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Abstract

Flood estimates needed for designing efficient and cost-effective flood protection structures are usually de-

rived using observed peak discharges. This approach neglects, firstly, that floods are characterized not only

by peak discharge but also by flood volume, and, secondly, that these characteristics are subject to modifi-

cations under climate and land use changes. Bivariate flood frequency analysis based on simulated discharge

time series makes it possible to consider both flood peak and flood volume in design flood estimation. Fur-

ther, this approach considers changes in discharge characteristics by using discharge series generated from

climate time series used as an input for a hydrological model. Such series are usually not available at an

hourly resolution but at a certain aggregation level (e.g. 24 h) and might not perfectly represent observed

precipitation distributions. In this study, we therefore investigate how the aggregation and distribution of

precipitation series and discharge distribution affect flood peaks and volumes and their dependence. We

propose a framework for assessing the uncertainty in bivariate design flood estimates that is caused by differ-

ent factors in the modeling chain, which consists of precipitation-discharge modeling, flood event sampling,

and bivariate flood frequency analysis. The uncertainty sources addressed are precipitation aggregation

and distribution, parameter and model uncertainty, and discharge resolution. Our results show that all of

these uncertainty sources are relevant for design flood estimation and that the importance of the individual

uncertainty sources is catchment dependent. Our results also demonstrate that substantial uncertainty is

introduced already in the first step of the model chain because commonly used calibration procedures do

not take into account the reproduction of flood volumes. Researchers should be aware of such deficiencies

when performing bivariate flood frequency analysis on modeled discharge time series and should aim to tailor

model calibration procedures to the problem at hand.
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distribution, uncertainty assessment

1. Introduction1

Flood estimates are needed for designing adequate flood protection structures, for improving flood man-2

agement, and for increasing flood preparedness. Such estimates usually focus on one variable, namely, peak3

discharge. This narrow focus neglects that flood events are characterized by several variables including flood4

volume and duration. Flood peak and volume have been shown to be interdependent (Szolgay et al., 2015),5

and this dependence should be taken into account when estimating design floods (Mediero et al., 2010).6

Design flood estimation methods that consider both flood volume (V ) and peak discharge (Q), as well as7

their dependence, rely on a bivariate analysis of these two variables and result in a set of Q–V pairs sharing8

the same frequency of occurrence (Serinaldi & Grimaldi, 2011; Brunner et al., 2017). Bivariate estimation9

procedures, like univariate procedures, usually focus on observed discharge time series that represent current10

climate and land use conditions. Both climate and land use are subject to changes that can impact flood11

magnitudes (Köplin et al., 2014; Archfield et al., 2016). Such changes need to be taken into account in flood12

estimation because flood protection structures are usually intended to be effective over a longer period of13

time. Changes in (bivariate) flood frequencies can be considered by estimating design floods using modeled14

discharge time series that account for changed climate and/or land use conditions. Such series can be derived15

using a hydrological model driven by meteorological time series generated by a climate model or by taking16

into account altered land use conditions.17

These hydrological models are calibrated and validated against observations, and the resulting modeled18

series ideally represents the statistical characteristics of the observed time series, including not only the19

distribution of flood peaks and volumes but also their dependence. Various sources of uncertainty, however,20

may make it impossible to exactly reproduce these characteristics. These include uncertainties related to the21

hydrological model and its parameters and uncertainties resulting from the quality of the input data. These22

data are sometimes not available at a high resolution of 1 h and are more commonly available at a daily res-23

olution, especially in the case of meteorological input generated by a climate model. One way of estimating24

hourly data from daily records is by distributing the daily totals to a certain number of hours during the day.25

Sikorska et al. (2018) showed that the disaggregation of daily precipitation totals into sub-daily precipitation26

input affects modeled peak discharges. However, it has not yet been investigated how precipitation disag-27

gregation affects flood volume and the Q–V relationship. Besides precipitation duration and amount, the28

temporal precipitation distribution can also influence the discharge hydrograph and therefore peak discharge29

and flood volume. If the precipitation amount is not variable but equally/uniformly distributed over time,30

this results in smaller peak discharges (DVWK, 1984). It is not yet known whether a temporally variable31

precipitation distribution results in a different dependence between peak discharges and flood volumes (Q–V32
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dependence). Furthermore, it is not clear what happens to the Q–V dependence if we move from hourly to33

daily discharge data. The use of modeled time series instead of observed ones in bivariate flood frequency34

analysis therefore prompts new questions about the effect of various factors possibly influencing this Q–V35

dependence.36

This study addresses a few of these questions and related sources of uncertainty. Generally, its aim is37

to assess the influence of various uncertainty sources on modeled Q–V relationships and bivariate frequency38

analysis. More specifically, we address the following questions:39

• How does precipitation-discharge modeling affect the Q–V dependence and bivariate flood frequency40

analysis?41

• How do temporal precipitation disaggregation and distribution affect Q–V dependence and bivariate42

frequency analysis?43

• What is the effect of the temporal discharge resolution on Q–V dependence and bivariate frequency44

analysis?45

To answer these questions, we propose a framework that enables an assessment of the influence of different46

factors in the modeling chain on the Q–V dependence and bivariate frequency analysis. The model chain47

consists of precipitation-discharge modeling, flood event sampling, and bivariate frequency analysis. The48

uncertainty is assessed by modifying a single step in the modeling chain, simulating a discharge time series,49

and re-estimating bivariate design quantiles; these estimated values are then compared to design quantiles50

obtained by analyzing either an observed discharge time series or a modeled reference time series (Montanari51

& Koutsoyiannis, 2012). We applied this approach to a set of nine study catchments in Switzerland to assess52

how well Q–V dependence can be reproduced under different data quality and model settings.53

2. Material and methods54

2.1. Study catchments and data55

The dataset included the following catchments: Surb at Döttingen (C1), Wigger at Zofingen (C2), Mentue56

at Yvonand (C3), Kleine Emme at Littau (C4), Areuse at Boudry (C5), Muota at Ingenbohl (C6), Grosstal-57

bach at Isenthal (C7), Kander at Hondrich (C8), and Lütschine at Gsteig (C9) (Figure 1) and was used in58

a previous study by Sikorska et al. (2018). The meso-scale catchments have areas between 40 and 500 km2,59

have mean elevations between 511 and 2050 m a.s.l., and are not influenced by hydropower plants or by60

large lakes. For a more detailed description of the catchments, the reader is referred to Table 1 in Sikorska61

et al. (2018). The catchments can be assigned to one of three groups: 1) catchments located on the Swiss62

Plateau which are mainly dominated by precipitation (C1–C3), 2) catchments located in the Pre-Alps and63
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Jura Mountains (C4–C6), which are influenced by a mix of precipitation and snow melt processes, and 3)64

catchments in the Alps where snow pack and glaciers exert a dominant control over discharge (C7–C9). The65

floods in the first group are mainly characterized by short-rain floods. Floods in the second and third group66

are often influenced by rain or rain-falling-on snow, whereas those in the third group can be influenced by67

snow- and glacier-melt (Sikorska et al., 2015b).68

The dataset consisted of observed discharge, precipitation, and temperature data. The observed discharge69

time series are available at an hourly resolution and span a period of 35.5 years on average. The areal70

precipitation and the mean catchment temperature time series were derived from hourly time series at71

gauging stations operated by MeteoSwiss (Federal Office of Meteorology and Climatology MeteoSwiss, 2003)72

using the Thiessen polygon method (Schumann, 1998).73
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Figure 1: Map of the nine study catchments in Switzerland.

2.2. Assessment framework74

The effect of various uncertainty sources on Q–V dependence and bivariate flood frequency was assessed75

within a model chain consisting of precipitation-discharge modeling, flood sampling, and bivariate flood76

frequency analysis, as illustrated in Figure 2. The uncertainty sources addressed included 1) the disaggre-77

gation level of the input precipitation data, 2) the temporal distribution of the input precipitation data, 3)78

precipitation-discharge model uncertainty, 4) the uncertainty of the parameters in the precipitation-discharge79

model, and 5) the resolution of the discharge data. The general principle was to change one element in the80

modeling chain a time and to run through all the steps in the modeling chain and assess the effect that81
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this single change had on the bivariate distribution of Q and V expressed by their empirical copula. The82

empirical copula was used to estimate bivariate quantiles lying on an isoline of equi-probable events for a83

return period of T = 10. We focused on this return period because, as a return period of 100 years, it is of84

interest in engineering applications and estimates are reliable even with a relatively small flood sample of85

roughly 30 events, as was available in this study. The isolines generated using discharge time series resulting86

from multiple data and model configurations were used as input for the uncertainty analysis. This process87

consisted of comparing these isolines to isolines obtained by either observed discharge time series or a mod-88

eled reference time series. The different uncertainty sources and the procedure for assessing their effect on89

Q–V dependence are described in more detail in the following sections.90
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Figure 2: Illustration of the modeling setup and the uncertainty assessment framework applied in this study.

2.3. Precipitation disaggregation levels and distribution91

We assessed the effects of temporal precipitation disaggregation as well as distribution on the dependence92

between Q and V . This was done by modifying observed precipitation time series and feeding them into a93

hydrological model to generate discharge time series showing the effect of changes in the precipitation time94

series on flood behavior. The effect of temporal precipitation disaggregation was assessed by aggregating95

the observed hourly data to daily totals and then uniformly redistributing them to m consecutive hours96

using 1, 2, 3, 6, 12, and 24 h as values for m. The first hour of precipitation was chosen randomly for97

each day. These newly disaggregated precipitation series were fed into the hydrological model and the effect98

on the Q–V dependence was assessed by comparing simulation results to the observed hourly data. For a99

more detailed description of this aggregation and disaggregation procedure, the reader is referred to Sikorska100

et al. (2018). The effect of temporal precipitation distribution on Q–V dependence was compared to the101

uniform distributions described above by redistributing observed precipitation according to an intensity102
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evolution pattern found to generate high peak discharges by (DVWK, 1984) and therefore called the worst103

case distribution. To generate this distribution, 20% of the total precipitation amount was assigned to the104

first 30% of the event duration, 50% was assigned to the following 20% of the duration, and 30% was assigned105

to the remaining 50% of the duration.106

2.4. Hydrological modeling107

Discharge time series simulated with a hydrological model were compared to observed discharge time108

series at an hourly resolution to determine how well hydrological models reproduce the Q–V dependence in109

the observed data. The simulated time series were generated by driving the HBV model in the version ’light’110

(Lindström et al., 1997; Seibert & Vis, 2012) with observed and modified precipitation series. The model111

has five major modeling routines: precipitation excess and snow melt processes, soil moisture, groundwater112

and response, glacier melt, and discharge routing in the river.113

The model parameters were calibrated with the observation period 1990–1999 and validated with the114

period 2000–2009 using the observed precipitation time series. The genetic algorithm and Powell optimization115

were used within a multi-objective framework to identify suitable parameter sets (Seibert, 2000). In the116

pre-calibration runs, we tested different objective functions and their compositions with different weights117

assigned. Among these, the Kling–Gupta efficiency function (Gupta et al., 2009), which is commonly applied118

for hydrological model calibration, led to the best overall model performance. Thus, this objective function119

was used for the final calibrations, which consisted of 2000 runs for the genetic algorithm and 100 runs120

for the local Powell’s optimization. A clear advantage of using the Kling–Gupta efficiency (RKG) is the121

possibility of its decomposition into three components, i.e., correlation (r), bias ratio (β) and variance (α)122

that support the interpretation of the model performance. The achieved median Kling–Gupta efficiency over123

all nine catchments was 0.89 in the calibration period (with r = 0.89, β = 0.99 and α = 1.00) and 0.85 in the124

validation period (r = 0.89, β = 0.99 and α = 0.97). All three components were close to the desired value125

of 1 with a slightly worse performance for the correlation component (r), which represents the agreement126

in temporal dynamics between observed and simulated discharge time series. The other two components127

indicated that the variability of simulated and observed discharge was very similar (α) and that the bias128

ratio (β) in simulated volumes was negligibly small (see Table 1 for the model performance in individual129

catchments). These results indicated a good overall model performance and thus permitted its application130

for the purpose of this study.131

For the assessment of parameter uncertainty, the model calibration was repeated in each catchment 100132

times, which resulted in 100 optimized parameter sets of a similar model performance. A number of 100133

parameter sets was chosen as a compromise. On the one hand, it allowed for the representation of model134

parameter uncertainty and on the other hand, it was still computationally feasible. The same model set-up135

(including model parameters) was used for each of the modified precipitation time series for the simulation136
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Table 1: Kling–Gupta efficiency and its components for the calibration and validation period for the best parameter set in the

nine study catchments.

Catchment Calibration Validation

RKG r β α RKG r β α

C1 0.88 0.89 1.00 1.00 0.81 0.83 1.10 0.97

C2 0.89 0.89 1.00 1.00 0.70 0.85 1.20 1.20

C3 0.79 0.84 0.87 1.00 0.85 0.86 0.99 1.00

C4 0.88 0.88 1.00 0.99 0.87 0.89 0.99 0.94

C5 0.91 0.92 0.98 1.00 0.86 0.89 0.95 0.94

C6 0.90 0.91 0.99 1.00 0.84 0.90 1.00 1.10

C7 0.75 0.76 0.92 0.99 0.50 0.75 1.10 1.40

C8 0.91 0.92 0.98 0.96 0.88 0.91 0.98 0.92

C9 0.89 0.90 1.00 0.95 0.87 0.89 0.97 0.93

period 1980-2014.137

2.5. Discharge resolution138

The effect of selecting a certain discharge resolution was assessed by comparing the Q–V dependence139

in the observed data to the Q–V dependence in discharge time series with a coarser temporal resolution140

generated using a simple aggregation scheme. The hourly precipitation data were aggregated to values once141

every m = 2, 3, 6, 12, or 24 h. Note that the aggregation of precipitation data was based on precipitation142

totals while keeping an hourly resolution of the data. Thus, the hydrological model was still run at an hourly143

resolution but with aggregated precipitation data.144

2.6. Event sampling145

The dependence analysis relied on flood events sampled from the observed or simulated discharge time146

series described in the previous paragraphs. The flood events were sampled using an annual maxima strategy147

with respect to peak discharges, following a procedure similar to that used by Brunner et al. (2017) for peak-148

over-threshold events. An event window of 120 h (starting 48 h before peak discharge and ending 72 h after149

peak discharge) was defined to delimit the corresponding flood event. A window of 120 h was chosen because150

visual inspection showed that event durations did not exceed this duration. Within this window, the start151

of the event was defined as the point when the hydrograph exceeded 0.3 times the peak discharge for the152

first time. The end of the event was analogously defined as the point when the hydrograph fell below 0.3153

times the peak discharge for the first time. The factor 0.3 was considered suitable for identifying events154

that were meaningful in terms of the hydrographs selected. The volume of the event was determined by155
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integrating the area under the hydrograph during the event identified. The event sampling resulted in 35156

events per simulation. We did not complete a season- or flood-type-specific analysis, which would have been157

desirable from a process perspective (Brunner et al., 2018, 2017), because subdividing the limited sample158

into individual seasons or flood types would have reduced the sample size too much for a reliable statistical159

analysis. The peak discharge–flood volume pairs were subsequently used to determine Q–V dependence and160

to perform bivariate flood frequency analysis.161

2.7. Dependence analysis162

We used Kendall’s tau as a dependence measure to define rank correlation (Kendall, 1937). Furthermore,163

we computed the empirical copula of the Q–V pairs as an indicator of their bivariate distribution (Grimaldi164

et al., 2016). Similar to the empirical distribution, the empirical copula can, according to Joe (2014) be165

defined for multivariate independent and identically distributed (i.i.d.) data after a transformation to ranks.166

It can be expressed as167

Ĉn(u) = n−1

n∑

i=1

I([rij −
1

2
]/n ≤ uj , j = 1, ..., d), (1)

where r1j ; ...; rnj are the (increasing) ranks for the jth variable, u is a uniformly distributed variable, d is168

the dimension of the copula, I is the indicator function, and n is the number of observations. The ranks169

are adjusted to the uniform score [rij −
1

2
]/n. This empirical copula puts a mass of n−1 at the pairs170

([ri1 −
1

2
]/n, ..., [rid −

1

2
]/n) for i = 1, ..., n. The empirical copula was used to estimate bivariate design171

quantiles for a return period of 10 years. In contrast to univariate frequency analysis, where the definition of172

a return period is straightforward, bivariate frequency analysis requires the selection of a bivariate probability173

distribution to be used for the calculation of return periods (Brunner et al., 2016). We used the joint OR174

return period, which relies on the assumption that both peak discharge and flood volume are equally critical175

in the generation of a flood hazard. It can be expressed as follows:176

T (u, v) =
µ

1 − C(u, v)
, (2)

where u and v correspond to the ranks adjusted to the uniform score, C corresponds to the copula (the177

empirical copula in this context), and µ corresponds to the mean inter-arrival time between events (1 in this178

context because annual maxima were used). All pairs (u, v) that are at the same probability level of the179

copula, have the same bivariate return period, and lie on an isoline. Isolines computed from flood samples180

resulting from observed and simulated discharge time series served as the input for the uncertainty analysis.181

2.8. Uncertainty analysis182

The uncertainty in the bivariate distributions was assessed by comparing isolines derived from Q–V183

pairs corresponding to a flood event with a return period of T = 10 years derived from a reference time184
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series (either observed discharge, or discharge simulated with observed precipitation) to isolines derived from185

discharge time series obtained after perturbing the model chain (either precipitation or discharge time series).186

The uncertainty of the isolines was quantified by determining the area between the reference isoline and the187

perturbed isoline or by determining the mean area between several isolines and the reference isoline. As188

mentioned above, we assessed the effect of five uncertainty sources on bivariate flood frequencies:189

1. Disaggregation level of the input precipitation data. The isolines obtained by simulations190

using modified precipitation inputs at different disaggregation levels using the uniform distribution191

were compared to the isoline obtained by the discharge simulations based on observed precipitation192

data. In this way, the effect of precipitation input data disaggregated from daily totals on the Q–V193

dependence was assessed.194

2. Temporal distribution of the input precipitation data. The isoline obtained by the discharge195

simulations generated with the worst case precipitation distribution was compared to the isoline relying196

on the discharge time series generated using the uniform precipitation distribution.197

3. Combined model and parameter uncertainty. The combined model and parameter uncertainty198

was assessed by comparing the isolines obtained from the observed flood events with the isoline de-199

rived from the flood events that were identified within discharge time series simulated using observed200

precipitation time series. The model uncertainty alone could not be assessed (see Sect. 4.4).201

4. Model parameter uncertainty. Isolines obtained by discharge time series generated using 100202

parameter sets and the observed precipitation time series were compared to the isoline obtained by203

discharge time series generated using the best parameter set and the observed precipitation time series.204

5. Resolution of the discharge data. The isolines of discharge time series at five aggregation levels205

were compared to the isoline of the observed discharge time series.206

3. Results207

3.1. Reproduction of Q–V dependence by the hydrological model208

Generally, Q–V dependence was higher for low-elevation than high elevation catchments (Table in Figure209

3). The Q–V pairs extracted from the simulated series (eight out of nine catchments) showed a higher210

dependence than the Q–V pairs extracted from the observed discharge time series (Figure 3). This Q–V211

dependence overestimation was rather weak in catchment C5, where the Q–V dependence was relatively high212

already in the observations, and in C9, but it was stronger in the remaining catchments except for C1, where213

the simulated dependence was very similar to the observed dependence. Generally, simulated flood volumes214

were higher than observed volumes. Peak discharges were underestimated in high-elevation catchments.215
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Figure 3: Peak discharge–flood volume pairs for the flood events, extracted from the discharge observations (black dots) and

the discharge simulations with observed precipitation time series (gray dots). Each catchment (C1 to C9) is shown in a separate

panel and the scales of the axes vary among the nine plots.

3.2. Effect of precipitation disaggregation and distribution on Q–V dependence216

The left two columns in Figure 4 show the empirical densities of flood volumes and peak discharges217

resulting from the 35 events extracted from the simulations generated using the five precipitation disaggre-218

gation levels (shades of blue) and the worst case precipitation distribution (green). The lower precipitation219

disaggregation levels (1–3 h) led to an over-representation of low volumes compared to high volumes in most220

catchments but C5–C7. The contrary was the case for peak discharges, where lower disaggregation levels led221

to an over-representation of high peak discharges and the densities were best represented by a resolution of222

roughly 6 h. The worst case precipitation distribution reproduced both the flood peak and volume densities223

well.224
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Figure 4: Empirical densities of peak discharges and flood volumes obtained for different precipitation disaggregation levels and

the worst case distribution (left two columns) and for different temporal discharge resolutions (right two columns) for the nine

study catchments (rows).
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For some catchments, the dependence between peak discharge and flood volume was reproduced well225

independent of the precipitation disaggregation level chosen (C2, C5, C6, C7), while in others (C1, C3, C4,226

C8, C9) it was reproduced better with certain disaggregation levels (Figure 5). In these latter catchments227

(except for C8), the Q–V dependence was overestimated for the lower precipitation disaggregation levels (1228

h–3 h) and better reproduced by the higher disaggregation levels (6 h–24 h). In C8, the dependence was229

also better reproduced by the higher disaggregation levels and underestimated by the lower disaggregation230

levels. The worst case scenario for precipitation (green bar) reproduced the Q–V dependence well and was231

closer to the Q–V dependence values obtained by the observed precipitation time series (black bar) than232

several of the uniform precipitation distributions represented by the different disaggregation levels.233
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3.3. Effect of discharge resolution on Q–V dependence234

C1
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0
C2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C9

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Q 1 h (observed)

Q 2 h

Q 3 h

Q 6 h

Q 12 h

Q 24 h

K
e
n

d
a
ll
’s

 t
a
u

K
e
n

d
a
ll
’s

 t
a
u

−0
.1

0
.1

0
.3

0
.5

E
rr

o
r 

a
ll
 c

a
tc

h
m

e
n

ts

Figure 6: Q–V dependence in terms of Kendall’s tau for the nine study catchments and different discharge resolution levels:

1 h (observations), 2 h, 3 h, 6 h, 12 h, and 24 h. Errors, i.e., the difference between simulations and observations, over all

catchments are shown in the boxplots in the lower right corner for all discharge resolution levels.

The right two columns of Figure 4 show the densities of flood volumes and peak discharges referring to 35235

events obtained by different temporal discharge resolutions each. A decrease in the temporal resolution led236

to an over-representation of high flood volumes and of high peak discharges. The Q–V dependence increased237

with decreasing discharge resolution (Figure 6) and was reproduced best for the high discharge resolutions238

(2 h–3 h). Q–V dependence was still reasonably well reproduced for a 6 h discharge resolution in most239

catchments. Lower temporal resolutions led to a strong increase in Q–V dependence.240
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Figure 7: Isolines for an event with T = 10 for the nine study catchments and different temporal discharge resolutions: 1 h

(observations), 2 h, 3 h, 6 h, 12 h, and 24 h.

Figure 7 shows isolines for an event with T = 10 derived from the empirical copulas resulting from241
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different temporal discharge resolutions. Darker isolines represent lower temporal resolution levels. The242

lower the temporal resolution was, the lower the estimated joint quantiles were. The joint quantiles were243

reproduced best for the higher discharge resolutions as indicated by the similarity of the corresponding244

isolines.245

3.4. Uncertainty analysis246
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Figure 8: Uncertainty of the T = 10 isolines due to five uncertainty sources, expressed as the mean absolute error of the

simulated isolines compared to a reference isoline, for the nine study catchments.

Figure 8 displays the uncertainty of estimated isolines for an event with T = 10 resulting from five247

uncertainty sources: model, model parameter, precipitation disaggregation, precipitation distribution, and248

discharge resolution. The relative importance of the different uncertainty sources varied from catchment to249

catchment. In C1 and C3, the largest uncertainty came from the precipitation distribution. In C2, C5, C7,250

C8, and C9, model parameter uncertainty was the most important source. In C6, the largest uncertainty came251

from the discharge resolution, and in C4 it came from the hydrological model. In addition, in C3, C4, C7, and252

C8, the uncertainty of the hydrological model regarding the bivariate design quantiles was also substantial.253

Although, their overall model performance in terms of the Kling–Gupta efficiency and its three components254

was not necessarily worse than in the remaining catchments (see Table 1). Therefore, the importance of255

the model uncertainty on bivariate quantiles cannot be linked to the overall model performance achieved in256

the catchment. Generally, the uncertainty coming from precipitation disaggregation and distribution and257

discharge resolution were in most catchments smaller than the uncertainty coming from the model parameters258

(see Sect. 4.4).259

4. Discussion260

4.1. Reproduction of Q–V dependence by the hydrological model261

Our results show that using the hydrological model employed in this study to simulate hourly discharge262

time series leads to an overestimation of the Q–V dependence, which is in line with findings by Ben Aissia263
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et al. (2014), who also found a higher Q–V dependence in simulated than in observed series. This overesti-264

mation was especially pronounced in catchments at higher elevations where the Q–V dependence is typically265

lower than in low–elevation catchments because they experience a mix of flood types (Gaál et al., 2015).266

This overestimation of the dependence can be explained by the temporal resolution chosen for modeling267

(hourly) and by the calibration procedure chosen. Convective events, which are short, intense, and locally268

restricted, typically show a very fast rising limb and are well visible at a temporal resolution of 1 h while269

such events are smoothed out when looking at daily data. The peak discharges become therefore more visible270

compared to the flood volumes in the hourly time series than in the daily series. This results in a lower Q–V271

dependence for hourly than daily series. This low dependence was not well reproduced by the hydrological272

model because the convective events with a high peak/volume ratio were poorly reproduced. The volume of273

convective events was overestimated in the modeled series compared to that for the observations. This led274

to an increase in the Q–V dependence by using the hydrological model. This overestimation would not be275

an issue if daily data were used because the peak/volume ratios at that scale are less severe.276

Besides this resolution issue, the model calibration procedure chosen might have influenced the repro-277

duction of Q–V dependence. In this study, we chose the Kling–Gupta efficiency (RKG) for calibrating the278

hydrological model. Overall, a good model performance was achieved for all catchments as assessed by RKG279

(0.89 and 0.85 in calibration and validation, respectively) and its three individual components, i.e., corre-280

lation (r), bias ratio (β) and variability (α), which were all close to the desired value of 1. This indicates281

that i) there was a good agreement between the simulated and observed discharge time series (r = 0.89), ii)282

discharge volumes were well fitted (β = 0.99), and iii) the variability of simulated and observed discharge283

time series was very similar (α ≈ 1) for both the calibration and the validation period. Note, however,284

that this calibration procedure focuses on the entire discharge time series and is not particularly adjusted285

to specific events (e.g., convective storms). Thus flood volume was, in contrast to peak discharge, not ex-286

plicitly considered in the calibration procedure. The peak discharges were therefore possibly more reliably287

reproduced than the flood volumes. Still, the computation of the Q–V dependence relies on the volume288

of specific events. When interested in bivariate flood frequencies of flood peaks and volumes, one should289

therefore consider ways to integrate flood volume or even the Q–V dependence into the calibration proce-290

dure, e.g., by developing new objective functions tailored to the problem at hand, which would increase the291

robustness of the model (Pool et al., 2018). Pool et al. (2017) showed that the objective function selected for292

model calibration strongly influences the estimation accuracy of particular discharge signatures. We should293

be aware of a potential overestimation of the Q–V dependence when using modeled discharge time series for294

design flood estimation. These findings suggest that the choice of the hydrological model and its calibration295

procedure are important factors for bivariate design quantile estimation.296

Our analysis showed that, besides model uncertainty, which was assessed only indirectly (see Sect. 4.4),297
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parameter uncertainty also plays an important role in bivariate design quantile estimation. Parameter298

uncertainty has been found to be important in previous studies (e.g., Clark et al., 2016; Sikorska et al.,299

2015a) and should therefore be accounted for in design flood estimation studies using modeled discharge300

data.301

4.2. Effect of precipitation disaggregation and distribution on Q–V dependence302

Our results demonstrate that both precipitation disaggregation and precipitation distribution play a303

role in the reproduction of Q–V dependence. The Q–V dependence was over all catchments found to be304

reproduced the best at a disaggregation level of 6 or 12 h which agrees well with the results of Sikorska305

et al. (2018) who found that a disaggregation level of 6 h was sufficient to model peak discharges. A uniform306

distribution of precipitation either over– or underestimated Q–V dependence depending on the catchment.307

In contrast, the non-uniform worst case distribution at a 1 h resolution more accurately reproduced peak308

discharges, flood volumes, and the dependence structure in the observations in all catchments. This finding309

implies that not only the disaggregation level of the precipitation but also its distribution is important310

for reproducing flood volumes, peak discharges, and their dependence. This is in line with findings by311

Singh (1997), where the temporal distribution of rainfall was decisive in determining the magnitude of312

peak discharge. He found that peak discharges were higher for variable precipitation than for uniformly313

distributed precipitation, which is also the case in our study when comparing the non-uniform distribution314

to the uniform distributions at high disaggregation levels. In contrast, low disaggregation levels where the315

daily precipitation totals were distributed into 1–2 h led to higher peak discharges, because of high intensities,316

than the worst case distribution where the precipitation was divided into more time steps.317

4.3. Effect of discharge resolution on Q–V dependence318

Discharge resolution was found to be very important for reproducing Q–V dependence. If we work319

with daily data instead of hourly data, which is often the case in practice, we need to be aware that Q–V320

dependence is overestimated compared to when hourly observations are used. We have shown that working321

with discharge time series with a low temporal resolution leads to an underestimation of bivariate design322

quantiles. Such an underestimation might lead to a conservative design of flood retention basins or other323

flood protection structures and therefore have adverse effects on flood risk. It is very important that we keep324

this in mind when choosing appropriate discharge samples for bivariate design flood estimation.325

4.4. Uncertainty analysis326

Our results show that different sources of uncertainty are important in design flood estimation, depend-327

ing on the catchment of interest. However, model parameter uncertainty was found to be one of the most328

important uncertainty sources in all the considered catchments. This source of uncertainty should therefore329
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not be neglected. It has to be stressed, however, that parameter uncertainty, represented in this study by330

the 100 optimized parameter sets of the hydrological model, also comprises the uncertainty of the hydrolog-331

ical model itself and other uncertainty sources affecting hydrological modelling, i.e., the uncertainty of the332

observed precipitation and discharge time series used for model calibration (Renard et al., 2010; Sikorska &333

Renard, 2017). Although the model uncertainty was indirectly assessed separately, its direct contribution334

could not be assessed. The uncertainty due to uncertainty in the input time series was neither quantified.335

For this purpose a Bayesian uncertainty inference would be required (Gelman et al., 2013).336

The other uncertainty sources in bivariate design quantile estimation should not be disregarded either,337

as they may affect the Q–V dependence. In some catchments, precipitation disaggregation was the most338

important source of uncertainty, while discharge resolution was a more important source in other catchments.339

Our results show that it is important to accurately represent the precipitation distribution and to work with340

highly resolved discharge data, if possible, to accurately represent the Q–V dependence in the observed or341

simulated time series.342

4.5. Limitations and perspectives343

This study was performed using a data set of nine Swiss catchments. This dataset represents different344

discharge regimes in Switzerland but was too small to detect a distinct pattern in the uncertainty behavior345

of catchments with respect to data resolution and precipitation-discharge modeling. The case study results346

are therefore not easily transferable to other catchments. The uncertainty assessment framework and the347

methods behind it can, however, be transferred to other catchments and regions. As mentioned above, the348

hydrological modeling procedure could be optimized with respect to the reproduction of flood volumes and349

Q–V dependence by taking these factors directly into account in model calibration. We did not investigate350

how the spatial distribution of precipitation affects flood volumes and modeled Q–V dependence as we351

focused on a lumped hydrological model. Spatial distribution has been found to be an important factor in352

simulating streamflow (Lobligeois et al., 2014) and in determining peak discharges (Singh, 1997). Its effect on353

flood volumes and peak discharges should be assessed by using a distributed instead of a lumped hydrological354

model. This study focused on a catchment-specific analysis without distinguishing between different flood355

types, which would have been preferable for the analysis of Q–V dependence, because of the limited sample356

size resulting from a subdivision of the flood samples into several flood types. One way to consider flood357

types would be to pool events of the same type within a region of similar catchments (Gaál et al., 2016).358

The focus of this study has been on the reproduction of the variables peak discharge and flood volume359

and their dependence by using disaggregated precipitation data. Flood events are also characterized by a360

particular hydrograph shape. Useful procedures have recently been proposed for taking into account these361

shapes in design flood estimation (Brunner et al., 2016; Serinaldi & Grimaldi, 2011). Such procedures can362

also be applied in a climate change context using modeled discharge time series (Brunner et al., 2018). As a363
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next step, it would therefore be important to look at the effect of the input precipitation disaggregation level364

and of the distribution not only on the magnitude of events in terms of peak discharges and flood volumes365

but also on hydrograph shapes, as proposed by Singh (1997).366

5. Conclusions367

Flood volumes and Q–V dependence are not necessarily well reproduced in modeled discharge time series368

because commonly used model calibration procedures do not explicitly take into account flood volumes in369

addition to peak discharges. It is crucial to be aware of this issue when using such simulated discharge370

time series for bivariate design flood estimation. Methods should therefore be developed to more accurately371

represent flood volumes and the Q–V dependence in hydrological models. Both the temporal disaggregation372

of precipitation and its distribution have an effect on peak discharges, flood volumes, and their dependence,373

and therefore on bivariate design flood estimation. This temporal distribution is especially important for374

reproducing observed peak discharges and flood volumes. The input data for modeling studies or the observed375

data should therefore be chosen with care with respect to their temporal resolution and distribution. A376

temporal resolution of 6 to 12 h is recommended for an accurate representation of Q–V dependence and377

the distribution must not be uniform but temporally variable. Not only the choice of precipitation input378

disaggregation but also the choice of the discharge resolution is important. Daily data generally lead to379

higher peak discharges and flood volumes than hourly discharge data and to a higher Q–V dependence.380

This higher dependence can lead to an underestimation of bivariate design quantiles compared to when381

using the actual dependence of the observed variables. We should be aware of the fact that the choice382

of a certain data set over another one might significantly influence the results of bivariate flood frequency383

analyses and the conclusions drawn from them.384
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