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Figure S2: Raw values of traits measured in a common garden on silver fir (Abies alba Mill.)
seedlings. Figures show scatter plots between values for all pairs of traits (lower triangle), the
distribution of each trait (diagonal), and the Pearson’s correlation coefficient and associated
p-value from a correlation test between values of all pairs of traits (upper triangle).
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Figure S3: Correlation between population mean §'3C of adult trees measured in-situ and the
additive genetic trait values of seedlings in the ten quantitative traits. Pearson’s correlation
and p-values from a correlation test adjusted for multiple testing are written on each panel
in red. The direction of significant correlations is indicated with a red line, while a black line
indicates a marginally significant correlation.
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NKS: Der nationale Kataster der Samenerntebestiide (National catalogue of seed sources)
http://www.nks.admin.ch/

IUFRO: International Union of Forest Research Organizations
https://www.iufro.org/

LWEF: Long-term Forest Ecosystem Research

https:
//www.wsl.ch/en/forest/forest-development-and-monitoring/
long-term-forest-ecosystem-research-1wf.html

Huss: Hussendorfer, E. (1997): Untersuchungen tiber die genetische Variation der Weisstanne
(Abies alba Mill.) unter dem Aspekt der In-situ-Erhaltung genetischer Ressourcen in der
Schweiz (PhD thesis ETH Zurich Nr. 11849). Beih. Schweiz. Z. Forstwes. 83: 1-151 (in
German)

Burga: Burga, CA and Hussendorfer, E (2001): Vegetation history of Abies alba Mill. (silver
fir) in Switzerland—pollen analytical and genetic surveys related to aspects of vegetation
history of Picea abies (L) H. Karsten (Norway spruce). Vegetation History and
Archaeobotany 10 (3): 151-15

WSL: Swiss Federal Research Institute WSL

a: autochthonous

la: likely autochthonous

NA: not applicable
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Supplementary Methods S1:  Estimating of the heritability,
evolutionary potential and population differentiation across the 19
populations: the effect of experimental design, covariates, sample size
and scaling

Effect of nursery design on quantitative genetic parameters

The full common garden study of (Frank et al, |[2017) consisted of 4107 observations on 91
populations and 259 families. The subset analyzed in this paper, for which genetic marker
and water use efficiency data had been collected consisted of 880 observations on 19
populations and 57 families. Seedlings were planted in seven nursery beds each with 47 row
pairs. Provenances were planted in the order of reading rows of an imaginary grid placed on
the map of Switzerland from the top left to right bottom corner. The three families were
planted one after the other, each taking up two rows. Size, growth and phenology traits were
not measured in the nursery. Height and Diameter were first measured in 2012 after the
transplantation to the common garden site, thus these measures may also incorporate
differing planting depth. In contrast, the weight of 1000 seeds were measured for each family,
which provides means of accounting for maternal effects.
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Figure A1: (a) Spatial patterns in Seed Weight, Height 2012 and Diameter 2012 in the nursery.
x (seed bed) and y (row) coordinates correspond to distances in meters. The 94 rows are
illustrated by 47 row-pairs that the three families of a population occupied. Colors reflect the
absolute values of each variable with larger values being darker red. (b) Spatial autocorrelation
with respect to the spatial arrangement in the nursery expressed with Moran’s I. Red dots
indicate significant clustering of similar values.

Fig. [A1[a) shows maps of the nursery beds with colors proportional to Seed Weight (trait
names are capitalized hereafter), and seedling’s Height and Diameter 2012 and the degree of



spatial autocorrelation (Fig. [A1|b)). Although there is clear evidence for spatial autocorrelation
in Height and Diameter 2012 related to the spatial arrangement in the nursery (Fig. [A1), we
argue that this is entirely due to population and family effects that were non-randomized. The
two lines of evidence to support this are: (i) the presence of spatial autocorrelation with respect
to spatial arrangement in the nursery is present already for Seed Weight, and (ii) the lack of
spatial correlation other than the effects of population and family for Height 2012 (Table [A1).
Thus, we conclude that it is likely that the non-randomization of populations and families did
not alter the consecutive trait measures. Yet, including Seed Weight as a covariate in models
of 2013 and 2014 traits seems useful because it potentially accounts for maternal effects.

Frank et al|(2017) used Height 2012 as a covariate to account for nursery effects when
estimating population and family variance components for all traits measured in 2013 and
2014. Height 2012 is strongly correlated with Height 2013 (Pearson’s correlation of r=0.85),
thus including it as a covariate, does not account for the temporal correlation due to repeated
measures for Height. Thus, including Height 2012 as a covariate decreased the population
and family variance components for Height and Diameter 2013 and Growth variables, while
leaving the phenology traits unaffected (Fig. [A2(a)). Thus, we did not follow the statistical
treatment used in [Frank et al|(2017).

Effect of sample size on quantitative genetic parameters

First, we assessed the effect of reduced sample size, i.e. using a subset of 19 populations out
of the 91. We were interested if quantitative genetic parameters were sensitive to number
of populations used, in other words, if they represent similar amounts of trait variation than
the larger sample. Population genetic parameters estimated using the reduced set were overall
similar to those obtained using the larger data set (Fig. [A2(b)). CV4 was the most robust sample
size, while Qg7 estimates were generally larger, which was expected given that we selected
a subset of populations representing diverse ecological conditions. The ordering of the traits
in terms of 4> and Qg7 were also different, which most likely reflects the choice of particular
populations.

Second, we assessed the effect of having only three families per population, which is the
bear minimum for estimating population genetic differentiation. The low number of families
also affected the study of|[Frank et al{(2017), however, they partly compensated for it by having
a large number of populations (so-called "genecological" approach). We used the full data set
of 91 populations to "borrow" families from nearby populations, thereby increase the number
of families. We select populations that are nearby our 19 populations taking into account the
following criteria: populations had to be no further than 35 km from each other, they had to
be in same valley or in the neighbouring valley with the same exposition, and had to have no

Table A1: Model comparison of mixed effects models fitted with Ime in R with family nested
in population as random effects and with and without Seed Weight as a covariate and with
and without spatial autocorrelation structure (SpAC).

Seed Weight SpAC df AIC BIC  logLik Ratio p-value

no no 4 32840 32865 —16416
no yes 6 32843 32881 —16416 1 0.700
yes no 5 32796 32827 —16393
yes yes 7 32799 32843 —16393 1 0.677




more than 200 m difference in elevation. According to these criteria, we were able to increase
the number of families in 9 populations, so that the average number of families was 5.3 (range:
3-12). Our analysis showed that the resulting parameter estimates were extremely similar for
all three parameters to those obtained with three families only (Fig. [A2]c)).

Is the additive genetic variance homogeneous across populations?

Estimating the additive genetic variance from populations across a heterogeneous landscape
involves the assumption that the additive genetic variance is constant across the sampling
area. Indeed, the global population parameters presented on Fig. [A2(a), and thus the results
presented in Frank et al| (2017), assume a common additive genetic variance across
Switzerland. In order to test if such an assumption is reasonable, we estimated two
standardized measures of the additive genetic variance, 4> and CVy, for the main geographic
regions of Switzerland separately using the full data set of 91 populations.

Switzerland is divided into six main forestry regions based on a phylogeographic study
(Burga & Hussendorfer, 2001). We pooled these regions to three regions to assure that each
region have a sample size of at least 880 to make it comparable with our study using 19
populations. As a result, the three regions had 1247 (Plateau), 1699 (Alps), and 884 (South)
observations. We found that 4> and CV, were relatively consistent across regions (Fig. .
Not surprisingly, CV4 was more consistent across regions than h? because the latter is
dependent on the environmental variance, which is likely different among the regions. These
results suggest that regardless of the different demographic history and potential lack of
gene flow between the regions separated by high mountain passes, the additive genetic
variance is of similar magnitude across the landscape across the different traits.

In conclusion, assessment of the effect of geographic region and sample size highlights
that assuming a common additive genetic variance across either 90 or 19 populations without
accounting for their demography and potentially differing selection pressures stays relatively
robust, but not free from potential biases. Overall CV4 was more stable with respect to sample
size, family number and region. Thus, in agreement with Houle (1992), Hansen et al. (2011),
the mean standardized measure of the additive genetic variance seems more appropriate as a
measure of the evolutionary potential and for comparative purposes.
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Figure A2: Heritability (h?), additive genetic coefficient of variation (CV4) and genetic
differentiation between populations (Qsr) estimated using four different versions of a mixed
effects model fitted with Ime in R with family nested in population as random effects and block
in the common garden as fixed effect, and covariates as indicated in the legend. SpAC stands
for spatial autocorrelation structure. The model with covariate Height 2012 was used in Frank
et al{(2017). (a) using the full data set from Frank et al, (2017); (b) using the 19 populations
studied herein; (c) using the 19 populations studied herein, but with increasing the number of
families per population by pooling nearby populations.
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Supplementary Methods S2: Estimating the demography of the 19
silver fir populations

Estimating the demography of 19 populations is a high dimensional estimation problem. We
used the admixture F model (AFM), which assumes that the current populations are derived
from a single, non-sampled, ancestral population (Karhunen & Ovaskainen, 2012). The
method of (Ovaskainen et al}|2011) also relies on this assumption. For parameter estimation,
a Metropolis-Hastings algorithm is implemented in the R package RAFM
Ovaskainen, 2012). We ran ten independent Markov chains of the AFM model using a
burn-in of 30,000 iterations followed by 10,000 iterations for estimation with a thinning
interval of ten. The estimated posterior distribution of the coancestry matrix is 19 by 19, and
it is challenging to use directly this matrix for convergence diagnostics. Thus, we calculated
the Fsr from each matrix to calculate the convergence diagnostics using the R package coda
(Fig. [A4). Single chain diagnostics indicated satisfactory convergence (Table[A2). All chains
passed Heidelberger’s test (Heidelberger & Welch, [1981). Geweke’s statistics were calculated
using the default window sizes, 0.1 and 0.5. We found that z-scores were between -1.96 and

1.96, indicating convergence (Geweke, 1991).
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Figure A4: The posterior distribution of Fsr calculated from the posterior distribution of
the 19 by 19 coancestry matrix across ten independent chains of the Metropolis-Hastings
algorithm.

Mixing of the chains was assessed using Gelman’s mean potential scale reduction factor
(Gelman & Rubin, [1992). A value of one indicate that the variance between and within chains
is equal. Different Markov chains reached slightly different optima, in particular, two chains
had a lower Fgr than the others (Fig. and [A5). The mean potential scale factor was 1.09,
with an upper credible interval of 1.19. Thus, we estimated the posterior mean coancestry
matrix from each Markov chain and averaged them across the ten Markov chains.




Table A2: Single chain convergence diagnostics. The posterior distribution of Fgr was
calculated from the posterior distribution of the 19 by 19 coancestry matrix across ten
independent chains of the Metropolis-Hastings algorithm.

Chain Heidelberger and Welch Geweke

result p-value z-score
1 passed 0.63 —1.21
2 passed 0.30 0.25
3 passed 0.74 0.53
4 passed 0.78 1.07
5 passed 0.63 —1.21
6 passed 0.05 1.81
7 passed 0.22 1.31
8 passed 0.78 —0.37
9 passed 0.50 —0.67
10 passed 0.09 0.86

To further validate the results of the AFM model, we compared it to the Bayesian clustering
algorithm implemented in STRUCTURE v.2.3.4 Pritchard et al. (2000). We used the admixture
model with correlated allele frequencies Falush et al| (2003), which is the closest model to
AFM. Further, we included sampling location information to improve clustering performance
("locprior model", Hubisz et al| (2009)), an additional information that cannot be accounted
for in AFM. We estimated the prior population allele frequency parameter (1) from the data,
as the default of 1 is not necessarily a good choice for SNP data, where most minor alleles
are rare. We estimated A using K = 1 to avoid non-identifiability issues with the other hyper-
parameters (4, o, F). A was consistently around 0.65 across ten repeated runs (range: 0.63-0.66,
median: 0.65). Then, we tested K values from 1 to 19 using ten independent Markov chains for
each K, and 500,000 burn-in iterations and 500,000 iterations for estimation of the membership
coefficients. Different number of clusters (K) were compared with Structure Harvester (Earl
et al, |2012) using the LnPr(X|K) and Evanno et al’s (2005) method. Admixture coefficients
were averaged across ten repeated runs using CLUMPP v.1.1.2 Jakobsson & Rosenberg (2007)
using the Greedy algorithm for any K>3 and large-K-Greedy for K>5.

STRUCTURE and AFM results were compared for each K using a Mantel test using the
ecodist R package (Goslee & Urban,2007). We calculated a distance matrix from the coancestry
matrix and compared to a distance matrix calculated from the CLUMPP outfiles for each K. The
individual coancestries of the CLUMPP outfiles were first reduced to population coancestries
by taking the mean coancestry of the individuals within a population for each K yielding a 19
x K matrix for K = 2,...,19. Dendrograms from AFM and STRUCTURE were also compared
visually using the R package dendextend (Galili, 2015).

The software STRUCTURE using the log likelihood criteria suggested five as optimal
number of clusters, nevertheless, additional increase in the log likelihood is suggestive of
deeper hierarchical structure (Figure [A6). The highest similarity between AFM and
STRUCTURE was achieved for K = 4 (Figure and [A8). STRUCTURE also generally
confirmed the East-West differentiation as first level structure and several parts of the
dendrograms from the two algorithms were identical (Figure [A8). For comparison, the mean
Mantel statistic between all pairs of coancestry matrices from the ten independent chains
was 0.928 (range: 0.854 - 1). Thus, on average, the ten different AFM chains were more



similar to each other than AFM to STRUCTURE, there were AFM chains just as similar to
each other as AFM to STRUCTURE.
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Drift distances between populations estimated using ten independent Markov

chains of the AFM model.

Figure A5

Each panel corresponds to a Markov chain. Distances were

calculated from the posterior mean coancestry matrix to draw the dendrogram. Note that the
final coancestry between populations used for inference of adaptive divergence in the main
text was the mean of the posterior means fron® ten independent Markov chains.
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Figure A6: The log-likelihood from STRUCTURE from K = 2 to 19.
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Supplementary Methods S3: Details of the modifications to the
methods proposed by Ovaskainen et al.| (2011) and Karhunen et al.
(2014)

Following the notation of |Ovaskainen et al| (2011), if we consider only additive effects, the
vector of additive values of all traits for individual i is a;, and the matrix of additive vectors
for all individuals is A = (a;);. Then, the mean additive value of population X, a§, can be
obtained as the mean of the additive values of all individuals in population X, and the matrix
of additive vectors for all populations is A” = (ak)y. When populations are derived from a
common ancestral population and the trait values are normally distributed, under drift, the
matrix of population-level effects, AP, is expected to follow the multivariate normal

distribution as

AP ~N(p®1,,26G'®6"), (1)

where U is the vector of expected additive trait means determined by the allele frequencies
in the ancestral population, np is the number of populations and I,,, is an np X np identity
matrix, G* is the ancestral variance-covariance matrix, 87 is the population-to-population
coancestry matrix, and @ is the Kroenecker product. 6” can be estimated assuming the
admixture F-model, while u, AP, and G* can be co-estimated using the Bayesian
mixed-effects animal model accounting for the family structure of the common garden (i.e.
the pedigree) and O (Ovaskainen et al, [2011). Then, the additive genetic
variance-covariance matrix of the contemporary populations assuming no selection, G, can
be estimated as G = 2G*(1 — 65), where 65 is the mean within-population (or self)
coancestry of all populations, thus the drift distance of the contemporary populations from
the ancestral population. Here, we estimated the heritability of traits and the genetic
correlation between trait pairs as the proportion of the observed phenotypic variance and
covariances that are additive (i.e. using G) (Falconer & Mackay, 1996). The evidence for
selection can be summarized using the S-statistic calculated as the Mahalanobis distance
between A” and the distribution of equation S = 0.5 indicates consistency with neutrality,
S = 0 implies a match with purifying, and § = 1 with diversifying selection. Thus, S
measures the overall signature of selection across all populations.

In this study, we assess to what extent the particular populations deviate from their neutral
expectation. Population X, whose 95% of the posterior distribution of af is outside of the

neutral envelop defined as p + 1/2GA@% strongly contributes to the overall selection signal
captured by the S statistic. The neutral envelop can be uni- or multi-variate depending if one or
multiple traits are studied. Our motivation for this population-wise evaluation of divergence
is that a single S-statistic cannot distinguish between the two scenarios of many populations
that are slightly diverged or a single/few populations that are diverged to a great extent.

The H-statistics measure if the distance between the populations’ mean additive trait
values is more similar to the environmental distances than expected based on drift
(Karhunen et al| 2014). The original H-test is based on the Mantel test statistic, i.e. the
product moment between the distance matrices of environment and traits. As the covariance
is not only influenced by the correlation between the matrices but also by the absolute values
of trait differences, the original H-test may yield false positive results. In particular, in cases
with strong evidence for selection, the H statistic can be high (i.e. close to 1) even when
selection is uncorrelated with the tested environmental driver (Fig. @I) For this reason, we
propose the use of the H* statistic, which is the Pearson or standardized Mantel statistic,
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thus the H*-test can be viewed as a standardized version of the H-test. We note that the
superiority of a standardized Mantel statistic has already been pointed out in the context of
spatial distance matrices (Legendre & Fortin, |[2010).

0.8

0.6

H statistic

o
04 o Height 2013
6.® & A Height 2014

@ + Diameter 2013

X Diameter 2014
<& Terminal Bud Break 2013
v Terminal Bud Break 2014
® Lateral Bud Break 2013
* Growth Rate 2013

o Growth Duration 2013

A Growth Cessation 2013

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

H* statistic

0.2 H

Figure A9: Comparison of the H- and H"-statistics for the 10 studied traits. Each point
indicates the H- and H*-statistics for one of the environmental variable listed in Table 1 of
the main text.
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