. The latter consideration ensured that
P and EB biases were not applied as ameans of compensating for errors attributable to either the temperature
forcing data or the simulated phase partitioning. A wrongfully simulated snow day would occur when the for-
cing data indicated snowfall but observed HS did not increase. A wrongfully simulated rain day would occur
when the forcing data did not meet the snow day criteria yet the observational data did (i.e., increase in HS of
>2.0 cm). To increase the signal to noise ratio, an additional stipulation for the precipitation phase errors to be
triggered was there had to be at least 5.0 mm of simulated precipitation (including the back-averaged P bias
multiple). In instances of wrongfully simulated snow (rain) all hourly station air temperatures that day were
increased (decreased) in 0.1 °C increments until the simulated snow:rain ratio was 1:3 (3:1 or until the solid
precipitationmass with an assumed density of 100 kg/m3matched the observed increase in HS). The required
temperature adjustments were stored for day-specific interpolation to unobserved sites, which in this
experiment were the SWE sites. Once simulated precipitation phases reached the aforementioned criteria,
the temperature adjustments were removed from the forcing data at the HS stations. Forcing temperatures
remained at their original values so that they did not influence future evaluations of the otherwise
non-temperature-corrected EB biases.

Compaction events were removed from the BDE evaluations of EB since such events, especially when occur-
ring during cold, midwinter conditions, can lead to gross manipulations of the energy term in order to com-
pensate for differences in simulated and modeled HS. A day was considered a compaction day when there
was a decrease in observed HS yet BDE ensemble members that included up to an additional 10 W/m2 of
energy flux produced less than 1 mm of meltwater leaving the snowpack.

Figure 2. Flow chart depicting the bias-detecting ensemble (BDE) process. Green outlined steps are described in section
3.2, red in section 3.3, light blue in section 3.4, and magenta in sections 3.5 and 3.6.
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3.3. Daily Bias Determinations

The performance of the ensemble members was based on comparisons between simulated and observed
snow depths. Depending on ensemble member performance in the prior timestep, the comparison was
based on either bulk snow depths or the daily changes in snow depth (explained in section 3.4). On snow
accumulation days, the best performing precipitation perturbations were determined while keeping the
energy balance offset fixed at its prior (i.e., back-averaged, explained in section 3.5) forecast value.
Likewise on EB evaluation days, the precipitation offset was fixed at its prior value and the performance of
the EB perturbations evaluated. All ensemble members within 1.0 cm HS of the best performing member
were considered with the most conservative member (e.g., P closest to 1.0; EB closest to 0) chosen. This
helped to ensure that small simulation differences did not produce extreme bias evaluations. Whenever
the P or EB terms were not evaluated, daily bias estimations for these terms were not recorded. When biases
were evaluated, chosen members as well as the precipitation mass were stored in a library for
subsequent backaveraging.

3.4. Select Model States for Subsequent Timestep

On snow accumulation and melt days when BDE members were evaluated as described above, the best-
performing BDE member was further evaluated to determine continuing model states (e.g., snow layer tem-
peratures, densities, solid/liquid masses, etc.). This evaluation step also included an assessment of whether
BDE evaluations in the subsequent timestep should be based on comparisons of bulk HS or the daily change
in HS. If the simulated bulk HS for the best-performing member was within 1.0 cm of the observation, simu-
lated HS was directly matched to the observation. This match was obtained by either adding or subtracting
SWE to the simulation using the characteristics of the uppermost snow layer. The snowpack was then
relayered using the JIM layering routines. With a direct match between simulated and observed HS heading
into the next evaluation day, the evaluation of best-performing members was based on daily fluxes. It is
important to note that the induced changes in SWE were only done at the HS stations and only in order to
optimally evaluate biases. Proper and accurate estimations of biases at each HS site were the only goal of
the procedure at this point. In an operational setting, the biases would be first determined in this manner
and then distributed across the modeling domain. The model would then be re-run with the native forcings
adjusted with the biases, mimicking what was done at the SWE sites here.

If the current best-performing member was not within 1.0 cm of the observed bulk HS, then it was decided
that the BDE perturbations were not sufficient to match the simulation with the observation at this timestep.
Hence, the continuing states were those of the current best-performing member, and any HS differences
were carried into the next timestep. In this case, bulk HS was used to evaluate the BDE members in the sub-
sequent evaluation allowing the BDE methodology to “catch up” for the prior inadequacies.

In all cases where the BDE members were not evaluated, the continuing states of the model were based on
those of the ensemble member with the prior back-averaged P and EB biases at that site. Simulated bulk HS
was adjusted to match the observation using the same procedures described above, and daily fluxes were
used in the subsequent evaluation.

3.5. Back-averaging

Since the BDE procedure was developed to detect and correct systematic biases, a certain degree of time-
stationarity in the biases was expected. Implementing back-averaged values added a degree of stability to
the modeling framework. Yussouf and Stensrud (2007) in the development of their bias-corrected ensemble
similarly back-averaged systematic biases of air temperature and wind speed in NWP models while testing
lookback periods of up to 30 days. They found that a 12-day lookback period yielded good results and that
window lengths of up to 30 days yielded little or no improvement. They also employed an exponential
weighting to give more weight to more recent observations. For application of the precipitation biases in this
study, a maximum 14-day lookback period was used. The 14-day lookback consisted of only the last 14 days
when a P bias assessment was made. Rather than a time-weighted average, precipitation biases during this
period were mass-weighted to determine the present day’s bias. The EB lookback period was a much shorter
5 days. This was done to give the EB offset greater flexibility to adjust to the variety of processes and their
seasonal fluctuations that are subsumed into this term. For example, inadequacies in shortwave radiation
or albedo modeling might not become apparent until the spring period, whereas longwave and turbulent
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errors would be more prone to predominate earlier in the snow season.
Back-averaged EB values simply consisted of the mean of available data.
If less than three daily bias values were available—for either the P or EB
biases—the relevant back-averaged station bias remained at its default
value (e.g., P = 1.0; EB = 0.0), and these biases were not included in the dis-
tributions to the SWE stations. If less than 14, but at least 3 daily biases
were available for the back-averaging, back-averaging was limited to the
available data.

3.6. Distribution to Independent Sites

The back-averaged HS-station P and EB biases were distributed to the
independent SWE sites and used to bias-correct same-day forcings at the
latter. If less than 25 stations with valid back-averaged biases were avail-
able, the HS-station biases were not distributed, and biases at the SWE sta-
tions remained at their default values. The spatial distribution of HS-station
biases used a basic distance-weighted Gaussian interpolation from the 15
nearest HS stations taking northing, easting, and altitude into account
(Magnusson et al., 2014). Weighting of elevation distances varied linearly

from 0 (insignificant correlation between elevation and biases; p > 0.05) to 60 (R = 1). For example, when
R = 1, a station located 1 km away with an elevation difference of 100 m (distance = 1,000 m + 60 × Δelev)
would have the same weighting as a station located 7 km away but with no elevation difference, Or if
R = 0.5, the former station with a 100m elevation difference would be weighted equally with a station located
approximately 4 km distant with no elevation difference.

The same procedure was used for distributing the air temperature adjustments when repartitioning of pre-
cipitation phases was necessitated. In this case, however, the adjustments were considered event specific
and just the daily values were distributed. Likewise, a minimum of 25 stations requiring temperature adjust-
ments to adjust precipitation phase were needed to trigger the transference of temperature biases to the
independent SWE sites.

4. Results
4.1. WY2014 and WY2015

These 2 years were forced with 24-hr lead time NWP forecast data.
The 2 years were run in succession starting on 1 October 2013 and
ending on 1 June 2015. Both snow seasons, spatially averaged across
all of Switzerland, were very close to the 20-year average (Figure 3).
Comparisons with station-observed air temperatures indicated that
the COSMO-2 NWP forcings had a wintertime cold bias above
approximately 1,400 m elevation during both years (Figure 4). The
average cold bias was between �1 and �2 °C above 1,500 m.
Bellaire et al. (2017) similarly found a �2.0 °C cold bias at the
Weissfluhjoch site (2,536 m) in the Swiss Alps using a preoperational
COSMO-1 product in an overlapping time period.

Corresponding with the air temperature bias and perhaps due to
other factors as well, the deterministic snow simulations consistently
overpredicted snow observations at the independent SWE stations
used for validating the BDE approach (Figures 5a, 5c, 6a, and 6c).
These findings correspond with those of Magnusson et al. (2017).
The cold temperature bias and its effect on precipitation partitioning
played a large role in these overestimations. In WY14 there were
39 days with at least 25 stations (i.e., the minimum threshold for distri-
bution purposes) requiring positive temperature adjustments to con-
vert simulated snow-to-rainfall and 3 days requiring rain-to-snowfall
adjustments. WY15 had 27 positive and 5 negative adjustment days.

Figure 3. Daily averaged snow-water-equivalence (SWE) across all of
Switzerland for the three modeling years compared to the 20-year average.
Data taken from WSL-SLF Operational Snow Hydrology Service products.

Figure 4. Temperature biases (filled circles) by elevation of the forcing data used in
the simulations are depicted on the right y axis. These data are overlain on the
distribution of HS and snow-water-equivalence (SWE) stations by elevation
depicted on the left y axis. There were 164 (191) stations available for the tem-
perature bias assessments inWY14 (WY15). The erratic behavior of the temperature
biases in the 900-m elevation bin is due to the fact that only one station is located in
that bin. By contrast, the 1,700 thru 2,700 m bins all have greater than 10 sites.
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Overall, the deterministic runs had stronger biases and larger errors in WY14 than in WY15 (Figures 5a, 5c, 6a,
and 6c). (Note that all error metrics in this work were evaluated only when either observed or simulated
SWE/HS was greater than zero.) The simulations at the independent SWE stations that benefitted from the
HS-station bias evaluations virtually eliminated the strong biases present in both the WY14 and WY15 deter-
ministic runs (Figures 5b, 5d, 6b, and 6d). SWE (HS) root mean square errors (rmse) were reduced by 37%
(40%) in WY14 and by 18% (17%) in WY15. The interyear differences in BDE percentage gains are perhaps
attributable to the differing performances of the deterministic runs in the 2 years. Performance gains were
noticeable in both the accumulation and melt phases with the seasonal split determined by simulated peak
SWE in the deterministic model at each station (Figure 7). Though certainly some of the improved perfor-
mance during the melt season shown in Figure 7 is attributable to accumulation season improvements, rmse
differences between the deterministic and BDE runs were even greater during the melt phase.

Figure 8 clearly demonstrates some of the strengths and weaknesses of the BDE methodology. The main
strength of this approach is the ability to dynamically ascertain and correct broad trends and biases in the
combined forcings/model product. In Figures 9a and 9d, the daily averaged observed and simulated HS
aggregated over all 38 SWE stations are presented. All statistical metrics for these daily averaged data
were vastly improved (Table 1) with Nash-Sutcliffe efficiency scores (Nash & Sutcliffe, 1970) above 0.98
for the BDE simulations in both years. Figures 9b, 9c, 9e, and 9f show results on a station-by-station basis.
In both years, the BDE simulations improved performance at a majority of the stations. Similar to the
interannual results (Figures 5 and 6; Table 2), relative improvements were greater in WY14. However, in
correcting the broad trends apparent in these data, BDE improvements at stations with reasonable deter-
ministic simulations (e.g., lower rmse) or with biases not consistent with the overall trend (e.g., determi-
nistic HS/SWE not greater than observed) were less likely. By contrast, substantial BDE improvements
were consistently observed at stations with poor deterministic performance, and these strongly contribu-
ted to the overall improvements. For example, in WY15 the overall HS (SWE) bias was reduced from 12.5
to 0.9 cm (51 to �2 mm), yet the absolute HS bias was only reduced at 53% of the stations (note that

Figure 5. Scatterplots of daily observed and modeled snow depths (HS) for the deterministic and bias-detecting ensemble (BDE) model runs at the snow-water-
equivalence stations in WY14, WY15, and WY17. Figures only show 10% of the available data to aid visualization. Bias and root mean square error (rmse) metrics
are for the full data set.
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these HS values are based on data in Figure 5 and therefore differ slightly from the daily averaged biases
in Table 2).

Snow-covered area (SCA) is another key element of spatial snowmelt models as melt volumes are scaled by
SCA. Figures 9a and 9b present the spread of meltout day errors, considered as a proxy for spatial SCA esti-

mations, for WY14 and WY15. Meltout days were the first days after
the day of peak SWE (determined from the deterministic simulations)
with zero observed/simulated HS. Consistent with the prior results,
there were large positive errors (i.e., simulated meltout day later than
observed) for the deterministic runs and errors much closer to zero for
the BDE simulations. Though the range of errors in the two simula-
tions was similar, rmse was reduced in the BDE simulations.

4.2. WY2017

The WY17 model run began on 01 September 2016 and extended to
30 June 2017. The forcings for WY17 represent a best-case scenario
for model simulations. The data consisted of hindcast products com-
bining NWP reanalysis forcings with numerous station observations.
Forcing data of this quality are generally not achievable and certainly
unavailable for operational forecast scenarios. The quality of this data
set is distinctly different from the more typically available WY14/15
data set and was applied here to investigate the limits of the BDE
approach. The considerable air temperature biases above 1,400-m
elevation present in the WY14 (�1.6 °C) and WY15 (�1.5 °C) forcing
data (Figure 4), which contributed to substantial biases in the deter-
ministic simulations, were, after assimilating observed temperatures,
not present in the WY17 forcing data (0.1 °C).

Figure 6. Scatterplots of daily observed and modeled snow-water-equivalent (SWE) for the deterministic and bias-detecting ensemble (BDE) model runs at the SWE
stations in WY14, WY15, and WY17. rmse = root mean square error.

Figure 7. Root mean square errors (rmse) at the snow-water-equivalence (SWE)
stations for simulated and observed HS by year and by season. Similar to all
modeling, rmse only includes days when either the model or observation had
snow present. Accumulation and melt phases were split at each SWE station by
time of peak SWE in that station’s deterministic simulation. BDE = bias-detecting
ensemble.
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The deterministic runs had very low HS and SWE biases (Figures 5e and 6e). Moreover, the HS and SWE rmse
metrics for this run were lower than those in the BDE simulations in WY14 and WY15. There was a slight
underestimation of HS during the accumulation season and a stronger overestimation during the melt phase
(Figure 8g). The aggregated deterministic data showed a slight positive bias in HS yet a negative bias in SWE
(Figures 5f, 6f). This contrast could be due to the fact that while 34% of the HS observations occurred during
the melt phase when HS overestimation errors became noticeable, just 19% of the SWE measurements did.
Errors in the density component of the snowmodel, which the HS-based BDE corrections presented here can-
not account for, could also be affecting this disparity. Corresponding with the improved temperature for-
cings, there were only 2 days with positive temperature adjustments of precipitation phase and two with
negative adjustments.

The aggregated bias metrics for HS and SWE were slightly better for the BDE run (Figures 5f and 6f vs.
Figures 5e and 6e). Although rmse was reduced for HS, it slightly increased for SWE in the BDE simula-
tion. The increase in SWE rmse could be a product of the aforementioned sampling disparities or density
components of the snow model. However, it may also be indicative that the BDE method, given this best-
case scenario of model forcings, is approaching one of the current limitations of this technique—the lack
of a component for handling random errors. When random errors are of the same magnitude or greater
than the detected systematic biases, any advantages provided by the current BDE approach
become uncertain.

Seasonal assessments of HS rmse showed slight improvements for the BDE simulation during the accumula-
tion phase (3%), with stronger improvements during themelt season (33%; Figure 7). The obvious reduction in
model bias present in Figure 8g in conjunction with the improved melt-season HS metrics indicate that the
degraded rmse performance for SWE in WY17 was due to either the limited SWE observations or the density
components of the snow model and not due to the relative magnitudes of systematic and random errors.

Figure 8. The first row of figures (a, d, g) depict HS for the deterministic and bias-detecting ensemble (BDE) simulations along with observations averaged across all
the independent snow-water-equivalence (SWE) stations. The second and third rows plot error metrics for the two simulations with circles representing results from
individual SWE stations. The straight lines are one-to-one plots. Circles plotting below the one-to-one line indicate stations where the BDE improved simulations. The
percentages indicate the percentage of stations with BDE improvements. rmse = root mean square error.
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The station-by-station comparisons showed that the BDE simulations decreased HS rmse at 78% of the
stations (Figure 8h)—a similar percentage as in WY14. Reductions in absolute biases, however, only
occurred at 49% of the stations (Figure 8i). One potential explanation for these differences again points
to the fact that most of the BDE improvements occurred during the shorter melt phase (Figures 7 and
8g). Whereas both overall rmse (30.9 to 20.6 cm) and absolute bias (15.6 to 5.0 cm) were substantially
reduced during the melt phase, during the longer accumulation season, rmse slightly decreased (16.7
to 16.2 cm), but mean absolute bias slightly increased (0.1 to 1.8 cm).

In this instance, where BDE improvements occurred predominantly in the melt phase, the obvious infer-
ence is that errors were present somewhere in the solar radiation routines. This could be due to under-
estimations of the model forcings or modeled albedos or a combination of both. However, as regards the
solar radiation inputs, Bellaire et al. (2017) found that COSMO-1 actually overestimated solar radiation in
their single observation point analysis. Recall that substantial errors during the melt phase were also pre-
sent in WY14 and WY15. An example of potential snow model based errors would be errors in the albedo
decay formulation. Such errors could be related to model parameterizations or to environmental effects
such as synoptic dust events not accounted for in the modeling framework.

Errors in simulated meltout days at the SWE stations displayed consis-
tent improvements after the BDE application (Figure 9c). As was the
case in WY14 and WY15, centroid error metrics for WY17 were substan-
tially reduced and very close to zero, while rmse was also reduced after
application of the BDE. In contrast to the earlier years, the range of
meltout day errors was also reduced.

Using the WY17 data, the temporal stability of the estimated biases was
also tested by extending the application of the biases into future fore-
casts. In this test, both the deterministic and BDE simulations at the
SWE stations were initialized each day with bulk snow depth matched
to the start-of-day observations. The same hindcast COSMO-1 products
used in the BDE evaluations were used as the “forecast” products in

Figure 9. Box and whiskers plots for meltout day errors at the snow-water-equivalence (SWE) stations. Boxes represent the
interquartile range, within box lines the median, crosses the mean, and whiskers extend to 9–91 percentiles. The root mean
square errors (rmse) and error medians (med; days) are also listed. Median and mean errors were strongly positive in all
years prior to the bias-detecting ensemble (BDE) application and near zero afterward.

Table 2
Statistical Metrics Between Daily Averages of Observed and Modeled HS From
all Snow-Water-Equivalence (SWE) Stations for the Deterministic and Bias-
Detecting Ensemble (BDE) Simulations Shown in Figures 8a, 8d, and 8g

Metrics

WY14 WY15 WY17

Determ BDE Determ BDE Determ BDE

rmse (cm) 29.0 4.4 15.7 4.1 8.0 4.1
Bias (cm) 22.1 0.7 10.8 0.8 2.8 1.6
N-S 0.71 0.99 0.84 0.98 0.87 0.97

Note. N-S is Nash-Sutcliffe model efficiency coefficient (Nash & Sutcliffe,
1970). rmse = root mean square error.

10.1029/2018WR024521Water Resources Research

WINSTRAL ET AL. 626



these forecast simulations. Model runs extended for a 5-day period with BDE adjustments fixed at their
start time values. HS error metrics were assessed at the end of each day. The 5-day forecasts were
done for each day in the WY17 simulation up until 25 June (5 days prior to the end of the model
run). The rmse for simulated HS using the BDE-corrected forcings were reduced in the accumulation
and melt seasons and rmse improvements extended throughout the 5-day period tested (Figure 10a).
While differences in the two model runs in terms of rmse remained consistent during the
accumulation season, the BDE simulation offered increased forecasting skill with each subsequent
forecast day during the melt season. A similarly behaving, but stronger, pattern was evident in the
bias assessments (Figure 10b). Absolute bias or error reduction consistently improved with each
advancing forecast day during the melt phase and was reduced for up to 4 days during the
accumulation season.

5. Discussion

The introduced BDE methodology was shown to capably and efficiently improve snow model performance
given two very different sets of forcing data. While one set consisted of modern, high-resolution NWP fore-
cast data, the other was a best-case scenario comprised of hindcast reanalysis NWP data enhanced with air
temperature and precipitation data from a dense observation network. The presented methodology aptly
removed the prevalent systematic biases displayed in the deterministic simulations. In some cases though,
particularly where systematic biases were not exhibited at stations, performance gains using the BDE were
uncertain. In this section, the benefits and limitations of the presented approach are evaluated.

Issues of scale and representativeness will always be present when mixing spatial and point data. In this
application, as is often the case, gridded NWP products and snow simulations were assessed using point
observations. There were some pervasive trends in these simulations: cold temperature biases in WY14
and WY15 and a slower than observed melt in WY17. Given the number of stations exhibiting these

Figure 10. Root mean square error (rmse) and bias (error) metrics by forecast day for the deterministic and bias-detecting
ensemble (BDE) HS simulations at the snow-water-equivalence (SWE) stations. The BDE methodology had increasing
forecast skill through the 5-day test period during the melt phase. During the accumulation period, rmse improvements
remained consistent through the 5 days with bias reductions persisting for up to 4 days.
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trends and consequences (Figures 4, 5a, 5c, 6a, 5c, 8a, 8d, and 8g), it can be confidently stated that these
trends were prevalent in either the forcing data or model constructs. However, not all stations exhibited
these trends. The question remains of how representative were these “outlying” stations of local trends. If
they are indeed representative, then perhaps the basic bias-interpolation scheme (section 3.5) employed
here should be improved upon to better represent these local effects. If they are not representative, then
one can be satisfied with the acknowledged BDE errors at these stations. A further challenge, not inves-
tigated here, is how to upscale the point BDE assessments for spatial applications. Snow observations,
such as the ones used in this study to assess biases, are often made in wind-sheltered and nonforested
locations. Due to these characteristics, these sites are often not representative of other nearby terrain
(e.g., Molotch & Bales, 2006). This is an important consideration when upscaling these point-based bias
observations to spatial applications.

Since the premise of this application was based on differences between HS simulations and observations
serving as a proxy for mass fluxes, an obvious dependency was the accuracy of modeled densities.
Whereas a SWE-based approach, such as one using the North American SNOTEL SWE data, would be more
straightforward, HS-based snow modeling applications are becoming more common due to the lower
costs associated with station-based installations and the increasing availability of lidar products (e.g.,
Painter et al., 2016). The P bias evaluation in HS-based applications is primarily affected by the accuracy
of simulated new snow densities and secondarily by the compaction routines. The evaluation of the EB
bias is influenced solely by the latter and its temporally integrated effect on the accuracy of the simulated
bulk density. In any BDE applications based on observed HS data, inaccuracies in modeled fluxes due to
inaccurately modeled densities should not outweigh flux inaccuracies produced by model forcings and
non-density-related model constructs.

This application benefitted from data taken from a dense HS observation network resolved at a daily time-
step. When bias trends are widespread, as was seemingly the case in all 3 years presented here, similar
BDE benefits should be expected even with a lower density observation network. However, the relative
power of detecting these trends, the ability to differentiate local and regional trends, and questions of repre-
sentativeness becomemore prominent as the density of observations decreases. The daily resolved data pro-
vided a straightforward means of independently assessing precipitation and energy influences on the
snowpack. Independent assessments become more complicated when data acquisition times span longer
periods (e.g., ASO lidar data (Painter et al., 2016)). Nonpublished work using the ASO data though has shown
that objective statistical measures can provide a means of evaluating BDE members in these situations and
improving simulations as well.

Compared to typical state-based DA methods, the forcing-based BDE method conserves mass and main-
tains consistency between internal snow states. Mass conservation is certainly an important consideration
when snow simulations are linked to hydrologic models or mass-balance assessments. State-consistency
refers to the fact that internal model states (e.g., layering, temperature, density, and grain size) remain con-
sistent with each other and the simulation environment. Maintaining state-consistency in complex snow
models—with the exception of certain cases with application-specific objectives independent of internal
structure—is vital (Magnusson et al., 2017). By contrast, state-based assimilation methods oftentimes are
not adept at mass conservation (e.g., unable to ascertain if overestimated SWE was a consequence of over-
estimated snowfall or underestimated melt) and either ignore or apply a priori rules to handle state incon-
sistencies (e.g., observed melt from a frozen snowpack). Certainly, there were numerous a priori decisions
made also in this application (e.g., look-back periods and daily bias criteria). However, none of these deci-
sions violated or challenged accepted snowpack physics. While it was outside the breadth of this study to
assess model sensitivities to these decisions, it is our belief that the current BDE methodology is based on
sound principles, and further sensitivity analysis will only contribute to additionally enhancing
the technique.

It was also shown that the BDE method of assessing biases can improve forecasting capabilities. In the
WY17 forecasting test performed here, strong temperature biases were not present in the forcings. The
forecasting analysis was limited to WY17 since WY14 and WY15 had substantial air temperature biases
that were not comprehensively investigated in the current work. In order to optimize forecasting capabil-
ities, temperature biases should be thoroughly and, if possible, directly assessed. Methods such as those
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introduced by Yussouf and Stensrud (2007) could aptly fill this need. Temperature corrections would be
compatible with the current BDE methodology as long as they are performed prior to the P and
EB evaluations.

Two limitations of the current BDE approach introduced here are an inability to discriminate process-based
energy balance biases and the lack of a random error component. Whereas longwave and shortwave energy
fluxes have seasonal tendencies in terms of prominence that the back-averaging techniquemight reasonably
account for, expectations are that more stochastic processes that exhibit strong day-to-day or sub-daily fluc-
tuations such as turbulent energy exchanges would not be handled as well. Future work to relate the EB term
to either observed or simulated meteorology will be investigated. Coupling the current BDE approach with a
random error component will likewise be tested. Yet another current shortcoming that plagues any model
updating method based on snow data is the scarcity and quality of forest snow observations. Accurate
below-canopy snow observations are required to ascertain modeling errors related to forest-snow processes.

6. Conclusions

An innovative algorithm for updating model simulations with observations appropriate for complex snow
models, termed the BDE approach, has been developed. To the best of our knowledge, this is the first algo-
rithm capable of incorporating point-scale observations in a fully distributed, multilayer, physics-based snow
model while maintaining physically consistent states and conserving mass. The method is based on a prede-
termined set of perturbations input to the snowmodel. This set of prescribed model perturbations is referred
to as the BDE. Evaluations of the performance of the ensemblemembers against observed snow states, in this
case snow depth, allow an assessment of biases in the modeling chain. Over the course of three winters that
encapsulated a wide range in the quality of forcing data, the capabilities of this technique were demon-
strated. When the forcing data contained a persistent bias, it was also clearly evident in the deterministic
model outcomes. The BDE method aptly detected biases and consequent model runs were, on average, lar-
gely bias-free. Other performance metrics were also improved. In the case where the forcing data were of the
highest quality possible, deterministic model simulations were improved compared to the former case, yet a
cold bias was evident during the melt phase. Though the current BDEmethod could not discriminate the rea-
son for the melt phase bias, the method did aptly correct for it.

Updating model states using techniques such as the Kalman filter does not necessarily conserve mass, and
their integration with complex, multilayer snow models is not straightforward (e.g., Andreadis &
Lettenmaier, 2006; Durand et al., 2009). Forcing-based DA techniques such as is possible with PFs have been
shown to be compatible with complex snow models (e.g., Charrois et al., 2016; Magnusson et al., 2017).
However, the capabilities of these latter techniques for improving simulations at sites without observations,
as would typically be required in distributed snowmodeling, have yet to be demonstrated. The BDE method,
however, conserves mass, maintains physically consistent snow states in a complex snow model, and in this
study, was shown to improve model simulations at unobserved sites as well as in a forecast situation.
Whereas the aforementioned, traditional modeling techniques intrinsically account for random errors but
often encounter difficulties when large systematic errors are present (Dee, 2005; Magnusson et al., 2014),
the BDE technique as currently structured does not include a random error component and directly assesses
systematic biases. Future work will look to merge these techniques to further improve snowmodeling efforts.
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