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Abstract 

Climate models show that global warming will disproportionately influence high-latitude 

regions and indicate drastic changes in, amongst others, seasonal snow cover. However, 

current continental and global simulations covering these regions are often run at coarse grid 

resolutions, potentially introducing large errors in computed fluxes and states. To quantify 

some of these errors, we have assessed the sensitivity of an energy-balance snow model to 

changes in grid resolution using a multi-parametrization framework for the spatial domain of 

mainland Norway. The framework has allowed us to systematically test how different 

parametrizations, describing a set of processes, influence the discrepancy, here termed the 

scale-error, between the coarser (5 to 50 km) and finest (1 km) resolution. The simulations 

were setup such that liquid and solid precipitation was identical between the different 

resolutions, and differences between the simulations arise mainly during the ablation period. 

The analysis presented in this study focuses on evaluating the scale-error for several 

variables relevant for hydrological and land surface modelling, such as SWE and turbulent 

heat exchanges. The analysis reveals that the choice of method for routing liquid water 

through the snowpack influences the scale-error most for SWE, followed by the type of 

parametrizations used for computing turbulent heat fluxes and albedo. For turbulent heat 

exchanges, the scale-error is mainly influenced by model assumptions related to 

atmospheric stability. Finally, regions with strong meteorological and topographic variability 

show larger scale-errors than more homogenous regions. 
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1 Introduction 

The snow cover simulated by weather forecasting and climate models influences, for 

example, their predictions of air temperature since snow affects the surface energy balance 

[Van den Hoof et al., 2013]. For continental and global simulations, these models typically 

operate on horizontal scales ranging from approximately 10 to 100 km. When using such 

coarse resolutions, considerable heterogeneity is averaged out in land surface properties 

and meteorological conditions. Neglecting subgrid heterogeneities through averaging 

typically introduces errors in any model with nonlinear governing equations [Kirchner et al., 

1993]. It is thus important to assess the likely magnitude of errors arising from neglecting 

heterogeneities in land surface parameters and meteorological forcings in land surface 

modelling. Indeed, for snow simulations, it has long been recognized that increasing the 

spatial resolution influences the model results, e.g. Essery [2003]. 

Using effective parameter values or introducing subgrid parametrizations in land surface 

models can only partly reduce scale-errors (i.e. the errors that arise from coarsening grid 

resolution and neglecting subgrid variability). Even when applying so-called effective 

parameters that should capture the influence of subgrid heterogeneity, land surface models 

tend to, for example, overestimate evapotranspiration and sensible heat fluxes compared to 

schemes taking such variability into account (see Rouholahnejad & Kirchner [2017]). To 

circumvent such issues when addressing critical water science questions, it has been 

argued that we need so-called hyper-resolution land surface models that resolve processes 

across very fine spatial scales, i.e. not coarser than 1 km, even at the global scale [Wood et 

al., 2011]. However, running models on very high resolution at the global scale is very 

computationally demanding. Likely, an even stronger limitation is the paucity of reliable, 

high-resolution input data in many regions, e.g. meteorological forcings that capture the 

actual spatial variability of the single variables. For such regions, the effective grid spacing of 

hyper-resolution models can be much coarser than that technically specified since the 

forcing data may not depict local features sufficiently well (e.g. convective precipitation, 

temperature inversions or variability in wind speed). Thus, even hyper-resolution models 

may be prone to the same scale-errors as models using a coarser grid. 

For large-scale simulations (e.g. continental or global scale), several studies have examined 

how different grid resolutions affect snow simulations performed by various land surface 

models. Singh et al. [2015] found that high resolution (1 km) soil and topographic information 

induced changes in several simulated variables such as snow and surface energy fluxes 

compared to coarse scale simulations (100 km) using the National Center for Atmospheric 

Research (NCAR) Community Land Model. Dutra et al. [2011] compared snow simulations 

https://www.zotero.org/google-docs/?HZd1ML
https://www.zotero.org/google-docs/?qF0SLU
https://www.zotero.org/google-docs/?qF0SLU
https://www.zotero.org/google-docs/?nOxi7o
https://www.zotero.org/google-docs/?iBBP7u
https://www.zotero.org/google-docs/?vwP9H5
https://www.zotero.org/google-docs/?vwP9H5
https://www.zotero.org/google-docs/?WMmdU8
https://www.zotero.org/google-docs/?ZL8RHP
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performed at 25, 80 and 200 km grid resolutions using the land surface model HTESSEL 

(Tiled ECMWF Scheme for Surface Exchange over Land) applied in the European Centre for 

Medium-Range Weather Forecasts (ECMWF) system. The authors found that the horizontal 

resolution played an important role for the snow cover simulations over complex terrain (e.g. 

coastal and mountain regions). In the Rhone-AGGregation intercomparison project of land 

surface schemes, snow water equivalent was reduced greatly when upscaling the horizontal 

resolution for all models except the Variable Infiltration Capacity (VIC) model that included 

an elevation dependent tiling of the snow scheme and therefore performed well even at 

coarse grid resolutions [Boone et al., 2004]. For the same catchments, similar conclusions 

were drawn by Stöckli et al. [2007]. Even though VIC uses elevation bands for snow, 

Haddeland et al. [2002] found a slight underestimation of snow water equivalent when 

increasing the spatial resolution from 1/8 to 2° for the Columbia River basin. To summarize, 

most of the previous large-scale studies show that coarser grid resolutions reduce snow 

amounts. However, the applied models show different responses to the coarsening of the 

grid resolution likely due to, for example, varying process parametrizations and numerical 

implementations. Therefore, previous studies give limited insight into why the models 

respond differently to changes in horizontal grid resolution. 

In this study, we assess the sensitivity of snow simulations for mainland Norway to changes 

in spatial resolutions from fine (1 km) to coarse scale (5 to 50 km) using a multi-

parametrization framework (i.e. a model that allows the user to choose from alternative 

parametrization for different steps in the modelling chain, e.g. computation of surface albedo 

and turbulent heat fluxes). The multi-parametrization setup allows us to test how various 

parametrizations of different processes influence the sensitivity of the simulations to changes 

in grid resolution. Our main aims are (a) to assess which process parametrizations influence 

the scale-errors most, (b) to quantify the scale-error between the coarse and fine scale 

simulations for different model configurations, and (c) to assess in which physiographic and 

climatic settings the scale-errors are largest. We focus our analysis on differences in 

simulated snow water equivalent (SWE), latent heat fluxes (LATMO), sensible heat fluxes 

(HATMO) and net radiation (RNET) between the fine and coarse scales. We have focused 

on these variables since SWE is important for water-related questions, whereas the other 

variables are more relevant for weather forecasting and climate model simulations. 

https://www.zotero.org/google-docs/?LvW9Ar
https://www.zotero.org/google-docs/?tSYMpq
https://www.zotero.org/google-docs/?YeUrzN
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2 Data 

2.1 Site description 

The study area covers mainland Norway and small regions of Sweden and Finland (Figure 

1). These additional areas are situated along the eastern Norwegian border, with runoff 

draining to Norway. The study region is completely located on the Scandinavian peninsula, 

and covers an area of approximately 345000 km2. Latitudes range from approximately 58 to 

71° North and the highest peak rises 2469 m above sea level. Large parts of the study 

region are characterized by highly variable topography and a rugged coastline in the south, 

west and north (Figure 1a). When coarsening the digital elevation model from 1 to 10 km 

resolution, many valleys disappear, but the main features are still visible (Figure 1b). 

However, when coarsening the digital elevation map further to 50 km resolution, only the 

very large-scale features are still apparent (Figure 1c). 

2.2 Meteorological data 

As mentioned above, one of the main difficulties for high-resolution simulations is to provide 

the model with spatially distributed parameter sets and forcing data. For this study, we used 

daily gridded data of air temperature, precipitation and wind speed with 1 km horizontal 

resolution for the period from 2008-9-1 to 2011-9-1. The daily temperature and precipitation 

gridded datasets were derived with statistical interpolation methods based on hundreds of 

observations stored in the climatological database of the Norwegian Meteorological Institute. 

The observational data were collected by meteorological stations managed by public 

institutions and an automatic data quality control procedure were applied to all data. The 

minimum and maximum two-meter air temperature grids were generated using the data and 

interpolation procedure outlined by Lussana [2017]. The daily precipitation grids were 

produced using the methods presented in Lussana et al. [2018]. The observed values were 

corrected for undercatch using the wind speed grids along with the methods reported in 

Wolff et al. [2015], adapted to daily accumulated values as described in Lussana et al. 

[2019]. The 10-meter daily averaged wind speed grids are based on numerical model output 

because the spatial distribution of stations measuring wind is too sparse for statistical 

interpolation to be applied. The grids were produced on the 1 km grid by the quantile 

mapping technique presented by Gudmundsson et al. [2012] that adjusts the historical 

archive of the 10 km Norwegian hindcast dataset (NORA10, [Reistad et al., 2011]) to better 

match the climatology of the high-resolution operational numerical weather prediction model 

https://www.zotero.org/google-docs/?V35d61
https://www.zotero.org/google-docs/?r1X2fW
https://www.zotero.org/google-docs/?lXr29q
https://www.zotero.org/google-docs/?TURkwf
https://www.zotero.org/google-docs/?zGkYdU


 

 
© 2019 American Geophysical Union. All rights reserved. 

AROME [Müller et al., 2017]. Note that the AROME wind speeds have been downscaled 

from the original 2.5 km grid resolution to 1km by means of a nearest neighbor approach, 

where the elevation differences are considered in addition to the horizontal distance. 

Mean annual precipitation ranges from approximately 300 mm in the inland regions in the 

southeast and north to nearly 4000 mm along the southwestern coastline (Figure 2a). Notice 

the strong precipitation gradient in the south when moving eastwards from the coast towards 

inland regions. Average wind speeds are highest in the northernmost areas and on the 

mountain ridges in the south (Figure 2b). Mean annual air temperature is highest along the 

southern coastline and all the way towards mid Norway, where Foehn effects often influence 

temperatures (Figure 2c). The high mountains ranges in southern and northern Norway 

experience the coldest temperatures. Our gridded observational fields of meteorological 

conditions show large spatial variations, likely higher than in many other regions of the world 

with flatter topography and situated further away from the sea. 

To better illustrate the spatial variability in the meteorological fields, Figure 3a to c shows the 

subgrid standard deviations in the forcings for the 10 km resolution computed using the time-

averaged 1 km gridded data presented above (Figure 2). Figure 3d to e shows the 

corresponding results for the 50 km resolution. For precipitation, the highest subgrid 

variability emerges along the coastline in the south and the associated transition zone from 

high to low precipitation when moving inland (Figure 3a and d). Subgrid variability in 

precipitation is much higher for the 50 than 10 km resolution. The highest variability in wind 

speed occurs in the southern and mid-latitude regions of the study domain (Figure 3b and e). 

In contrast to precipitation, already the 10 km resolution shows rather high subgrid variability 

compared to the 50 km results. Finally, for air temperature, the highest standard deviations 

are visible in the southwestern regions (Figure 3c and f). Similar to wind speed, the subgrid 

variability in air temperature can be rather high for the 10 km resolution, comparable with the 

50 km results. In summary, it is evident that much information is already lost when 

aggregating the forcings from 1 to 10 km resolution, and even more smoothing occurs when 

moving to the 50 km results. Noteworthy, the areas with highest variability do not necessarily 

coincide with the highest topographic complexity (compare with Figure 1a), but are also 

influenced by, for example, gradients from coastal towards inland regions. 

2.3 Forcing data generation 

In many regions, generating forcing data sets for high resolution (1 km and smaller) land 

surface modeling is very challenging due to limited data availability on such fine scales 

[Singh et al., 2015]. In our case, several input variables (e.g. radiation components) required 

https://www.zotero.org/google-docs/?OK0cK6
https://www.zotero.org/google-docs/?cyb3Og
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by an energy-balance snow model are missing in the available input dataset (see section 

2.2). Since there is no high-resolution re-analysis dataset available for our study region 

containing all required forcing variables, we used a version of the so-called mountain 

microclimate simulation model (MT-CLIM) presented by Hungerford et al. [1989] 

implemented in the VIC model (see Bohn et al. [2013] for details) to create the necessary 

meteorological input fields on subdaily resolution. The model was driven by 1 km gridded 

daily data sets of minimum air temperature, maximum air temperature, wind speed and 

precipitation (see section 2.2). Based on these variables, the VIC implementation of MT-

CLIM uses a set of algorithms to estimate mean air temperature, rainfall, snowfall, relative 

humidity, longwave radiation, shortwave radiation and wind speed at subdaily resolution (in 

our case 3h). Clear-sky longwave radiation was computed using the Tennessee Valley 

Authority [TVA, 1972] algorithms, and adjusted for clouds using the methods presented by 

Deardorff [1978]. Overall, MT-CLIM has been shown to reproduce global patterns of 

incoming shortwave and longwave radiation as well as humidity reasonably well, but for 

stations situated close to coasts, the algorithms occasionally show poor performance [Bohn 

et al., 2013]. 

2.4 Land-use data 

The land-use distribution in the study domain was derived from the high-resolution (30 m), 

remote sensing-based forest resources map SAT-SKOG [Gjertsen & Nilsen, 2012], which 

was classified into 12 structural forest types using the scheme developed by Majasalmi et al. 

[2018] for Fennoscandian forests. This classification scheme differentiates between three 

species groups (spruce, pine, and deciduous dominated), and each group is further divided 

into four structural subgroups reflecting differences in, amongst others, stand height and leaf 

area index. For each forest type, a look-up table provided by Majasalmi et al. [2018] gave 

values for leaf area index and vegetation height. These look-up tables provide maximum 

growing-season leaf area index only. Since we focused on snow-season processes, the leaf 

area in deciduous forest was assumed to equal zero. Unforested areas were not further 

classified into subtypes since the multi-parametrization framework we have used for 

simulating snow processes does not distinguish between different non-forested land-use 

types (e.g. urban and glacier areas). 

2.5 Snow observations 

For evaluating model performance, we used a comprehensive SWE data set, consisting of 

snow measurements made by various hydropower companies since 1914. The SWE in this 

https://www.zotero.org/google-docs/?sqGyYn
https://www.zotero.org/google-docs/?oW952e
https://www.zotero.org/google-docs/?oW952e
https://www.zotero.org/google-docs/?BiBbuL
https://www.zotero.org/google-docs/?iw7Qr3
https://www.zotero.org/google-docs/?iw7Qr3
https://www.zotero.org/google-docs/?h13ZQl
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dataset is computed from manual measurements of snow depth and density. In most cases, 

the reported snow depth is an average of multiple observations along a snow course, while 

the density observation is normally measured at one snow pit along the snow course. The 

measurements were made once each winter, and mostly recorded around the time of 

maximum annual SWE just before spring snowmelt begins. The data were quality-checked 

and values considered as outliers were corrected or omitted. In total, 2636 SWE 

observations were available for model evaluation within the simulation period stretching from 

2008-9-1 to 2011-9-1. Most of the observations originate from mountain areas in southern, 

eastern and western Norway. This snow data set has previously been used among others in 

evaluation of the operational snow map model in Norway [Saloranta, 2012], as well as in 

calculation of long-term decadal trends in snow depth and SWE [Skaugen et al. 2012, 

Dyrrdal et al. 2013]. 

3 Methods 

3.1 Model description 

The snow simulations have been carried out using an updated version of the Flexible Snow 

Model (FSM) developed by Essery [2015], which additionally includes a one-layer canopy 

model [Essery et al., 2003] utilizing the land-use information outlined in section 2.4. FSM is a 

multi-parametrization framework of energy-balance snow models with intermediate 

complexity. The framework gives the user the ability to choose from two alternative 

parametrizations for five snowpack processes, namely the representation for simulating the 

surface albedo of snow, thermal conductivity of snow, density of snow, turbulent heat 

exchange at the snow surface, and routing of liquid water through the snowpack (Table 1). 

The parametrizations were all taken from established land surface models such as CLASS 

[Bartlett et al., 2006], CLM [Oleson et al., 2010] and ISBA [Noilhan & Mahfouf, 1996]. For 

each of the snowpack processes listed above, we have applied two different 

parametrizations denoted as Option 0 and Option 1 in this study. 

 

This results in 32 possible combinations of parametrizations, yet not all possible 

combinations are necessarily unique. For example, the thermal conductivity of snow will be 

constant even if we use Option 1 for this process if the snow density is set constant (Option 

0 for Snow compaction). In the setup of the multi-parametrization framework used in this 

study, the conductivity given by Yen [1981] for the fixed density was set such that it matches 

the fixed conductivity. As a result, there are only 24 distinct configurations. However, for 

https://www.zotero.org/google-docs/?W31hRY
https://www.zotero.org/google-docs/?aTIBbS
https://www.zotero.org/google-docs/?MI60NP
https://www.zotero.org/google-docs/?zjfWHV
https://www.zotero.org/google-docs/?DXBpWj
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simplicity, we present results from all 32 available combinations. The model was run using 3 

h time steps. FSM solves the mass and energy exchanges for up to three individual snow 

layers. The surface heat balance equation is solved iteratively and the vertical temperature 

profile in the snowpack is solved by the Crank-Nicolson method. FSM also simulates the 

snow covered fraction as a simple function of total snow depth. When applied over forested 

areas, the updated model version solves coupled energy balances between the canopy and 

the snowpack. This includes the effect of the canopy on energy and mass balance 

processes such as canopy radiative transfer and snow interception. For more details about 

the framework and available parametrizations, see Essery et al. [2003] and Essery [2015]. 

3.2 Description of simulations 

All 32 configurations were run at 1, 5, 10, 25 and 50 km resolution. For the finest resolution, 

the model was driven using the original meteorological forcing data as described in section 

2.2 and 2.3. For the coarser scale simulations, the 1 km forcings were upscaled using the 

arithmetic mean, to ensure mass-conserving scaling. Note that in the upscaling only land 

points were considered in the upscaling, and that areas covered by, for example, oceans or 

located outside of the fine scale model domain were ignored. For land-use, each 1 km grid 

cell can contain up to 12 different forest types (see section 2.4) in addition to one land-use 

class representing open areas. Due to computational constraints for the 1 km simulations, 

we only considered the three land-use classes with largest areal coverage. Consequently, 

each grid cell was divided into three tiles describing the separate land-use types. For the 

coarse scale simulations (5 to 50 km), we first computed the average areal coverage of each 

land-use class within each coarse scale grid cell from the 1 km grids. Subsequently, the 

three classes with the largest coverage were proportionally scaled to total cell area. Note 

that precipitation phase was determined on 1 km resolution, and rainfall and snowfall 

amounts were separately aggregated to the coarser grid resolutions. We chose this 

approach to minimize differences between the simulations during the accumulation phase, in 

order to being able to better attribute differences between the different resolutions during the 

ablation phase. 

3.3 Evaluation statistics for characterizing scale-errors 

For the comparison of the simulation results given by the different resolutions, the results 

from the fine scale simulation (1 km) were aggregated to the coarser resolutions (5 to 50 km) 

by arithmetic averaging. Thus, in all analysis presented below the finest scale simulations (1 

km) were always upscaled to the coarser resolutions. We then computed the discrepancy, 

https://www.zotero.org/google-docs/?ssngJ3
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which we term the scale-error, between the results for the coarse scale 𝑦𝑛 and upscaled fine 

resolution 𝑦̂𝑛: 

 

𝜀𝑛
𝑖  =  𝑦𝑛

𝑖  −  𝑦̂𝑛
𝑖         (Eq. 1) 

 

for grid cell 𝑖 and time 𝑛 of 𝑁 available steps. For the 𝑖-th grid cell, the root-mean-square-

error is given by: 

 

𝑅𝑀𝑆𝐸𝑖  = √∑ 𝜀𝑛
𝑖 2𝑁

𝑛 = 1

𝑁
       (Eq. 2) 

 

and the bias and mean-absolute-bias by: 

 

𝐵𝑖𝑎𝑠𝑖  = 
∑ 𝜀𝑛

𝑖𝑁
𝑛 = 1

𝑁
       (Eq. 3) 

 

𝑀𝐴𝐵𝑖  = 
∑ |𝜀𝑛

𝑖 |𝑁
𝑛 = 1

𝑁
       (Eq. 4) 

 

To compute the average scale-error for the whole simulation domain, we used a weighted 

average of 𝑅𝑀𝑆𝐸𝑖 and 𝑀𝐴𝐵𝑖. For this calculation, the weights were given by: 

 

 𝜔𝑖  =  
𝑁𝐺𝑖

𝐿2         (Eq. 5) 

 

where 𝑁𝐺𝑖 denotes the number of available 1 km grid cells within one coarse resolution grid 

cell, and 𝐿 represents the grid resolution. We used a weighted average since not all coarse 

resolution grid cells have complete coverage of fine resolution land-use and meteorological 

data. Since the length of the snow season varies between regions, we computed the scale-

error for the whole study period to facilitate the comparison of this error between regions. 

This choice likely reduces the scale-error, in particular in regions with long snow-free 

periods. 
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4 Results 

4.1 Evaluation against observations 

Figure 4 shows the model performance for SWE. For this evaluation, the model was run on 

the 1 km grid excluding vegetation effects since the measurements were taken in open 

areas. These simulations were then evaluated using the snow observations presented in 

section 2.5 using the bias and normalized root-mean-square-error (NRMSE) as performance 

metrics. The normalization was performed using the average of all SWE observations. We 

used standard procedures to compute these error statistics, and they should not be 

confused with those used for characterizing the scale-errors as outlined in section 3.3. First, 

most model configurations underestimate SWE compared to the observations. The high 

NRMSE shows that the discrepancy can be large between the 1 km resolution simulations 

and the point observations. The latter can be influenced by local effects such as wind drift 

giving rise to large errors when comparing point scale observations with gridded model 

results. Second, we find that the model performance is sensitive to the choice of method for 

computing turbulent heat fluxes (Exchng) and routing of liquid water through the snowpack 

(Hydraul). For both of these processes, the more physically-based  parametrizations (Option 

1) give both lower bias and lower NRMSE than their simpler counterparts (Option 0). Finally, 

the method for computing albedo does not seem to affect the model performance notably. 

The remaining processes (snow compaction and thermal conductivity, see section 3.1) 

follow the behavior of the albedo and are not shown here. 

4.2 Influence of parametrization on scale-errors 

 

Figure 5 ranks the different model configurations from lowest to highest scale-error in terms 

of RMSE (see section 3.3 for details about the computations of these error statistics). When 

considering SWE, we first find that configurations not taking liquid water in the snowpack 

(Option 0) into account mostly show lower scale-errors than those using a bucket formulation 

(Option 1). Second, given the parametrization for snow hydraulics, the method for computing 

turbulent heat fluxes also influences the scale-error systematically. RMSE is typically smaller 

when applying a stability correction scheme (Option 1) than when assuming neutral 

atmospheric stability (Option 0). Third, given the parametrization for snow hydraulics and 

turbulent fluxes, the diagnostic parametrization (Option 0) for computing surface albedo 

often shows a smaller scale-error than the more physically based alternative (Option 1). 

Summarizing the results for SWE, the different process parametrizations seem to influence 
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the scale sensitivity in a cascading order where some processes are more influential than 

others. 

 

For net radiation (RNET), the more complex parametrizations (Option 1) for turbulent heat 

fluxes, snow hydraulics and surface albedo tend to produce smaller scale-errors than the 

simpler parametrizations (Option 0). Apart from this tendency, no clear pattern between the 

processes and parametrizations emerges such as found for SWE. For sensible (HATMO) 

and latent heat fluxes (LATMO), the scale-error is systematically smaller when applying a 

stability correction scheme (Option 1) than when assuming neutral atmospheric stability 

(Option 0).  The bucket approach (Option 1) to simulate liquid water content of the snowpack 

usually produces smaller scale-errors in LATMO than the simpler parametrization, which 

contradicts the pattern found for SWE. In summary, the results show that (a) for some 

variables, e.g. SWE, rather clear patterns emerge on how the different parametrizations 

influence scale-errors whereas for others, e.g. LATMO, the patterns are less clear, (b) the 

same parametrization, e.g. Option 1 for turbulent heat exchanges, can have the opposite 

effect on the ranking for different variables, e.g. compare SWE and LATMO, and (c) some of 

the parametrizations, e.g. snow compaction, are less important for the ranking presented 

here and consequently do not introduce large scale-errors when coarsening the grid 

resolution. 

4.3 Model sensitivity to variations in spatial resolution 

From the results above, it is evident that, depending on the variable of interest, different 

parametrizations dominate the scale-error between the 1 km and the 50 km resolutions. 

Figure 6 to 9 shows how the scale-error in terms of domain-averaged root-mean-square-

error and mean-absolute-bias increases from the 1 to 50 km resolution (both equaling 0 at 1 

km resolution). MAB was chosen to avoid cancellation effects during averaging.  

 

For all variables, we find that the RMSE increases the most from 1 to 5 km resolution. 

Differentiated by turbulent heat flux parametrization, we find that the two parametrizations 

systematically influence the scale-error across all resolutions. Thus, when comparing the 

results to those presented in 

Figure 5 for the 50 km resolution, the ranking of the configurations from lowest to highest 

scale-error apparently remains similar across all grid sizes. For SWE, MAB and RMSE show 

similar behavior, but Option 0 for turbulent heat fluxes typically produces larger biases than 

Option 1 (Figure 6). MAB for RNET is very small, and increases more strongly between 1 

and 5 km resolution if Option 1 for turbulent heat exchanges is selected instead of Option 0, 
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but then remains almost stable from 5 to 50 km grid size (Figure 7). For both turbulent heat 

fluxes (HATMO, LATMO), we find a rather linear increase between different resolutions, 

although the largest increase still occurs from 1 to 5 km resolution (Figure 8 and 9). To 

summarize the results presented in these figures, we note that the scale-error increases 

most at the fine resolutions and that the parametrization of turbulent heat fluxes influences 

the results systematically across the different scales. 

4.4 Spatial patterns in scale-errors 

The bias between the coarse (50 km) and upscaled fine (1 km) resolution simulations differs 

throughout our study region depending on both the variable of interest and the choice of 

model configuration, and is in general small for the different variables (Figure 10 and 11). In 

the following, we assess how the choice of turbulent heat flux parametrizations influences 

the results since those two options influence all variables, in contrast to, for example, the 

available parametrizations for snow hydraulic processes that mainly affects SWE ( 

Figure 5). In many regions, the bias in SWE is close to zero, in particular in the southeastern 

and northern parts of our study domain for both options of turbulent heat fluxes (compare 

panel A in both figures). However, along the coastline, the bias is predominantly negative, 

with larger discrepancies between the two resolutions when assuming a neutral atmosphere 

(Option 0) instead of applying a stability correction scheme (Option 1). In the remaining 

regions of the study area, the bias is slightly positive, with somewhat higher values for the 

Option 1 than 0. For the turbulent heat fluxes, Option 1 shows lower biases than Option 0 

(compare panels C and D in both figures, respectively). For the latter, the biases are almost 

exclusively negative for the sensible and positive for the latent fluxes. Only in a few areas in 

the southern and northern parts of the study domain, the maps show almost unbiased 

results. In most areas, the bias for sensible and latent heat fluxes show opposite signs. 

Finally, for net radiation, the biases are overall slightly positive for Option 1, whereas more 

centered around zero for Option 0 (compare panels B in both figures). For all variables, we 

find that the coarse scale runs both over- or underestimate the fine resolution simulations 

although with regional differences. Overall, the neutral stability assumption shows larger 

biases than the simulations applying a stability correction scheme. 

 

Figure 12 shows the RMSE between the coarse (50 km) and upscaled fine (1 km) resolution 

simulations. The largest scale-errors for SWE occur in the regions along the western 

coastline, and the errors are much smaller in the inland regions (see panel A). For the three 

surface energy fluxes, the largest scale-errors occur in the southern mountain regions, 
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followed by the regions at mid latitudes (see panels B to D). For the northern and 

southeastern most regions, the errors are much smaller. 

4.5 Topographic influence on scale-errors 

For all variables, we find that the scale-error correlates well with the subgrid topographic 

variability for all configurations (Figure 13). These correlations were computed using (a) the 

RMSE between the 50 and upscaled 1 km simulation results, and (b) the standard deviation 

of the 1 km digital elevation model within each of the 50 km resolution grid cells. For SWE, 

the topographic variability explained in median 71 % of the variance in the scale-error, and 

the corresponding values for latent heat fluxes was 81 % and for sensible heat fluxes 75 %. 

For net radiation, subgrid topographic variability explained approximately 80 % of the 

variance in the scale-error in median. For all the variables, the spread in squared correlation 

coefficient between the model configurations is rather low. To summarize, regions with large 

topographic variability are prone to larger discrepancies between coarse and fine scale 

simulations than flatter regions irrespective of model configuration. 

5 Discussion 

For our study region and evaluation data, FSM performed best for SWE when using the 

configurations applying Option 1 for turbulent heat exchanges and snow hydraulic processes 

( 

Figure 5). However, at the coarser grid resolutions (5 to 50 km) model configurations relying 

on those parametrizations may not necessarily be the best choice anymore since the 

upscaling introduces errors, and the scale-errors are larger for some configurations than 

others (Figure 4). For example, the SWE simulations are more sensitive to changes in model 

resolution when using the bucket formulation (Option 1) instead of the simpler approach 

(Option 0) for routing liquid water through the snowpack. Thus, when changing model 

resolution the question arises whether one should choose the configuration showing the best 

performance, or the one with the lowest scale sensitivity. Preferably, model performance 

should be evaluated at the (coarser) simulation scale to avoid such dilemmas. However, with 

point observations as used here, such an evaluation will introduce even larger 

representativeness errors than already present between the SWE observations and the 1 km 

grid cells. In fact, practically all reliable snow observations are made at much smaller scales 

than those continental and global land surface models are run at (10 to 100 km). 
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The subgrid variability of the forcings increases with resolution, and is influenced by 

topographic effects and weather gradients from ocean towards inland regions (Figure 3). 

The MT-CLIM algorithm we used for generating the high-resolution forcing fields likely 

underestimates the true variability in the forcings, in particular for derived variables such as 

incoming shortwave radiation and relative humidity. The lower than true variability in some 

input variables likely leads to an underestimation of the scale-error for simulated variables 

such as snow water equivalent, but should not affect the sign of potential biases. 

Nevertheless, acquiring high resolution forcing fields that fully replicate the true spatial 

variability is likely unfeasible, in particular for large domains with very complicated 

meteorological conditions such as our study region. However, recent numerical weather 

prediction systems operate on higher resolution (e.g. 2.5 km), and their outputs may be 

useful for enhancing the understanding of scale related sensitivities in snow models since 

they produce physically consistent sets of meteorological forcings. 

 

For most variables, we find that the largest increase in scale-error already occurs from the 1 

to 5 km resolutions and afterwards flattens out for the coarser grid sizes (Figure 6 to 9). We 

also observe that the scale-error is larger for some parametrizations than others, e.g. when 

computing turbulent heat fluxes using a neutral stability assumption (Option 0) instead of 

applying a stability correction scheme (Option 1). Thus, the question arises why some 

parametrizations induce larger scale-errors than others. To assess this behavior in more 

detail, we compare SWE simulated by two configurations only differing in the choice of 

method for computing turbulent heat fluxes (Figure 14a and b). The figure displays results 

for one 50 km grid cell where the difference in SWE is particularly large compared to the 1 

km resolution results. 

 

During snow accumulation, the difference in SWE is small between the coarse (blue line) 

and upscaled fine scale resolution (green lines) results for both configurations. The small 

difference is due to the consistency in rainfall and snowfall amounts between the scales (see 

section 3.2). The simulations applying Option 0 show lower peak SWE than Option 1 due to 

occasional melt during snow cover buildup. Note that if we would have computed 

precipitation phase for the different resolutions, the scale-errors would probably have been 

much larger for SWE. The approach used here is, thus, an obvious and a computationally 

cheap solution to reduce scale-errors provided that high resolution forcings for air 

temperature and precipitation exist. 

 

During snowmelt, the discrepancy in SWE between the two scales is larger than in the 

accumulation period, especially for Option 0. Furthermore, in particular for sensible heat 
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fluxes (panels e and f), but also for latent heat exchanges (panels g and h), we find that the 

configurations relying on a neutral stability assumption give larger scale-errors than the 

stability correction scheme. For net radiation, on the other hand, the scale-errors is rather 

similar between the two configurations (panels c and d). For the ablation phase, reducing the 

scale-error seems much more difficult than during the accumulation period. The scale-error 

in SWE appears to foremost depend on discrepancies in simulated turbulent heat fluxes 

between the two scales, which are larger for Option 0 than 1 (compare panel c and d as well 

as e and h). Whether such scale-errors can be reduced using subgrid parametrizations is 

difficult to judge due to complex interactions between different heat and energy fluxes, as 

well as time dependencies between different variables in energy-balance snow models, such 

as FSM used in this study. 

 

As shown above, we find that the choice of parametrization for turbulent heat fluxes 

influences the simulations considerably, foremost for turbulent fluxes themselves but also for 

SWE ( 

Figure 5). For the 1 km resolution, the variability in simulated sensible heat fluxes is larger 

when applying a neutral stability assumption (see panel 15a) than when using the stability 

correction scheme (see panel 15b). Thus, the stability correction scheme dampens the 

turbulent heat fluxes in most situations through a smaller exchange coefficient over snow 

covered areas, which are typically dominated by stable rather than neutral or unstable 

conditions. The reduced exchange coefficient will also lead to a more linear function 

describing the turbulent heat fluxes when using Option 1 instead of 0 during the simulations 

(see Equation 20 in Essery [2015]). When upscaling the forcings (i.e. aggregation), the 

introduced error depends on (a) how non-linear governing equation is, and (b) how variable 

the high-resolution forcings are (for more details, see Figure 1 in Kirchner et al. [1993] and 

corresponding description). This effect likely causes the larger scale sensitivity of the 

configurations using Option 0 instead of 1 for computing turbulent heat fluxes. Likewise, the 

bucket formulation for routing liquid water through the snowpack introduces an additional 

nonlinearity that likely contributes to the scale-error. For a detailed discussion of how non-

linear relationships influence models running on different resolutions, see also 

Rouholahnejad F & Kirchner [2017] who observed that simulated evapotranspiration 

increases when using larger grid resolutions. 

 

Several earlier studies have found that SWE is reduced when coarsening the grid resolution 

for several land surface models (e.g. Boone et al. [2004], Dutra et al. [2011]). For the coastal 

areas, our simulations show similar behavior (Figure 10a and 11a). However, for the inland 

regions the coarse resolution simulations instead overestimate the snow amounts, which 

https://www.zotero.org/google-docs/?rcpJOi
https://www.zotero.org/google-docs/?i1VOkn
https://www.zotero.org/google-docs/?YcrAU5
https://www.zotero.org/google-docs/?hiSPTp
https://www.zotero.org/google-docs/?elwivd
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was not reported in the studies mentioned above. In these studies, precipitation was given 

as liquid and solid phases directly to the models similar to this study (see section 3.2). 

Consequently, differences in SWE between the scales occur due to differences in melting 

and not accumulation of snow as noted above. The coherent spatial patterns in SWE bias 

indicate that, for example, the meteorological and topographic conditions along the coastline 

are such that they lead to an underestimation of SWE for the coarse compared to the fine 

grid resolution, whereas the opposite occurs in the inland regions. We have, however, not 

found any strong relationship between, for example, the skewness of the elevation 

distribution within the coarse scale grid cells and the observed biases. It is possible that 

several interacting factors cause these spatial patterns. 

 

We find that topographic variability strongly influences the scale-error (Figure 13), which is in 

line with several earlier studies (e.g. Boone et al. [2004], Dutra et al. [2011], Rouholahnejad 

F & Kirchner [2017]). In mountainous regions, meteorological conditions can change 

considerably over short distances since variables such as air temperature and humidity 

largely depend on altitude. However, subgrid topographic variability did not explain all of the 

variance in the scale-error indicating that additional factors influence the discrepancy 

between the coarse and fine scale simulations. For example, precipitation shows a strong 

gradient from west to east in southern Norway due to the prevailing wind direction and 

orographic effects (Figure 2a). Likely, also the vicinity to the ocean introduces variability in 

local meteorological conditions along the coastline. Thus, further analysis of relationships 

between scale-errors and, for example, variability in wind speed and land-use properties 

such as forest coverage can give additional insight. In the coarse scale simulations, many of 

these local effects are smoothed out in the averaging process, which introduces errors due 

to the nonlinear governing equations used in FSM. 

 

Further, we likely underestimate the scale-error due to the following omissions: (a) any 

variability below the 1 km resolution is not taken into account apart from snow covered 

fraction through a simple subgrid parametrization, (b) local effects caused by e.g. ice 

covered and urban areas are neglected, and (c) not all important processes have been taken 

into account (e.g. topographic shading, as well as redistribution of snow through avalanches 

and wind). Nevertheless, our study has shown which processes influence the scale-error 

strongest, and in which regions those errors are largest. One critical question is how to 

minimize these errors. One option is to use subgrid parametrizations (e.g. Helbig et al. 

[2015]), another is to run the models on very high resolution (e.g. Singh et al. [2015]). As 

outlined above, running models using a very fine grid requires large computational resources 

and is hampered by low quality forcing data in many regions. However, the last option might 

https://www.zotero.org/google-docs/?YeWr9f
https://www.zotero.org/google-docs/?ZTnYiL
https://www.zotero.org/google-docs/?F4CDSS
https://www.zotero.org/google-docs/?F4CDSS
https://www.zotero.org/google-docs/?NIigaH
https://www.zotero.org/google-docs/?NIigaH
https://www.zotero.org/google-docs/?sn5UF4
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still be more reliable than the subgrid parametrizations since these will hardly capture all 

combinations of peculiarities around the global mean caused by, for example, ocean 

influences, differing weather patterns and land-use types. 

 

Parametrization procedures attempt to take into account all of the local scale heterogeneity 

of vegetation, topography, surface roughness, water stress and meteorological inputs that 

influence the integrated processes at a certain spatial scale. When local variations are 

sufficiently well integrated above a certain threshold scale, describing the variability of 

processes in the landscape is assumed to be sufficient to provide realistic predictions. 

However, comparing model simulations to observations may be misleading as neither of 

these correspond to the true process scale. The spatial resolution, extent and support 

(integration volume) of the observation and model scales act as a filter relative to the scale 

of natural variability. Processes with larger spatial scale than the spatial extent of 

observations appear as trends in the data, whereas processes with smaller spatial than the 

resolution appear as noise. This scale triplet will be different for the various processes 

influencing land surface atmosphere interactions and will also vary between different 

geographic regions and landscape types, e.g. below and above the tree level. Although it 

may be concluded that coarse scale models may perform well, it is nevertheless better to 

apply models with fine spatial (and temporal) resolution if possible. 

6 Conclusions 

In this study, we have assessed the sensitivity of an energy-balance snow model to changes 

in grid resolution using a multi-parametrization framework. The framework has allowed us to 

systematically test how different parametrizations describing a set of processes influence the 

discrepancy between the coarser (5 to 50 km) and finest (1 km) resolutions, here termed the 

scale-error. The simulations were setup such that liquid and solid precipitation was identical 

between the different resolution, and differences between the simulations arise mainly during 

the ablation period. We have focused our analysis on evaluating the scale-error for snow 

water equivalent, which is important for water-related questions, as well as surface heat 

fluxes and net radiation, both relevant for weather forecasting and climate model 

simulations. 

 

This study confirms results from other studies showing that the grid resolution is an 

important aspect in land surface modelling, and that the simple choice of grid size introduces 

errors in the results (e.g. Boone et al., [2004], Dutra et al. [2011], Haddeland et al. [2002]). 

https://www.zotero.org/google-docs/?f4XCU0
https://www.zotero.org/google-docs/?xHMF1I
https://www.zotero.org/google-docs/?kQZzHW
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However, unlike earlier studies, we have been able to assess in detail which process 

parametrizations introduce the largest errors for different variables. For snow water 

equivalent, we find that the choice of method for routing liquid water through the snowpack 

influences the scale sensitivity most, followed by the parametrizations for computing 

turbulent heat fluxes and albedo. For turbulent heat exchanges, on the other hand, only one 

process parametrization seems to influence the scale-error largely, that is whether one 

chooses to assume a neutral stability of the atmosphere or includes a stability correction 

scheme for the flux estimates. For net radiation, the choice of method for computing surface 

albedo seems to influence the results most, whereas the other process parametrizations 

seem less influential. Our analysis reveals which type of parametrizations introduces errors 

between different grid resolutions, and that complex interactions can arise between different 

processes that determine the magnitude of the scale-error. All these findings are very 

important since most models contain various user defined settings, e.g. for computing 

turbulent fluxes, and small changes in the options can introduce large scale-errors in coarse 

resolution simulations. 

 

Only few studies have evaluated the model sensitivity for grid sizes ranging from so-called 

hyper-resolution models to global climate simulations (e.g. Singh et al. [2015]). In this study, 

we have therefore chosen to cover this range using grid resolutions from 1 to 50 km. When 

considering the whole study domain, we find that the scale-error increases with resolution, 

with the largest error between the coarsest (50 km) and finest (1 km) grid sizes for all 

variables. However, already coarsening the grid resolution from 1 to 5 km introduces a 

substantial scale-error when comparing to the error for the 50 km resolution. The ranking of 

parametrizations sorted from lowest to highest scale-error mostly remains consistent for the 

different resolutions. For example, for the simulated turbulent heat fluxes the application of a 

stability correction scheme shows lower scale-errors than the neutral stability assumption for 

all model resolutions. Likely, the latter parametrization shows a stronger nonlinearity than the 

former and therefore induces larger scale-errors. However, we cannot select models based 

on the criteria of low scale-errors alone since those with lowest scale sensitivity may not 

show the best performance, as our case study has shown. 

 

For all variables, we find that the scale-error increases with subgrid topographic variability, 

which is inline with earlier findings (Boone et al., 2004). Such effects induce coherent spatial 

patterns in the scale-error including biases between the coarse and fine resolution results. 

However, we also observe that the scale-error likely depends on subgrid variability in, for 

example, meteorological conditions induced by coastal and orographic effects. Thus, 

potential scale-errors between coarse and fine resolution simulations can take on rather 

https://www.zotero.org/google-docs/?WIN07y
https://www.zotero.org/google-docs/?vINubC
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complex patterns, as we have observed for snow water equivalent. For this variable, the 

coarse scale simulations show an underestimation along the coastline, whereas the bias is 

positive in mountainous regions. 

 

In recent years, hyper-resolution modelling has been much discussed in the hydrological and 

meteorological communities (e.g. Bierkens et al. [2015], Singh et al. [2015]). Nowadays, 

several models at the continental scale are indeed operated with 4 km grid spacing or finer 

(e.g. Liu et al. [2017], Milbrandt et al. [2016]). For snow models, it seems obvious to run 

them at highest possible resolution because this is the scale we typically can evaluate them 

at and, even more important, any upscaling will introduce errors that regionally can be large 

due to nonlinearities in the energy balance formulations. The main challenge to minimize 

such errors will be to develop reliable methods for generating the forcing data needed for 

high resolution simulations. From a practical perspective, it might be of advantage to 

establish collaborations for sharing forcing data and computational resources such that the 

simulations of various models can be performed on the same platform as where the data is 

stored. 
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9 Tables 

Table 1. Description of snowpack processes with available options for parametrizations in 

FSM. 

Process Description 

Snow albedo The variations in reflectivity of snow depending on, for example, grain 

types and the incident angle of shortwave radiation. Option 0 - a 

diagnostic parametrization that computes the albedo from snow 

surface temperature. Option 1 - a prognostic parametrization using 

the snow age and snowfall events. 

Thermal conductivity 

of snow 

The thermal conductivity of snow, varying with factors such as snow 

density, affecting the heat flux through the snowpack. Option 0 - the 

snow conductivity is set constant. Option 1 - the snow conductivity is 

computed using the density dependent formulation presented by Yen 

[1981]. 

Snow compaction The increase in snow density due to, for example, metamorphosis 

and weight of overlying snow. Option 0 - the snow density is assumed 

constant. Option 1 - the snow density increases with time following 

the parametrization given by Verseghy [1991]. 

Turbulent heat 

exchange 

The turbulent exchange of heat and moisture between the snow or 

soil surface and the atmosphere. Option 0 - turbulent heat exchanges 

are computed assuming neutral atmosphere stability. Option 1 - 

turbulent heat exchanges are calculated using the atmosphere 

stability correction. See Essery [2015] for more details. 

Snow hydraulics The process for routing liquid water through the snowpack. Option 0 - 

the snowpack cannot hold any liquid water and melt or rainwater 

drains immediately. Option 1 - a so-called bucket formulation is used 

where liquid water flow occurs when the irreducible water content is 

exceeded. See Essery [2015] for more details. 
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10 Figures 

 

Figure 1. Topography of the study region depicted in three different resolutions. The 50 km 

resolution only captures the large-scale features of the 1km map. Note that we cutoff grid 

cells of the coarser resolutions, 10 and 50 km, at country boarders and water bodies since 

we lack high resolution land-use data for those regions. Averages are thus only displayed for 

available land areas for those grid cells.  
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Figure 2. Mean annual precipitation, wind speed and air temperature for the study region 

and period depicted on the 1 km resolution grid. The averages were computed using the 

data for the period from 2008-9-1 to 2011-9-1.  
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Figure 3. Standard deviation of precipitation (left panels), wind speed (mid panels) and air 

temperature (right panels) within 10 by 10 km (upper row) and 50 by 50 km (lower row) large 

grid cells computed using the time-averaged data of the 1 km grid (see results in Figure 2).  
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Figure 4. Model performance for SWE in terms of percentage bias and normalized root-

mean-square-error (NRMSE) for three different processes (turbulent heat exchange, snow 

hydraulics and snow albedo) and depending on the choice of parametrization (Option 0 or 

1). The figure shows data from all 32 possible model configurations, and RMSE was 

normalized using the average of all SWE observations. The boxes extend from the lower to 

upper quartile values of the data, with the line indicating the median. The position of the 

whiskers is set to 1.5 times the interquartile range from the edges of the box, and points 

denote outliers. 
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Figure 5. Ranking of the model configurations from lowest to highest scale-error for snow 

water equivalent (SWE), net radiation (RNET), latent heat fluxes (LATMO) and sensible heat 

fluxes (HATMO). Here the scale-error was given by the RMSE between the upscaled fine 

resolution (1 km) and coarse resolution (50 km) simulations. This error statistic was 

computed as outlined in section 3.3. Red colors denote Option 0 and blue colors Option 1 for 

the parametrizations.  
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Figure 6. RMSE and MAB between the 1 to 50 km and 1 km gridded simulations for SWE. 

These statistics for the scale-error were computed using the methods outlined in section 3.3. 

Red colors denote Option 0 and blue colors Option 1 for parametrization of the turbulent 

heat fluxes.  
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Figure 7. RMSE and MAB between the 1 to 50 km and 1 km gridded simulations for RNET. 

These statistics for the scale-error were computed using the methods outlined in section 3.3.  

Red colors denote Option 0 and blue colors Option 1 for parametrization of the turbulent 

heat fluxes.  



 

 
© 2019 American Geophysical Union. All rights reserved. 

 

Figure 8. RMSE and MAB between the 1 to 50 km and 1 km gridded simulations for 

HATMO. These statistics for the scale-error were computed using the methods outlined in 

section 3.3. Red colors denote Option 0 and blue colors Option 1 for parametrization of the 

turbulent heat fluxes.  
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Figure 9. RMSE and MAB between the 1 to 50 km and 1 km gridded simulations for LATMO. 

These statistics for the scale-error were computed using the methods outlined in section 3.3. 

Red colors denote Option 0 and blue colors Option 1 for parametrization of the turbulent 

heat fluxes. 
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Figure 10. Scale-error in terms of bias between the coarse (50 km) and fine (1 km) scale 

simulations for snow water equivalent (A), net radiation (B), sensible heat fluxes (C) and 

latent heat fluxes (D). The figure shows simulations where all process parametrizations are 

set to Option 1, also for turbulent heat exchanges. The biases are computed per grid cell 

and for the whole simulation period.  



 

 
© 2019 American Geophysical Union. All rights reserved. 

 

Figure 11. Scale-error in terms of bias between the coarse (50 km) and fine (1 km) scale 

simulations for snow water equivalent (A), net radiation (B), sensible heat fluxes (C) and 

latent heat fluxes (D). The figure shows simulations where all process parametrizations are 

set to Option 1, except for turbulent heat exchanges that was set to 0 (assuming neutral 

atmospheric conditions). The biases are computed per grid cell and for the whole simulation 

period.  
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Figure 12. Scale-error in terms of RMSE between the coarse (50 km) and fine (1 km) scale 

simulations for snow water equivalent (A), net radiation (B), sensible heat fluxes (C) and 

latent heat fluxes (D). The figure shows simulations where all process parametrizations are 

set to Option 1. 
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Figure 13. Squared correlation coefficient between the scale-error and the subgrid 

topographic variability for snow water equivalent, latent heat fluxes, sensible heat fluxes and 

net radiation. Here, we defined the scale-error as the RMSE between the 50 and upscaled 1 

km resolution simulations. The topographic variability within each 50 km grid cell was 

computed using the standard deviation of the 1 km elevation model. The boxes show the 

spread for the 32 different model configurations.  
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Figure 14. SWE for the 1 km (gray shaded area), average of the 1 km (green line), and the 

50 km resolution (blue line) for winter 2010/2011 (panel a and b). Scale-error (i.e. difference 

between the 50 and 1 km resolution) for net radiation (panel c and d), sensible heat fluxes 

(panel e and f), and latent heat fluxes (panel g and h) for all 1 km grid cells (gray shaded 

area), and the averaged 1 km results (red line). For the right panels, Option 1 was used or all 

processes. For the left panels, we used Option 1 for all processes except the turbulent heat 

exchanges, which was set to Option 0. The figure shows results from the grid cell with 

highest RMSE for SWE between the 50 and upscaled 1 km resolution runs (see 

southwestern part of Norway in Figure 12). 
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Figure 15. The upper panel shows the results from the configuration using Option 1 for all 

process apart from turbulent heat exchanges, which was set to Option 0. The lower panel 

shows the results from the configuration where Option 1 was used for all processes. The 

gray shaded area shows the results from 1 km simulations contained within the 50 km 

resolution grid cell depicted by a blue line. The figure shows results from the grid cell with 

highest RMSE for SWE between the 50 and upscaled 1 km resolution runs (see 

southwestern part of Norway in Figure 12). 


