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Abstract1

Heterogeneous environments, such as mountainous landscapes, create2

spatially varying selection pressure that potentially a�ects several traits3

simultaneously across di�erent life stages, yet little is known about the4

general patterns and drivers of adaptation in such complex settings. We5

studied silver �r (Abies alba Mill.) populations across Switzerland and6

characterized their mountainous landscape using downscaled historical7

climate data. We sampled 387 trees from 19 populations and genotyped8

them at 374 single-nucleotide polymorphisms (SNPs) to estimate their9

demographic distances. Seedling morphology, growth and phenology traits10

were recorded in a common garden, and a proxy for water use e�ciency11

was estimated for adult trees. We tested whether populations have more12

strongly diverged at quantitative traits than expected based on genetic drift13

alone in a multi-trait framework, and identi�ed potential environmental14

drivers of selection. We found two main responses to selection: (i)15

populations from warmer and more thermally stable locations have evolved16

towards a taller stature, and (ii) the growth timing of populations evolved17

towards two extreme strategies, "start early and grow slowly" or "start late18

and grow fast", driven by precipitation seasonality. Populations following19

the "start early and grow slowly" strategy had higher water use e�ciency20

and came from inner Alpine valleys characterized by pronounced summer21

droughts. Our results suggest that contrasting adaptive life-history22

strategies exist in silver �r across di�erent life stages (seedling to adult),23

and that some of the characterized populations may provide suitable seed24

sources for tree growth under future climatic conditions.25
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Introduction29

Phenotypic di�erences between populations may re�ect neutral, adaptive,30

and/or plastic processes (Kawecki & Ebert, 2004). Neutral processes often31

lead to phenotypic di�erentiation between populations at the species’32

range edges, where populations are small and isolated (e.g. Hampe & Petit,33

2005, Kawecki, 2008). The relative importance of adaptation and plasticity34

ultimately depends on the degree of environmental heterogeneity and the35

dispersal ability of the species (Via & Lande, 1985, Sultan & Spencer, 2002,36

Chevin & Lande, 2010, Polechova, 2018). Local adaptation is likely to37

establish when the spatial scale of environmental variation is greater than38

the dispersal ability of the species, while plasticity is likely to be favoured39

with a �ne-scale environmental variability and/or in the presence of40

long-distance gene �ow.41

Forest trees have large e�ective population sizes, species ranges that42

span large spatial scales, a long-life span and a predominantly outcrossing43

mode of reproduction (Petit & Hampe, 2006). Long-distance gene �ow is44

also common in forest trees and its role in adaptation has been recognized45

(Kremer et al., 2012). These characteristics largely favour plasticity, which46

has been illustrated by multi-site common garden trials, for example for47

growth (e.g. Rehfeldt et al., 2002) or phenology (e.g. Vitasse et al., 2010, De48

Kort et al., 2016); see further references in Kremer et al. (2012).49

Nevertheless, local adaptation is also common in forest trees, with ample50

evidence for adaptive divergence along continuous environmental clines,51

such as those created by latitude or distance to the sea in the boreal zone,52

or altitudinal gradients in the temperate zone (Savolainen et al., 2007,53
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Alberto et al., 2011, Lind et al., 2018).54

While adaptation has been extensively studied along environmental55

gradients, much less is known about its general patterns and drivers in56

heterogeneous environments. Indeed, populations across heterogeneous57

landscapes may display rapid and often non-predictable changes in genetic58

diversity and trait divergence (Yeaman & Jarvis, 2006). Mountainous59

regions of the Northern Hemisphere often create such heterogeneous60

landscapes for many species. Here, post-glacial recolonization not only61

traced the climatic niche, but was also constrained by topography, creating62

complex patterns in species distributions and demography (Hewitt, 1999).63

Environmental drivers of adaptation in mountain ranges can go undetected64

with coarse-scale climate data (e.g. Austin & Van Niel, 2011, Ruosch et al.,65

2016). The development of many �ne–scale environmental data sets66

provides new opportunities to study adaptation across mountainous67

landscapes (e.g. Karger et al., 2017, Hengl et al., 2017). It is also increasingly68

recognized that spatial heterogeneity in climate in mountainous landscapes69

represents an important spatial bu�er in response to climate change (e.g.70

Ackerly et al., 2010).71

The phenotypic signature of spatially varying selection across72

populations can be assessed using QST , a measure of genetic di�erentiation73

between populations (Whitlock, 2008). Comparing QST with divergence at74

neutral genetic markers (FST ) provides a means for identifying locally75

adapted populations (Whitlock, 2008, Whitlock & Guillaume, 2009). In76

principle, a comparison of QST to FST controls for demography, but77

insu�ciently so, because the complex history of potentially numerous78

populations cannot be adequately represented by FST . This issue has been79
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widely recognized and alternative solutions have been suggested (e.g.80

Chenoweth & Blows, 2008, Martin et al., 2008). The most complete81

approach has been proposed by Ovaskainen et al. (2011), which uses a82

statistically more powerful and biologically more meaningful null83

hypothesis: it accounts for the neutral demographic distances among all84

populations to derive a null expectation of trait divergence (see85

applications in (e.g. De Kort et al., 2016, Schäfer et al., 2018)). Furthermore,86

most past studies assessed traits in isolation from each other and focus on87

traits that are likely a�ected by the studied environmental gradient. The88

method of Ovaskainen et al. (2011) can be used to assess adaptive89

divergence on multiple traits at a time, thus potentially identify adaptive90

life-history strategies.91

Most evidence for adaptive divergence in forest trees comes from92

seedling traits measured in common garden experiments. Although93

multiple seedling traits can be used to identify adaptive life-history94

strategies, it is di�cult to assess if results are transferable to natural95

populations (e.g. Neale & Kremer, 2011). Indeed, trees have a long life span96

with two characteristic life-history stages, seedling and adult, where97

di�erent selection pressures and physiological processes are operating98

(Petit & Hampe, 2006). Connecting these two life stages is essential because99

seedling mortality has the largest impacts on the structure and function of100

future forests, while the death of big trees causes the longest lasting carbon101

losses (McDowell et al., 2013). Tree breeders have long known that seed or102

seedling traits are often poor predictors of adult traits in �eld conditions103

(e.g. Resende et al., 2012), with some exceptions, e.g. wood traits (Gaspar104

et al., 2008) or seed size in pines (Zas & Sampedro, 2015). Measures of adult105
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growth traits in-situ may also be uninformative when they are a�ected by106

management practices and competition, even if this e�ect is less107

pronounced for shade-tolerant species, such as silver �r (Kunstler et al.,108

2011). In contrast, carbon stable isotope discrimination, δ 13C, may109

represent a suitable trait for adult trees. δ 13C is related to the intrinsic110

water-use e�ciency, a measure of relative water loss per molecule carbon111

acquired in the leaf, and has been advocated as a proxy for drought112

tolerance (Farquhar et al., 1989). In vascular plants, δ 13C is to a large extent113

genetically determined (Dawson et al., 2002), and several important114

quantitative trait loci (QTL) have been identi�ed in forest trees (Brendel115

et al., 2002, 2008). Further, for example, in Picea mariana, δ 13C was highly116

negatively genetically correlated to growth, while being less117

environmentally sensitive than growth, thus the authors suggested this118

trait for indirect selection for growth (Johnsen et al., 1999). Overall, δ 13C is119

one of the key traits for understanding the genetics of drought tolerance120

(Moran et al., 2017).121

Here, we study adaptive divergence patterns in populations of silver �r122

(Abies alba Mill.) across a highly heterogeneous mountainous landscape.123

We asked whether populations have developed adaptive life-history124

strategies in response to local climatic conditions that are consistently125

present from the seedling to adult stage, while controlling for demographic126

distances between populations. Seedling morphology, growth and127

phenology were recorded in a common garden on half-sib families. We128

hypothesized that traits most likely do not evolve independently, thus we129

used a multi-trait quantitative genetic approach to identify correlated130

responses to selection. Adult δ 13C was measured in-situ on unrelated131
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individuals, and was used to correlate the populations’ mean water use132

e�ciency in the �eld with the populations’ mean life-history strategies in133

seedlings. We developed a set of �ne spatial scale historical climate134

variables to identify potential drivers of locally adapted life-history135

strategies. Finally, we estimate the evolutionary potential in seedling136

quantitative traits to assess the future of silver �r populations in137

Switzerland.138

Material and Methods139

Study system140

Silver �r is an ecologically and economically important European conifer. It141

can likely tolerate episodes of drought due to its deep rooting system (e.g.142

Lebourgeois et al., 2013, Vitali et al., 2017) and its high tolerance to bark143

beetle attack (Wermelinger, 2004). We selected 19 putatively autochthonous144

silver �r populations across a highly heterogeneous Alpine region across145

the Swiss Alps, Pre-Alps, Central Plateau and Jura Mountains (Fig. 1a,146

Supporting Information Fig. S1 and Table S1). The selection was based on147

various data sources, including the national register of seed stands (NKS,148

for autochthony/allochthony information), national forest inventory (NFI,149

for the distribution of silver �r and stand histories), the long-term forest150

ecosystem research (LWF), and after consulting forest experts. In 2009,151

seeds were collected from three trees, and in 2013 and 2016, needles were152

sampled from 19 to 22 adult trees per population (total of 387 trees),153

including the previously sampled trees. A minimum distance of 100m was154
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respected between the sampled trees to minimize the risk of collecting155

closely related trees (e.g. parent-o�spring or sibs). Note that it is common156

practice to sample adult trees with only 20m (Mosca et al., 2012) or 37m157

(Roschanski et al., 2016) minimum distance for population samples.158

Based on palynological evidence, it is likely that the Swiss range of159

silver �r was colonized from south to north after the Last Glacial160

Maximum. The species most likely reached the southern slopes of the Alps161

between 10 and 9 kyr BP and the northern slopes between 8 and 5 kyr BP162

(Van der Knaap et al., 2005, Liepelt et al., 2009, Ruosch et al., 2016).163

Range-wide patterns of chloroplast and mitochondrial DNA variation164

(Liepelt et al., 2002) and isozyme data (Burga & Hussendörfer, 2001) from165

extant silver �r populations suggest that the Swiss Alps were colonized166

from a single ancestral refugial population situated in the Central and/or167

Northern Apennines, even though the potential contribution of eastern168

refugial populations cannot be excluded.169

Adult tree data170

All adult trees were genotyped at 374 single-nucleotide polymorphism171

(SNP) loci originating from three di�erent sources. Our aim was to estimate172

demographic distances between populations, so we attempted to select173

principally neutral markers. First, we used 220 out of 267 SNPs from174

Roschanski et al. (2016): we excluded the 25 SNPs that coded for175

non-synonymous mutations and 22 others where we had more than 10%176

missing data. Second, we selected 110 new putatively neutral SNPs from177

the transcriptome assembly of Roschanski et al. (2016), based on respective178

values of Tajima’s D between 2 and -2 and dN/dS between 0.9 and 1.1, and179
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with low LD with the existing 220 SNPs (r2 < 0.1 and p-value > 0.05).180

However, only 25 of these SNPs were successfully genotyped, most likely181

because the primer sequences were not speci�c enough (results not182

shown). Third, we selected 149 SNPs from the control panel of Mosca et al.183

(2012) that had less than 5% missing data in that study. Of these, 129 SNPs184

were successfully genotyped. Both DNA isolation and genotyping was185

performed using KASP arrays and the all-inclusive service from LGC186

Genomics (Middlesex, UK).187

Ten of the adult trees per population were measured for δ 13C. Needles188

were sampled in spring 2016 for 2015 grown needles. Approximately 80 mg189

freeze-dried needle material was milled in 2 ml polypropylene tubes190

equipped with a 5 mm glass ball at 30 Hz for 4 min. Subsamples of191

approximately 5 mg needle powder were combusted in an elemental192

analyzer (Flash EA by Thermo Finnigan,D- Bremen) coupled to an isotope193

ratio mass spectrometer (Delta XP by Thermo Finnigan,D- Bremen) by a194

Con�o II interface (Thermo Finnigan,D- Bremen).195

Seedling common garden data196

In April 2010, from three mother trees per population (subsequently called197

families) approximately 2000 seeds were sown in open-air nursery beds at198

the Swiss Federal Research Institute WSL in Birmensdorf, Switzerland199

(47◦21′42′′N, 8◦27′22′′E , 550 m a.s.l.). Families and populations were not200

replicated or randomized in the nursery because the soil was well mixed201

and the terrain was mostly �at, but the position of each seedling was202

recorded to check and control for spatial auto-correlation (see203

Supplementary Methods S1). In spring 2012, at least 12 randomly selected204

10



viable seedlings per family were transplanted to an open experimental �eld205

site at Brunnersberg, a former pasture on a south facing slope (20-24%206

incline) in the Swiss Jura Mountains (47◦19′35′′N, 7◦36′42′′E , 1090 m a.s.l.).207

Seedlings were planted at 30 × 40 cm spacing, provenances and families208

were randomized across 16 blocks. Both the nursery and common garden209

locations were within the natural range of silver �r. Note that the data210

presented here were part of a larger experiment involving more species and211

populations, see Frank et al. (2017b) for more details.212

Phenotypic measurements used herein were performed during the213

fourth and �fth growing seasons, in 2013 and 2014 respectively. The 2013214

measures were published in Frank et al. (2017b); see also Supplementary215

Methods S1. Traits included Terminal Bud Break (2013 and 2014, variable216

names capitalized hereafter) and Lateral Bud Break (2013) de�ned as the217

Julian date when the membrane below bud scales was broken and the �rst218

green needles became visible, Growth Cessation (2013) de�ned as the date219

when 95% of terminal leader height growth was achieved, Maximum220

Growth Rate (2013) calculated as the �rst derivative of the growth curve221

�tted to �ve to 17 height measures recorded during the growing season222

following the procedure proposed in Frank et al. (2017b), Growth Duration223

(2013) de�ned as time from Terminal Bud Break to Growth Cessation,224

Height (2013 and 2014) de�ned from the ground surface to the uppermost225

bud base, and Diameter (2013 and 2014) at 2 cm above ground surface. The226

latter two were measured after Growth Cessation. For clarity, we call227

Height and Diameter morphology traits, Maximum Growth Rate and228

Duration growth traits, and Terminal/Lateral Bud Break and Growth229

Cessation (equivalent to bud set) phenology traits. In total, we analyzed 880230
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observations. All traits were normally distributed, or could be231

approximated with a normal distribution in the case of discrete traits, and232

correlated with one another to a varying extent (Supporting Information233

Fig. S2).234

Environmental data235

We used downscaled historical climatic data to characterize environmental236

di�erences among populations. In order to obtain the closest237

representation of the climate of the period when the current populations238

were established, we used data from 1 January 1901 to 31 December 1978.239

The choice of this period was justi�ed by two facts: (i) no240

observation-based climate data go back further in time, and (ii) starting241

from approximately 1980, the temperature time series are overwhelmed by242

the e�ect of global warming (Harris et al., 2014). We used statistical243

downscaling using the delta method (Hay et al., 2000) to obtain 1 km grid244

scale monthly minimum, maximum and mean temperature, and total245

precipitation �elds for this period. The reference climatic data set was the246

0.5◦ resolution CRU TS v. 4.01 data (20 September 2017 release, Harris et al.247

(2014)) available for the 1 January 1901 - 31 December 2016 period, while248

the downscaling was based on the overlapping period (i.e. 1 January 1979 -249

31 December 2016) with the 1 km resolution CHELSA data (Karger et al.,250

2017). Further, soil available water capacity (AWC) was obtained at a 250 m251

resolution from the Soilgrids data base (Hengl et al., 2017).252

We calculated the 19 bioclimatic variables (Booth et al., 2014) using the253

R package dismo (Hijmans et al., 2017), and two potential254

evapotranspiration (PET) indices and four standardized precipitation -255
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evapotranspiration index (SPEI) variables using the R package SPEI256

(Beguería & Vicente-Serrano, 2017), two indicators of late frost, and the257

self-calibrated Palmer’s drought severity index or scPDSI (Wells et al.258

(2004), Table 1). SPEI and scPDSI were summarized as measures of drought259

severity and frequency across the full monthly time series (Table 1). All260

climatic variables were considered as raw values or as deviations from the261

common garden environment in Brunnersberg (based on the CHELSA data262

for the period of 1 January 1979 - 31 December 2013). However, the two263

ways of calculating the climate led to the same conclusions (results not264

shown), so we present results with the raw variables only for ease of265

interpretation.266

Statistical analysis267

We used the statistical framework developed by Ovaskainen et al. (2011)268

and Karhunen et al. (2014) with slight modi�cations. Brie�y, this269

methodology integrates genetic, phenotypic and environmental data to test270

if trait di�erentiation measured in a common garden experiment re�ects271

local adaptation, while accounting for past demography inferred from272

supposedly neutral molecular marker data, and to identify potential273

environmental drivers. The three steps of this analysis were (i) inference of274

the demography, (ii) estimation of the additive genetic trait values in a275

supposed ancestral population and contrasting these with their equivalents276

in the contemporary populations, and (iii) assessing if the deviations of277

additive genetic trait values from the ancestral values can be explained by278

environmental variation. We detail these steps in the following paragraphs279

(see also Supporting Information Fig. S1 for an overview).280
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First, we estimated the coancestry matrix (a.k.a. drift distances)281

between all pairs of populations from variation in SNP allele frequencies282

assuming an admixture F-model (AFM) and using a Metropolis-Hastings283

algorithm implemented in the R package RAFM (Karhunen & Ovaskainen,284

2012). Further, we compared the posterior mean coancestry matrix against285

that estimated using the Bayesian clustering algorithm implemented in the286

software STRUCTURE v.2.3.4 (Falush et al., 2003). See details of the287

demographic inference in Supplementary Methods S2.288

Second, we used the method of Ovaskainen et al. (2011) to test if the289

estimated additive genetic trait values of the contemporary populations290

have diverged more from the ancestral value than expected by genetic drift291

only. We used a slightly modi�ed version of the R package driftsel292

(Karhunen et al., 2013) that co-estimates the ancestral variance-covariance293

matrix (GA), the ancestral mean additive genetic trait values and the e�ect294

of covariates (i.e. the �xed e�ects), and the population e�ects (i.e.295

deviations from the ancestral mean) using a Bayesian mixed-e�ects animal296

model. This model is di�erent from a classical animal model (reviewed in297

Kruuk et al. (2008)) in that it accounts simultaneously for the family298

structure of the common garden (i.e. the pedigree) and the drift distances299

(i.e. the demography) previously estimated from genetic marker data. In300

Ovaskainen et al. (2011) a single statistic, the S-statistic, is calculated to301

evaluate the overall evidence for selection across all populations. S = 0.5302

indicates consistency with neutrality, S = 0 implies a match with purifying,303

and S = 1 with diversifying selection. In this study, we also assess to what304

extent the particular populations deviate from their neutral expectation305

(see Supplementary Methods S3 for details).306
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We tested all traits individually and all pairwise combinations between307

traits measured in the same year. Seed weight and block of the common308

garden were included as covariates. We ran three independent Markov309

chains of the Bayesian animal model using a burn-in of 50,000 iterations310

followed by 30,000 iterations for estimation for single traits, and a burn-in311

of 70,000 iterations followed by 30,000 iterations for estimation for trait312

pairs, both with a thinning interval of 20. The three independent chains313

converged to similar optima and led to the same conclusions concerning314

the signature of selection (potential scale reduction factor of the S-statistic315

ranged between 0.99 and 1.1 across all traits) for the single trait and two316

trait analysis. However, with more than two traits the convergence was no317

longer optimal, so we did not consider these higher order trait interactions.318

Third, we attempted to identify the potential environmental drivers of319

adaptive divergence between populations. We used the H∗-test, which can320

be viewed as a standardized version of the H-test developed by Karhunen321

et al. (2014) (see Supplementary Methods S3 for more details). To avoid a322

multiple testing burden of 34 environmental variables in Table 1, we323

performed a Principal Component Analysis (PCA) on the standardized and324

scaled variables. The �rst �ve axes explained 84% of the variance, thus we325

performed a H∗-test for each of these PC axes only. The variables with the326

highest loadings on each of the PC axes were the following: PC1: bio.2327

(Mean Diurnal Range) and Elevation, PC2: bio.10 (Mean Temperature of the328

Warmest Quarter) and PET.harg, PC3 and 4: none, PC5: bio.8 (Mean329

Temperature of the Warmest Quarter) and bio.15 (Precipitation330

seasonality). See Supporting Information Table S2 for the loadings of all331

environmental variables on the �rst �ve PC axes. The novel332
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methodological aspects detailed in Supplementary Methods S3, i.e. the333

procedure to evaluate adaptive divergence at each population, and the334

H∗-test are now implemented in the R package driftsel1.335

For a comparison with the Ovaskainen et al. (2011) approach, we also336

performed a classic QST −FST test using the bootstrap procedure described337

in Whitlock & Guillaume (2009) implemented in the R package QstFstComp338

(Gilbert & Whitlock, 2015)2. We considered a one-tailed test, because we339

were interested in testing for adaptive divergence only, thus QST being340

signi�cantly greater than FST .341

Finally, the resemblance between the family members measured in the342

common garden experiment can also be exploited to estimate the343

evolutionary potential of the studied traits. Two commonly used measures344

of evolutionary potential are the heritability (h2=VA/VP) and the additive345

genetic coe�cient of variation (CVA=σA/M) (Mittell et al., 2015), where VA346

is the additive genetic variance and σA is its square–root, VP is the total347

phenotypic variance and M is the trait mean. CVA is dimensionless,348

independent of other sources of variance, thus has been advocated for349

comparisons between traits (Houle, 1992, Hansen et al., 2011).350

Results351

Population history352

The STRUCTURE analysis and the estimated drift distances among353

populations using AFM indicated the presence of two main clusters that354

1https://github.com/kcsillery/driftsel
2https://github.com/kjgilbert/QstFstComp
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correspond to Eastern and Western Swiss populations (Fig. 1). In addition,355

the population POS did not belong to either of these two groups, which is356

plausible given its isolated geographic location on the south side of the357

Swiss Alps (Fig. 1). The posterior mean global FST across the 19358

populations based on the coancestry matrix was 0.0184 (95% credible359

interval: 0.0167, 0.0202). In contrast, FST estimated with the Whitlock &360

Guillaume (2009) approach was 0.0056 (95% con�dence interval: 0.0051,361

0.0061). Both methods show that FST is small, which re�ects recent362

divergence between Swiss populations (approximately 200 generations if363

we assume a colonization 8 kyr BP and a generation time of 40 years) and364

ongoing gene �ow due to long-distance dispersal. Further, FST from driftsel365

is likely lower because driftsel explicitly models the demographic distances366

between populations, and it is less sensitive to the level of polymorphism in367

marker loci (Karhunen & Ovaskainen, 2012). Demographic distances368

between populations estimated using RAFM or the software STRUCTURE369

were similar; the highest similarity between the two was achieved for370

K = 4 in STRUCTURE (Mantel statistic of 0.891, which is similar to371

deviations between di�erent chains of AFM; see Supplementary Methods372

S2 for more details).373

Adaptive trait divergence across all populations374

Similar degrees of adaptive divergence were revealed using the S-test of375

(Ovaskainen et al., 2011) and classic QST − FST comparison (Whitlock &376

Guillaume, 2009) across traits (Table 2). Using either of the methods, the377

strongest signature of selection was observed for seedling Height followed378

by the Bud Break traits, then for Growth Duration and Diameter. Traits379
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measured both in 2013 and 2014 revealed similar signatures of selection,380

but in the QST − FST test Terminal Bud Break was only marginally381

signi�cant in 2014. Maximum Growth Rate and Cessation showed no382

evidence of adaptive divergence in either of the tests due to their high383

within population variance (Table 2).384

Several trait pairs showed a signature of selection using the S-test,385

mostly those that already did so in the single trait analysis (Fig. 2a). We386

extracted the genetic correlations between traits from the posterior mean387

ancestral G-matrix (GA), and assessed if the 95% credible interval included388

zero (Fig. 2a, Supporting Information Table S3). Trait pairs that involved389

Height had the highest S statistics, but their genetic correlations did not390

di�er from zero. Bud break often had high genetic correlations with growth391

traits and also high S values. The lowest S was observed between the392

Maximum Growth Rate and Growth Cessation (Fig. 2a). We used a393

standardized Mantel test following Cheverud (1988) to compare the394

phenotypic variance-covariance matrix (P-matrix) with GA. The null395

hypothesis is no association between genetic and phenotypic matrices. The396

test was averaged across the posterior distribution of GA. Five trait pairs397

had signi�cantly di�erent GA- and P-matrices (Mantel-test, p>0.05), but398

only two had rg di�erent from zero (Supporting Information Table S3):399

Terminal and Lateral Bud Break, and Terminal Bud Break and Growth400

Duration. These two trait pairs were more strongly genetically correlated401

than expected based on the phenotypes (Fig. 2b). The posterior mean rg402

was at its maximum value for Terminal and Lateral Bud Break, which is403

likely due to developmental constrains. Further, Terminal Bud Break and404

Growth Duration also had a 38% higher genetic than phenotypic405
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correlation (Fig. 2b).406

Adaptive life-history strategies of particular populations407

Unusual trait divergence at several populations contributed to the overall408

signature of selection using the S test. Fig. 3 shows, for each trait, how409

much each population diverged from the ancestral mean and if this410

divergence is more than expected by drift. The highest number of411

populations with adaptive divergence was observed for Height (Fig. 3a–b):412

seven (in 2013) and eight (in 2014) out of 19 populations deviated from their413

neutral expectations. All these outlier populations evolved towards a414

higher mean height and no populations have been selected for reduced415

height. The S-test revealed also a signature of selection for Diameter (Table416

2), however, none of the particular populations showed unusual divergence417

(Fig. 3c–d). Yet, since there was a strong genetic correlation between418

Height and Diameter, the same populations showed the largest Diameter as419

for Height (Fig. 3a–d). The signature of selection on bud break traits was420

dominated by divergence in one population (SIR) that had unusually early421

bud break (Fig. 3e–g). Similarly, for Growth Duration, unusually longer422

growth duration was detected in two populations only, SIR and MGY (Fig.423

3i).424

In the two trait analysis, the correlated evolution of Bud Break and425

Growth Duration and Rate of particular populations became even more426

apparent (Fig. 4). SIR and MGY still showed a signature of selection, but at427

the opposite end of the trait space, and population VRG evolved towards428

late Terminal Bud Break and shorter Growth Duration. These patterns can429

be interpreted as contrasting life-history strategies. SIR and MGY followed430
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a "start early and grow slowly" strategy, i.e. they burst buds early and then431

grow for a long time at a low rate, while at the other end of trait space,432

population VRG followed a "start late and grow fast" strategy, i.e. bursts433

buds late, but then grows fast for a short period of time (Fig. 4).434

Phenology and growth traits’ posterior mean additive genetic trait435

values were signi�cantly correlated with δ 13C in adult trees measured436

in-situ (2013 Terminal Bud Break, r=-0.54, p-value = 0.033; 2014 Terminal437

Bud Break r=-0.5, p-value = 0.055; 2013 Lateral Bud Break r=-0.56, p-value =438

0.025, 2013 Maximum Growth Rate r=-0.53, p-value = 0.041; 2013 Growth439

Duration r=0.53, p-value = 0.037). The correlations with the440

phenology–growth complex were such that the "start early and grow441

slowly" seedling strategy had, on average, higher water use e�ciency in442

adults, while the "start late and grow fast" seedling strategy low water use443

e�ciency in adult trees (Fig. 4). In contrast, the other traits were not444

correlated with mean δ 13C (absolute value of r < 0.25 and p-value > 0.58).445

p-values were corrected for multiple testing using the method of correction446

for non-independent tests (Cheverud, 2001); see all additive trait447

value–mean δ 13C correlations in Supplementary Information Fig. S3.448

Environmental drivers449

Environmental PC axes explained a non-zero proportion of the trait450

divergence for most traits, but the highest correlations (>90%) were451

obtained for Height, Lateral Bud Break and Growth Duration (Table 3).452

Notice that, not surprisingly, these traits showed a signature of selection453

with the S-tests (Table 2 and Fig. 3). For each of these traits a particular454

aspect of the environment mattered. For Height, and also for Diameter to455
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some extent, environmental PC axis 1 showed the highest correlations with456

trait divergence (Table 3). The raw environmental variables that had the457

highest loadings on PC1 were variables related to the mean and variance in458

temperature, such as Annual Mean Temperature (bio.1), Elevation,459

potential evapotranspiration (PET.thorn), Late frost (late.frost2), or460

Isothermality (bio.3) (see the list of top ten variables in Table S2). Fig. 5a461

shows the full environmental space de�ned by PC1 and PC4, which was the462

second most important axis for Height: populations that evolved towards a463

taller stature are situated in the warmer and more thermally stable part of464

the climatic space.465

For the phenology–growth complex, PC axes 2 and 5 had the highest466

correlations with trait divergence (Table 3). The environmental variables467

with the highest loadings on these axes were principally variables related to468

the mean and variance in precipitation, such as Annual Precipitation (bio.12),469

Precipitation Seasonality (bio.15), Precipitation of Wettest Quarter (bio.16)470

(see the list of top ten variables in Table S2). Thus, the "start early and grow471

slowly" seedling strategy of SIR and MGY, together with their high water472

use e�ciency as adult trees (Fig. 4), has potentially evolved as a response473

to the low yearly total amount of precipitation (755mm in SIR and 801mm474

in MGY) and low precipitation seasonality (Fig. 5b). At the other end of the475

trait space, the climate of population VRG is characterized by high levels of476

yearly total precipitation (1621mm) and ample winter snow as re�ected by477

its higher precipitation seasonality (Fig. 5b).478
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Evolutionary potential479

We found the highest potential for evolution in three growth traits:480

Maximum Growth Rate, Growth Duration and Diameter, while spring481

phenology showed the lowest potential for evolution (Table 2). Estimating482

the additive genetic variance across the 19 populations and 57 families483

(three families per population) involves the assumption that the additive484

genetic variance is constant across the sampling area. We tested this485

hypothesis using the larger data set used by Frank et al. (2017b) involving486

4107 observations from 91 populations and 259 families. We found that487

estimates of CVA were not strongly a�ected by the reduction in sample size,488

and h2 and CVA were similar across three main geographic regions of489

Switzerland (Supplementary Methods S1), suggesting that our sample size490

was su�cient to estimate the evolutionary potential across the 19491

populations.492

Discussion493

Are there general patterns of adaptation across a494

heterogeneous environment?495

In this study, we found evidence for locally adapted life-history strategies496

across a heterogeneous Alpine landscape. The high number of populations497

leveraged the power of classical QST − FST tests and led to similar global498

conclusions than the S-test of Ovaskainen et al. (2011) (Table 2). However,499

using our novel methodology, we were also able to identify adaptive500
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life-history strategies in a multi-trait space and pinpoint which populations501

show a signature of adaptive divergence (Ovaskainen et al. (2011) and502

Supplementary Methods S3). In particular, we identi�ed two groups of503

correlated characters whose evolution could be driven by the504

environmental cues. First, our results suggest that the two morphological505

characters, Height and Diameter, evolve in a correlated manner, and that506

warmer and more thermally stable environments select for larger stature507

(Fig. 5a). Second, we identi�ed a phenology–growth trait complex that may508

evolve in response to precipitation. Populations from areas characterized509

by generally low levels of precipitation (i.e. with drought) evolved to start510

the growing season early and then grow slowly, and also to have a high511

water use e�ciency (Fig. 4 and 5b). These populations, SIR and MGY,512

originate from a dry inner Alpine valley of Switzerland, the Rhône Valley.513

Further, the other Rhône Valley populations, GRY and BRS, and populations514

from other areas of Switzerland with a similar climate, such as the Rhine515

valley (JEZ) and Ticino (PRA) are also the closest in the phenology–growth516

trait space to SIR and MGY (Fig. 1). In contrast, VRG, situated in a valley517

characterized by ample precipitation, evolved towards a "start late and518

grow fast" strategy. Again, independent data from adult trees corroborated519

our �ndings, VRG, and other populations from humid sites, such as GRB520

and MUO, had a low water use e�ciency (Fig. 4).521

The length of the annual development cycle of temperate trees is522

constrained between two opposing forces: maximizing the length of the523

vegetative season while avoiding late frost and summer drought. This524

life-history trade-o� is particularly important in mountainous525

environments, where the length of the growing season is often limited by526
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late snow or compromised by summer drought in dry, inner Alpine valleys.527

Our study region is relatively small, and limited to one part of the Alpine528

Range. However, the correlation between the phenology–growth529

life-history trade-o� in seedlings and water use e�ciency in adults530

provides independent evidence for this trade-o� (Fig. 4), and supports the531

existence of a general pattern of adaptation across a mountainous532

landscape. Thus, we speculate that the phenology–growth life-history533

trade-o� may be more general across other mountainous regions and534

provide a testable prediction in other mountain ranges and species.535

Why are some traits under selection and not others?536

Demonstrating selection for taller stature in a tree is not surprising because537

tall stature has numerous �tness advantages. Taller seedlings/young trees538

have access to more light and can out-compete their neighbors, and high539

stature in mature trees can facilitate pollen and seed dispersal (Petit &540

Hampe, 2006). Interestingly, at least some of the populations that appear to541

have been selected for larger stature (Fig. 3a–b) are located on the Swiss542

Plateau, where the e�ect of forest management cannot be fully excluded543

(e.g. Bürgi & Schuler, 2003). Since tree height is also a key trait from an544

economical point of view, there is a possibility that the observed patterns545

are, in part, a result of arti�cial selection for height.546

A long-standing hypothesis in evolutionary biology is that traits547

belonging to the same functional and/or developmental group are548

genetically more integrated than traits with di�erent functions or549

developmental origins (Berg, 1960, Pigliucci & Preston, 2004). Several550

empirical studies found evidence that there is greater genetic and551
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phenotypic character integration within suites of functionally or552

developmentally related traits than between them, e.g. within or between553

�oral vs. vegetative traits in plants (Waitt & Levin, 1998, Baranzelli et al.,554

2014). Here, we found two trait pairs with an ancestral G-matrix that was555

signi�cantly di�erent from the P-matrix, and in both cases the genetic556

correlation was signi�cantly higher than the phenotypic correlation. First,557

between Terminal and Lateral Bud Break the genetic correlation was one,558

which illustrates a complete character integration (Fig. 2b). Second,559

between Terminal Bud Break and Growth Duration (Fig. 4), which suggests560

that at the physiological and molecular level, spring phenology and growth561

are strongly linked.562

There is overwhelming evidence of adaptive clines for bud set (a proxy563

for growth cessation) in many forest tree species, including conifers, but564

none in Abies species (Alberto et al., 2013). Consistently, in this study,565

Growth Cessation did not show evidence of adaptive divergence. The566

explanation may lie in the deterministic bud development of Abies species567

(Cooke et al., 2012). They produce terminal buds during the summer at the568

tip of each leading branch shoot and remain dormant during the following569

winter. Each bud contains a preformed stem unit composed of internodes570

and leaf primordia that will grow to branches and photosynthesizing571

needles, respectively, during the following growing season.572

Potential limitations and caveats573

Adaptive trait divergence may be a result of local adaptation or adaptive574

phenotypic plasticity (Merilä & Hendry, 2014). To tell these two apart, one575

has to measure trait values of a particular genotype across di�erent576
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environments. Common garden studies of forest trees often observe577

site-speci�c e�ects for growth or phenology, indicative of adaptive578

plasticity (Alberto et al., 2013). For example, Santos-del Blanco et al. (2013)579

found a growth-reproduction trade-o� in Pinus halepensis, with trees in580

high stress sites investing more in reproduction and trees in low stress sites581

investing more in vegetative growth. Here, we only had a single common582

garden and the relocation to Jura did not a�ect all provenances the same583

way. Thus, we could not distinguish between local adaptation and adaptive584

plasticity. Nevertheless, even if plasticity is known to play an important585

role in explaining phenotypic di�erences, the signature of adaptive586

divergence is often con�rmed across all tested common garden sites (e.g.587

Rodríguez-Quilón et al., 2016).588

Plasticity could have also caused the observed spatial variation in δ 13C589

measured in adult trees in-situ. It appears that the importance of plastic and590

genetic factors is species speci�c even among conifers. For example, in591

Pinus sylvestris, Santini et al. (2018) suggested that plastic, and not genetic,592

responses dominate the inter-population variability in water use e�ciency,593

even though, admittedly they did not have progeny information. In594

contrast, Voltas et al. (2008) reported large genetic di�erences among595

populations in Pinus halepensis using a common garden trial. δ 13C is also596

prone to temporal, year-to-year, �uctuations because it integrates the597

photosynthetic activity through the period the tissue was synthesized,598

which is a single growing season. While measures of δ 13C are often599

correlated across years (e.g. Chevillat et al., 2005), environment can also600

have an e�ect (e.g. Rinne et al., 2015). For example, a temporal increase in601

water use e�ciency due to anthropogenic CO2 and N fertilization have602

26



been reported across di�erent forest tree species across Europe (Saurer603

et al., 2014). Finally, spatial variation, notably latitudinal and altitudinal604

trends, in δ 13C have long been demonstrated (Körner et al., 1991).605

However, it is often di�cult to pinpoint single environmental variables606

across regional or continental spatial scales that explain the variation in607

δ 13C (Leonardi et al., 2012). Thus, we estimated that any attempts for608

environmental corrections of the population mean δ 13C would lack a solid609

basis.610

Common garden studies that use seeds from wild populations may611

provide inaccurate estimates of population di�erentiation, particularly for612

early traits, due to environmental maternal e�ects (Bossdorf et al., 2005).613

Quantitative genetic studies that control for genetic and/or epigenetic614

maternal e�ects in forest trees are still rare (Alberto et al., 2013). Although615

there is evidence for long-lasting e�ects of seed size in Pines (Zas &616

Sampedro, 2015, Surles et al., 1993), such e�ects are less obvious in other617

conifers (St. Clair & Adams, 1991). Nevertheless, we controlled for the618

average seed weight of the families in the Bayesian animal model (see also619

Supplementary Methods S1), which is admittedly just one component of620

the maternal e�ects. More recently, the role of epigenetic "memory" e�ects621

has been demonstrated in forest trees (Prunier et al., 2016). For example, a622

common garden transplantation experiment of Norway spruce and623

European larch found that the previous year’s environment and624

provenance contributed to the current year’s bud break phenology625

(Gömöry et al., 2015). Similar e�ects could have played a role in our626

experiments, however, all populations experienced the same year-to-year627

environmental �uctuations.628
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The design of the common garden study su�ers from three potential629

limitations. First, for height, the results might be sensitive to630

non-randomization in the nursery (see Supplementary Methods S1).631

Seedlings were likely stressed from the replanting from the nursery to the632

common garden location in 2012, which may still be detectable in 2013633

Height (Supplementary Methods S1), and in 2014, a frost event in March634

damaged some seedlings. However, even with this new stress, the evidence635

for adaptive trait di�erentiation was almost identical to that in 2013 (e.g.636

Fig. 3). Second, we had phenotypic observations from three families per637

population, which is rather low. Nevertheless, using the full phenotypic638

data set of Frank et al. (2017b) across 91 populations, we were able to639

combine populations from nearby regions, thereby increasing the number640

of families to 5.3 families per population, on average. We found that641

estimates of evolutionary potential and also QST were extremely similar to642

those obtained from three families (Supplementary Methods S1). Third, we643

estimated the evolutionary potential, in particular, the evolvability, across644

many populations, thereby assuming that the additive genetic variance is645

constant across the study region. Laboratory experiments have shown that646

the G-matrix can change in response to drift or selection, but maybe not in647

the wild (Delahaie et al., 2017). To test this hypothesis, we estimated the h2
648

and CVA separately for the three main climatic regions as de�ned by649

foresters. We found that the evolutionary potential was similar across the650

three regions (Supplementary Methods S1), suggesting that the assumption651

of constant additive genetic variance across Swiss populations is652

acceptable. Overall we found that CVA was much more robust to any of the653

three above-cited issues than h2, in agreement with previous studies654
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(Houle, 1992, Hansen et al., 2011).655

Practical implications and the future of silver �r in the656

study area657

Silver �r has been identi�ed as a conifer with great ecological and658

economic potential for the future because of its high tolerance to bark659

beetle attacks (Wermelinger, 2004), and because it may cope well with660

drought stress (Lebourgeois et al., 2013, Vitali et al., 2017, Frank et al.,661

2017a). Nevertheless, silver �r may already be threatened in some662

Mediterranean areas, where die-back events have been documented663

(Cailleret et al., 2014), or in Southwestern Europe, where reduced growth664

has been reported (Gazol et al., 2015). In this study we found that silver �r665

was able to evolve to a taller stature in warm and thermally stable regions,666

such as the Swiss Plateau. Indeed, positive e�ects of climate warming have667

been observed in temperate forest trees, where warming enhanced growth668

(Gazol et al., 2015). Since height, diameter and growth rate have the highest669

evolvability and strongest signature of selection among the studied traits670

(Table 2), we may speculate that some populations will respond with671

enhanced growth. However, the predicted pace of climate change is much672

faster than it has been during post-glacial expansion/re-colonization, thus673

assisted migration may provide a practical solution to overcome this rapid674

rate of change (Aitken & Bemmels, 2016). Based on our results, populations675

of the Rhône and Rhine Valleys could provide drought tolerant seed sources676

for future plantations in other parts of Switzerland.677
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Data archiving678
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Table 1: Geography and environmental variables calculated for the period of 1 January 1901
- 31 December 1978 from monthly mean, minimum and maximum temperature and total
precipitation (CRU TS v. 4.01 data Harris et al. (2014) downscaled using CHELSA (Karger
et al., 2017)), and available water capacity (AWC, Soilgrids data base Hengl et al. (2017)).
Abbreviations: PET: Potential Evapotranspitation; scPDSI: Palmer’s Drought Severity Index,
SPEI: Standardised Precipitation-Evapotranspiration Index.

Variable Description Mean (Min., Max.)
Geography
Long Longitude (degrees) 8.3 (6.2,10.5)
Lat Latitude (degrees) 46.7 (46.1,47.3)
Elev Elevation (m a.s.l) 1062.2 (481,1602.5)
Slope Slope (%) 40 (0,70)
Standard bioclimatic indexes
bio.1 Annual Mean Temperature 6.1 (3.1,9.3)
bio.2 Mean Diurnal Range (Mean of monthly Tmax - Tmin)) 8.9 (8.6,9.2)
bio.3 Isothermality (bio.2/bio.7) (* 100) 23.9 (23.2,24.6)
bio.4 Temperature Seasonality (standard deviation *100) 663.7 (636.4,676.9)
bio.5 Max Temperature of Warmest Month 24.2 (21,27.4)
bio.6 Min Temperature of Coldest Month −13 (−15.8,−10)
bio.7 Temperature Annual Range (bio.5-bio.6) 37.2 (36.2,37.9)
bio.8 Mean Temperature of Wettest Quarter 9.5 (−2.6,17.7)
bio.9 Mean Temperature of Driest Quarter −1.7 (−6.1,3.9)
bio.10 Mean Temperature of Warmest Quarter 16.8 (13.8,20)
bio.11 Mean Temperature of Coldest Quarter −6 (−8.5,−3.3)
bio.12 Annual Precipitation 1176.4 (505.6,1690.9)
bio.13 Precipitation of Wettest Month 281 (128.1,432.6)
bio.14 Precipitation of Driest Month 4 (0.4,9.1)
bio.15 Precipitation Seasonality (Coe�cient of Variation) 50 (46,55.3)
bio.16 Precipitation of Wettest Quarter 641.2 (274.2,1024.7)
bio.17 Precipitation of Driest Quarter 55.6 (24.5,83.7)
bio.18 Precipitation of Warmest Quarter 277.3 (156,442.9)
bio.19 Precipitation of Coldest Quarter 222.7 (65.6,452.7)
Drought
AWC Available Water Capacity 163.9 (147.7,184.5)
PET.thorn Mean annual PET (Thornthwaite) 43.8 (37.3,51.8)
PET.harg Mean annual PET (Hargreaves) 52.6 (47.3,59.4)
SPEI.m1 Number of month with SPEI <−1 162 (144,178)
SPEI.m2 Number of month with SPEI <−2 13.8 (7,22)
SPEI.q5 5% quantile of SPEI −1.6 (−1.6,−1.5)
SPEI.q1 1% quantile of SPEI −2.1 (−2.2,−1.9)
scPDSI.m3 Number of month with scPDSI <−3 42.6 (29,53)
scPDSI.m4 Number of month with scPDSI <−4 9.6 (2,14)
scPDSI.q5 5% quantile of scPDSI −3.2 (−3.4,−2.8)
scPDSI.q1 1% quantile of scPDSI −4.5 (−4.9,−4.1)
Late frost
late.frost Min temperature of the �rst month of the year 1.7 (1.4,2)

with mean temperature > 5℃
late.frost2 Min temperature of May 4.7 (1.5,8.2)
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Table 2: Evidence of adaptive divergence across 19 Swiss silver �r (Abies alba Mill.)
populations using the QST − FST test of Whitlock & Guillaume (2009) and the S-test of
Ovaskainen et al. (2011). 2.5%, 97.5% are the lower and upper 95% con�dence intervals for
QST . The evolvability suggested by Houle (1992) was estimated using a linear mixed e�ects
model (see Supplementary Methods S1 for details).

Trait QST −FST test S-test Evolvability
QST 2.5% 97.5% p-value S CVA

Height 2013 0.18 0.05 0.42 0.003 1.00 0.100
Height 2014 0.29 0.11 0.59 0.002 1.00 0.153
Diameter 2013 0.09 0.00 0.29 0.044 0.92 0.161
Diameter 2014 0.08 0.00 0.23 0.042 0.83 0.153
Terminal Bud Break 2013 0.15 0.01 0.64 0.054 0.94 0.021
Terminal Bud Break 2014 0.18 0.04 0.57 0.025 0.86 0.021
Lateral Bud Break 2013 0.12 0.02 0.35 0.020 0.96 0.020
Maximum Growth Rate 2013 0.06 −0.02 0.28 0.133 0.67 0.184
Growth Duration 2013 0.25 0.05 0.96 0.035 0.93 0.097
Growth Cessation 2013 0.23 −2.62 2.75 0.081 0.54 0.004
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Table 3: H∗-test for the �rst �ve principal components of the environmental variables listed in
Table 1 for each trait. H∗ and the cumulative variance explained by each PC axes are expressed
as percentages. For each trait, the highest H∗ value is highlighted in bold. The variables with
the highest loadings on each of the PC axes are the following: PC1: bio.2 (Mean Diurnal Range)
and Elevation, PC2: bio.10 (Mean Temperature of the Warmest Quarter) and PET.harg, PC3
and 4: none, PC5: bio.8 (Mean Temperature of the Warmest Quarter) and bio.15 (Precipitation
seasonality)

Trait PC1 PC2 PC3 PC4 PC5
Height 2013 92 62 35 74 41
Height 2014 94 60 33 73 42
Diameter 2013 88 45 31 66 40
Diameter 2014 78 42 29 67 45
Terminal Bud Break 2013 12 84 32 68 94
Terminal Bud Break 2014 23 82 30 35 88
Lateral Bud Break 2013 17 80 16 47 95
Maximum Growth Rate 2013 51 70 31 49 86
Growth Duration 2013 08 92 56 70 93
Growth Cessation 2013 20 73 55 33 44
Cumulative Variance 38 56 70 79 84
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Figure legends959

Fig. 1. (a) Geographic location of the silver �r (Abies alba Mill.) populations indicated by a960

summary of the STRUCTURE results with K=4. Each pie shows the average coancestry of961

the sampled, on average, 20 individuals from the 19 populations from the four assumed962

genetic clusters. (b) Drift distances between populations as estimated with the admixture963

F-model (AFM) . Coancestry between populations is the mean of the posterior means from 10964

independent Markov chains. Distances were calculated from the posterior mean coancestry965

matrix to draw the dendrogram.966

967

Fig. 2. (a) The strength of selection acting on a given pair of traits measured using the S968

statistics of Ovaskainen et al. (2011), and the genetic correlation between them estimated969

from the ancestral G-matrix (see Supplementary Methods S3 for formulae). Points and trait970

names in blue indicate trait pairs with genetic correlations signi�cantly di�erent from zero.971

(b) Phenotypic and genetic correlations between trait pairs estimated from the P- and the972

ancestral G-matrix. Points and trait names in blue indicate trait pairs with genetic973

correlations signi�cantly di�erent from zero and di�erent from phenotypic correlations. The974

trait abbreviations for 2013 are as follows: H2013: Height 2013, D2013: Diameter 2013,975

TBB2013: Terminal Bud Break 2013, LBB2013: Lateral Bud Break 2013, MGR2013: Maximum976

Growth Rate 2013, GD2013: Growth Duration 2013, GC2013: Growth Cessation 2013, and977

with identical letter codes for 2014.978

979

Fig. 3. Adaptive divergence for each trait separately. (a–j) Panels show the estimated980

ancestral additive mean trait value (horizontal line), the amount of trait divergence from this981

mean that is expected based on drift (gray envelop), and the estimated posterior distribution982

of the additive trait values for each population (boxes). Blue boxes indicate strong evidence983

of selection at the particular population. Populations are ordered on each panel according to984

their additive trait values.985

986

Fig. 4. Correlated adaptive divergence in a two-trait space between Terminal Bud Break,987

Growth Duration and Maximum Growth Rate. Colors indicate the mean water use e�ciency988

(δ 13C) of ten adult trees from the given population. Less negative δ 13C indicate higher water989

use e�ciency. The capital letter A in the middle of the ellipses indicates the estimated990

ancestral additive mean trait value. Ellipses represent the median amount of trait divergence991

that is expected based on drift for each population (null hypothesis). Population codes (3992

letters) represent the median of the posterior distribution of the additive trait values for each993

population. Populations with strong evidence of selection using the S-test are highlighted994

with an ellipse in color (identical to that of the population code). Ellipses of populations that995

do not deviate from drift are shown in gray.996

997

Fig. 5. Principal component (PC) analysis of the environmental variables listed in Table 1 with998

populations (three letter codes) highlighted in blue if they showed evidence of selection in the999

S-tests for 2013 or 2014 Height (a) and for Terminal Bud Break, Maximum Growth Rate and1000

Duration (b). Each panel shows the environmental space with the �rst two PC axes that had1001

explained the highest amount of variance using the H∗-test, which were PC 1 and 4 for 20131002

or 2014 Height, and PCs 2 and 5 for Bud Break and Growth Duration.1003
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