This document is the accepted manuscript version of the following article: Csilléry, K., Ovaskainen, O., Sperisen, C., Buchmann, N., Widmer, A., & Gugerli, F. (2019). Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity. https://doi.org/10.1038/s41437-019-0240-0

Title: Adaptation to local climate in multi-trait space: evidence from silver fir (*Abies alba* Mill.) populations across a heterogeneous environment

Authors: Katalin Csilléry^{1,2,*}, Otso Ovaskainen^{3,4}, Christoph Sperisen², Nina Buchmann⁵, Alex Widmer⁶, Felix Gugerli²

Addresses:

- ¹ Center for Adaptation to a Changing Environment, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- ² Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- 3 Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- ⁴ Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- ⁵ Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- ⁶ Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- *Current address: Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland

Corresponding author: Katalin Csilléry

Department of Evolutionary Biology and Environmental Studies, University of Zurich

Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL Zürcherstrasse 111

8903 Birmensdorf, Switzerland

Email: katalin.csillery@uzh.ch or kati.csillery@gmail.com

Tel: +41 44 739 25 23 Fax: +41 44 739 22 15

Running title: Adaptation across a heterogeneous environment in silver fir

Word count: 7124

Abstract

Heterogeneous environments, such as mountainous landscapes, create spatially varying selection pressure that potentially affects several traits simultaneously across different life stages, yet little is known about the general patterns and drivers of adaptation in such complex settings. We studied silver fir (Abies alba Mill.) populations across Switzerland and characterized their mountainous landscape using downscaled historical climate data. We sampled 387 trees from 19 populations and genotyped them at 374 single-nucleotide polymorphisms (SNPs) to estimate their demographic distances. Seedling morphology, growth and phenology traits were recorded in a common garden, and a proxy for water use efficiency 11 was estimated for adult trees. We tested whether populations have more strongly diverged at quantitative traits than expected based on genetic drift 13 alone in a multi-trait framework, and identified potential environmental drivers of selection. We found two main responses to selection: (i) 15 populations from warmer and more thermally stable locations have evolved towards a taller stature, and (ii) the growth timing of populations evolved 17 towards two extreme strategies, "start early and grow slowly" or "start late and grow fast", driven by precipitation seasonality. Populations following the "start early and grow slowly" strategy had higher water use efficiency and came from inner Alpine valleys characterized by pronounced summer 21 Our results suggest that contrasting adaptive life-history droughts. strategies exist in silver fir across different life stages (seedling to adult), 23 and that some of the characterized populations may provide suitable seed sources for tree growth under future climatic conditions.

26 Keywords:

- 27 selection, demography, quantitative trait, ontogeny, life-history, stable
- 28 carbon isotopes

Introduction

Phenotypic differences between populations may reflect neutral, adaptive, and/or plastic processes (Kawecki & Ebert, 2004). Neutral processes often lead to phenotypic differentiation between populations at the species' range edges, where populations are small and isolated (e.g. Hampe & Petit, 2005, Kawecki, 2008). The relative importance of adaptation and plasticity ultimately depends on the degree of environmental heterogeneity and the dispersal ability of the species (Via & Lande, 1985, Sultan & Spencer, 2002, Chevin & Lande, 2010, Polechova, 2018). Local adaptation is likely to establish when the spatial scale of environmental variation is greater than the dispersal ability of the species, while plasticity is likely to be favoured with a fine-scale environmental variability and/or in the presence of long-distance gene flow.

Forest trees have large effective population sizes, species ranges that
span large spatial scales, a long-life span and a predominantly outcrossing
mode of reproduction (Petit & Hampe, 2006). Long-distance gene flow is
also common in forest trees and its role in adaptation has been recognized
(Kremer et al., 2012). These characteristics largely favour plasticity, which
has been illustrated by multi-site common garden trials, for example for
growth (e.g. Rehfeldt et al., 2002) or phenology (e.g. Vitasse et al., 2010, De
Kort et al., 2016); see further references in Kremer et al. (2012).
Nevertheless, local adaptation is also common in forest trees, with ample
evidence for adaptive divergence along continuous environmental clines,
such as those created by latitude or distance to the sea in the boreal zone,
or altitudinal gradients in the temperate zone (Savolainen et al., 2007,

⁵⁴ Alberto *et al.*, 2011, Lind *et al.*, 2018).

While adaptation has been extensively studied along environmental 55 gradients, much less is known about its general patterns and drivers in heterogeneous environments. Indeed, populations across heterogeneous landscapes may display rapid and often non-predictable changes in genetic diversity and trait divergence (Yeaman & Jarvis, 2006). regions of the Northern Hemisphere often create such heterogeneous landscapes for many species. Here, post-glacial recolonization not only traced the climatic niche, but was also constrained by topography, creating 62 complex patterns in species distributions and demography (Hewitt, 1999). 63 Environmental drivers of adaptation in mountain ranges can go undetected with coarse-scale climate data (e.g. Austin & Van Niel, 2011, Ruosch et al., 2016). The development of many fine-scale environmental data sets provides new opportunities to study adaptation across mountainous landscapes (e.g. Karger et al., 2017, Hengl et al., 2017). It is also increasingly recognized that spatial heterogeneity in climate in mountainous landscapes represents an important spatial buffer in response to climate change (e.g. Ackerly et al., 2010). The phenotypic signature of spatially varying selection across 72 populations can be assessed using Q_{ST} , a measure of genetic differentiation

populations can be assessed using Q_{ST} , a measure of genetic differentiation between populations (Whitlock, 2008). Comparing Q_{ST} with divergence at neutral genetic markers (F_{ST}) provides a means for identifying locally adapted populations (Whitlock, 2008, Whitlock & Guillaume, 2009). In principle, a comparison of Q_{ST} to F_{ST} controls for demography, but insufficiently so, because the complex history of potentially numerous populations cannot be adequately represented by F_{ST} . This issue has been widely recognized and alternative solutions have been suggested (*e.g.*Chenoweth & Blows, 2008, Martin *et al.*, 2008). The most complete
approach has been proposed by Ovaskainen *et al.* (2011), which uses a
statistically more powerful and biologically more meaningful null
hypothesis: it accounts for the neutral demographic distances among all
populations to derive a null expectation of trait divergence (see
applications in (*e.g.* De Kort *et al.*, 2016, Schäfer *et al.*, 2018)). Furthermore,
most past studies assessed traits in isolation from each other and focus on
traits that are likely affected by the studied environmental gradient. The
method of Ovaskainen *et al.* (2011) can be used to assess adaptive
divergence on multiple traits at a time, thus potentially identify adaptive
life-history strategies.

Most evidence for adaptive divergence in forest trees comes from 92 seedling traits measured in common garden experiments. Although multiple seedling traits can be used to identify adaptive life-history strategies, it is difficult to assess if results are transferable to natural populations (e.g. Neale & Kremer, 2011). Indeed, trees have a long life span with two characteristic life-history stages, seedling and adult, where different selection pressures and physiological processes are operating (Petit & Hampe, 2006). Connecting these two life stages is essential because seedling mortality has the largest impacts on the structure and function of 100 future forests, while the death of big trees causes the longest lasting carbon 101 losses (McDowell et al., 2013). Tree breeders have long known that seed or 102 seedling traits are often poor predictors of adult traits in field conditions (e.g. Resende et al., 2012), with some exceptions, e.g. wood traits (Gaspar 104 et al., 2008) or seed size in pines (Zas & Sampedro, 2015). Measures of adult

growth traits in-situ may also be uninformative when they are affected by management practices and competition, even if this effect is less 107 pronounced for shade-tolerant species, such as silver fir (Kunstler et al., In contrast, carbon stable isotope discrimination, δ^{13} C, may 109 represent a suitable trait for adult trees. δ^{13} C is related to the intrinsic 110 water-use efficiency, a measure of relative water loss per molecule carbon 111 acquired in the leaf, and has been advocated as a proxy for drought 112 tolerance (Farquhar et al., 1989). In vascular plants, δ^{13} C is to a large extent 113 genetically determined (Dawson et al., 2002), and several important 114 quantitative trait loci (QTL) have been identified in forest trees (Brendel 115 et al., 2002, 2008). Further, for example, in Picea mariana, δ^{13} C was highly 116 negatively genetically correlated to growth, while being less 117 environmentally sensitive than growth, thus the authors suggested this 118 trait for indirect selection for growth (Johnsen et al., 1999). Overall, δ^{13} C is 119 one of the key traits for understanding the genetics of drought tolerance 120 (Moran et al., 2017). 121

Here, we study adaptive divergence patterns in populations of silver fir 122 (Abies alba Mill.) across a highly heterogeneous mountainous landscape. 123 We asked whether populations have developed adaptive life-history 124 strategies in response to local climatic conditions that are consistently 125 present from the seedling to adult stage, while controlling for demographic 126 distances between populations. Seedling morphology, growth and 127 phenology were recorded in a common garden on half-sib families. We 128 hypothesized that traits most likely do not evolve independently, thus we used a multi-trait quantitative genetic approach to identify correlated 130 responses to selection. Adult $\delta^{13}\mathrm{C}$ was measured in-situ on unrelated individuals, and was used to correlate the populations' mean water use
efficiency in the field with the populations' mean life-history strategies in
seedlings. We developed a set of fine spatial scale historical climate
variables to identify potential drivers of locally adapted life-history
strategies. Finally, we estimate the evolutionary potential in seedling
quantitative traits to assess the future of silver fir populations in
Switzerland.

Material and Methods

140 Study system

Silver fir is an ecologically and economically important European conifer. It 141 can likely tolerate episodes of drought due to its deep rooting system (e.g. 142 Lebourgeois et al., 2013, Vitali et al., 2017) and its high tolerance to bark 143 beetle attack (Wermelinger, 2004). We selected 19 putatively autochthonous silver fir populations across a highly heterogeneous Alpine region across 145 the Swiss Alps, Pre-Alps, Central Plateau and Jura Mountains (Fig. 1a, 146 Supporting Information Fig. S1 and Table S1). The selection was based on 147 various data sources, including the national register of seed stands (NKS, for autochthony/allochthony information), national forest inventory (NFI, 149 for the distribution of silver fir and stand histories), the long-term forest 150 ecosystem research (LWF), and after consulting forest experts. In 2009, 151 seeds were collected from three trees, and in 2013 and 2016, needles were 152 sampled from 19 to 22 adult trees per population (total of 387 trees), 153 including the previously sampled trees. A minimum distance of 100m was

respected between the sampled trees to minimize the risk of collecting closely related trees (e.g. parent-offspring or sibs). Note that it is common practice to sample adult trees with only 20m (Mosca *et al.*, 2012) or 37m (Roschanski *et al.*, 2016) minimum distance for population samples.

Based on palynological evidence, it is likely that the Swiss range of 159 silver fir was colonized from south to north after the Last Glacial 160 Maximum. The species most likely reached the southern slopes of the Alps 161 between 10 and 9 kyr BP and the northern slopes between 8 and 5 kyr BP 162 (Van der Knaap et al., 2005, Liepelt et al., 2009, Ruosch et al., 2016). 163 Range-wide patterns of chloroplast and mitochondrial DNA variation 164 (Liepelt et al., 2002) and isozyme data (Burga & Hussendörfer, 2001) from 165 extant silver fir populations suggest that the Swiss Alps were colonized 166 from a single ancestral refugial population situated in the Central and/or 167 Northern Apennines, even though the potential contribution of eastern 168 refugial populations cannot be excluded. 169

170 Adult tree data

All adult trees were genotyped at 374 single-nucleotide polymorphism (SNP) loci originating from three different sources. Our aim was to estimate demographic distances between populations, so we attempted to select principally neutral markers. First, we used 220 out of 267 SNPs from Roschanski *et al.* (2016): we excluded the 25 SNPs that coded for non-synonymous mutations and 22 others where we had more than 10% missing data. Second, we selected 110 new putatively neutral SNPs from the transcriptome assembly of Roschanski *et al.* (2016), based on respective values of Tajima's D between 2 and -2 and dN/dS between 0.9 and 1.1, and

with low LD with the existing 220 SNPs (r^2 < 0.1 and p-value > 0.05). However, only 25 of these SNPs were successfully genotyped, most likely because the primer sequences were not specific enough (results not shown). Third, we selected 149 SNPs from the control panel of Mosca *et al.* (2012) that had less than 5% missing data in that study. Of these, 129 SNPs were successfully genotyped. Both DNA isolation and genotyping was performed using KASP arrays and the all-inclusive service from LGC Genomics (Middlesex, UK).

Ten of the adult trees per population were measured for δ^{13} C. Needles 188 were sampled in spring 2016 for 2015 grown needles. Approximately 80 mg 189 freeze-dried needle material was milled in 2 ml polypropylene tubes equipped with a 5 mm glass ball at 30 Hz for 4 min. Subsamples of 191 approximately 5 mg needle powder were combusted in an elemental 192 analyzer (Flash EA by Thermo Finnigan, D- Bremen) coupled to an isotope 193 ratio mass spectrometer (Delta XP by Thermo Finnigan, D- Bremen) by a 194 Conflo II interface (Thermo Finnigan, D- Bremen). 195

Seedling common garden data

In April 2010, from three mother trees per population (subsequently called families) approximately 2000 seeds were sown in open-air nursery beds at the Swiss Federal Research Institute WSL in Birmensdorf, Switzerland (47°21′42″N, 8°27′22″E, 550 m a.s.l.). Families and populations were not replicated or randomized in the nursery because the soil was well mixed and the terrain was mostly flat, but the position of each seedling was recorded to check and control for spatial auto-correlation (see Supplementary Methods S1). In spring 2012, at least 12 randomly selected

viable seedlings per family were transplanted to an open experimental field site at Brunnersberg, a former pasture on a south facing slope (20-24% incline) in the Swiss Jura Mountains $(47^{\circ}19'35''N, 7^{\circ}36'42''E, 1090 \text{ m a.s.l.})$. Seedlings were planted at $30 \times 40 \text{ cm}$ spacing, provenances and families were randomized across 16 blocks. Both the nursery and common garden locations were within the natural range of silver fir. Note that the data presented here were part of a larger experiment involving more species and populations, see Frank *et al.* (2017b) for more details.

Phenotypic measurements used herein were performed during the 213 fourth and fifth growing seasons, in 2013 and 2014 respectively. The 2013 214 measures were published in Frank et al. (2017b); see also Supplementary 215 Methods S1. Traits included Terminal Bud Break (2013 and 2014, variable 216 names capitalized hereafter) and Lateral Bud Break (2013) defined as the 217 Julian date when the membrane below bud scales was broken and the first 218 green needles became visible, Growth Cessation (2013) defined as the date 219 when 95% of terminal leader height growth was achieved, Maximum 220 Growth Rate (2013) calculated as the first derivative of the growth curve 221 fitted to five to 17 height measures recorded during the growing season 222 following the procedure proposed in Frank et al. (2017b), Growth Duration 223 (2013) defined as time from Terminal Bud Break to Growth Cessation, Height (2013 and 2014) defined from the ground surface to the uppermost 225 bud base, and Diameter (2013 and 2014) at 2 cm above ground surface. The latter two were measured after Growth Cessation. For clarity, we call 227 Height and Diameter morphology traits, Maximum Growth Rate and Duration growth traits, and Terminal/Lateral Bud Break and Growth 229 Cessation (equivalent to bud set) phenology traits. In total, we analyzed 880 observations. All traits were normally distributed, or could be approximated with a normal distribution in the case of discrete traits, and correlated with one another to a varying extent (Supporting Information Fig. S2).

235 Environmental data

We used downscaled historical climatic data to characterize environmental differences among populations. In order to obtain the closest 237 representation of the climate of the period when the current populations 238 were established, we used data from 1 January 1901 to 31 December 1978. 239 The choice of this period was justified by two facts: (i) no 240 observation-based climate data go back further in time, and (ii) starting 241 from approximately 1980, the temperature time series are overwhelmed by 242 the effect of global warming (Harris et al., 2014). We used statistical 243 downscaling using the delta method (Hay et al., 2000) to obtain 1 km grid 244 scale monthly minimum, maximum and mean temperature, and total 245 precipitation fields for this period. The reference climatic data set was the 246 0.5° resolution CRU TS v. 4.01 data (20 September 2017 release, Harris et al. 247 (2014)) available for the 1 January 1901 - 31 December 2016 period, while 248 the downscaling was based on the overlapping period (i.e. 1 January 1979 -31 December 2016) with the 1 km resolution CHELSA data (Karger et al., 250 2017). Further, soil available water capacity (AWC) was obtained at a 250 m 251 resolution from the Soilgrids data base (Hengl et al., 2017). 252 We calculated the 19 bioclimatic variables (Booth et al., 2014) using the 253 package dismo (Hijmans al., 2017), etand two potential 254

evapotranspiration (PET) indices and four standardized precipitation -

evapotranspiration index (SPEI) variables using the R package SPEI (Beguería & Vicente-Serrano, 2017), two indicators of late frost, and the 257 self-calibrated Palmer's drought severity index or scPDSI (Wells et al. (2004), Table 1). SPEI and scPDSI were summarized as measures of drought 259 severity and frequency across the full monthly time series (Table 1). All 260 climatic variables were considered as raw values or as deviations from the 261 common garden environment in Brunnersberg (based on the CHELSA data 262 for the period of 1 January 1979 - 31 December 2013). However, the two 263 ways of calculating the climate led to the same conclusions (results not 264 shown), so we present results with the raw variables only for ease of 265 interpretation.

267 Statistical analysis

We used the statistical framework developed by Ovaskainen et al. (2011) 268 and Karhunen et al. (2014) with slight modifications. Briefly, this 269 methodology integrates genetic, phenotypic and environmental data to test 270 if trait differentiation measured in a common garden experiment reflects 271 local adaptation, while accounting for past demography inferred from 272 supposedly neutral molecular marker data, and to identify potential 273 environmental drivers. The three steps of this analysis were (i) inference of the demography, (ii) estimation of the additive genetic trait values in a 275 supposed ancestral population and contrasting these with their equivalents 276 in the contemporary populations, and (iii) assessing if the deviations of 277 additive genetic trait values from the ancestral values can be explained by environmental variation. We detail these steps in the following paragraphs 279 (see also Supporting Information Fig. S1 for an overview).

First, we estimated the coancestry matrix (a.k.a. drift distances)
between all pairs of populations from variation in SNP allele frequencies
assuming an admixture F-model (AFM) and using a Metropolis-Hastings
algorithm implemented in the R package *RAFM* (Karhunen & Ovaskainen,
2012). Further, we compared the posterior mean coancestry matrix against
that estimated using the Bayesian clustering algorithm implemented in the
software STRUCTURE v.2.3.4 (Falush *et al.*, 2003). See details of the
demographic inference in Supplementary Methods S2.

Second, we used the method of Ovaskainen et al. (2011) to test if the 289 estimated additive genetic trait values of the contemporary populations 290 have diverged more from the ancestral value than expected by genetic drift 291 We used a slightly modified version of the R package driftsel 292 (Karhunen et al., 2013) that co-estimates the ancestral variance-covariance 293 matrix (G_A) , the ancestral mean additive genetic trait values and the effect 294 of covariates (i.e. the fixed effects), and the population effects (i.e. 295 deviations from the ancestral mean) using a Bayesian mixed-effects animal model. This model is different from a classical animal model (reviewed in 297 Kruuk et al. (2008)) in that it accounts simultaneously for the family structure of the common garden (i.e. the pedigree) and the drift distances (i.e. the demography) previously estimated from genetic marker data. In Ovaskainen et al. (2011) a single statistic, the S-statistic, is calculated to 301 evaluate the overall evidence for selection across all populations. S = 0.5302 indicates consistency with neutrality, S = 0 implies a match with purifying, 303 and S = 1 with diversifying selection. In this study, we also assess to what extent the particular populations deviate from their neutral expectation 305 (see Supplementary Methods S3 for details).

We tested all traits individually and all pairwise combinations between 307 traits measured in the same year. Seed weight and block of the common 308 garden were included as covariates. We ran three independent Markov chains of the Bayesian animal model using a burn-in of 50,000 iterations 310 followed by 30,000 iterations for estimation for single traits, and a burn-in 311 of 70,000 iterations followed by 30,000 iterations for estimation for trait 312 pairs, both with a thinning interval of 20. The three independent chains 313 converged to similar optima and led to the same conclusions concerning 314 the signature of selection (potential scale reduction factor of the S-statistic 315 ranged between 0.99 and 1.1 across all traits) for the single trait and two 316 trait analysis. However, with more than two traits the convergence was no 317 longer optimal, so we did not consider these higher order trait interactions. 318 Third, we attempted to identify the potential environmental drivers of 319 adaptive divergence between populations. We used the H^* -test, which can 320 be viewed as a standardized version of the H-test developed by Karhunen 321 et al. (2014) (see Supplementary Methods S3 for more details). To avoid a 322 multiple testing burden of 34 environmental variables in Table 1, we 323 performed a Principal Component Analysis (PCA) on the standardized and 324 scaled variables. The first five axes explained 84% of the variance, thus we 325 performed a H^* -test for each of these PC axes only. The variables with the 326 highest loadings on each of the PC axes were the following: PC1: bio.2 327

(Mean Diurnal Range) and Elevation, PC2: bio.10 (Mean Temperature of the Warmest Quarter) and PET.harg, PC3 and 4: none, PC5: bio.8 (Mean 329 Temperature of the Warmest Quarter) and bio.15 (Precipitation seasonality). See Supporting Information Table S2 for the loadings of all 331 environmental variables on the first five PC axes. The novel methodological aspects detailed in Supplementary Methods S3, i.e. the procedure to evaluate adaptive divergence at each population, and the H^* -test are now implemented in the R package $driftsel^1$.

For a comparison with the Ovaskainen *et al.* (2011) approach, we also performed a classic $Q_{ST} - F_{ST}$ test using the bootstrap procedure described in Whitlock & Guillaume (2009) implemented in the R package QstFstComp (Gilbert & Whitlock, 2015)². We considered a one-tailed test, because we were interested in testing for adaptive divergence only, thus Q_{ST} being significantly greater than F_{ST} .

Finally, the resemblance between the family members measured in the common garden experiment can also be exploited to estimate the evolutionary potential of the studied traits. Two commonly used measures of evolutionary potential are the heritability ($h^2=V_A/V_P$) and the additive genetic coefficient of variation ($CV_A=\sigma_A/M$) (Mittell *et al.*, 2015), where V_A is the additive genetic variance and σ_A is its square–root, V_P is the total phenotypic variance and M is the trait mean. CV_A is dimensionless, independent of other sources of variance, thus has been advocated for comparisons between traits (Houle, 1992, Hansen *et al.*, 2011).

Results

Population history

The STRUCTURE analysis and the estimated drift distances among populations using AFM indicated the presence of two main clusters that

¹https://github.com/kcsillery/driftsel

²https://github.com/kjgilbert/QstFstComp

correspond to Eastern and Western Swiss populations (Fig. 1). In addition, the population POS did not belong to either of these two groups, which is 356 plausible given its isolated geographic location on the south side of the Swiss Alps (Fig. 1). The posterior mean global F_{ST} across the 19 358 populations based on the coancestry matrix was 0.0184 (95% credible 359 interval: 0.0167, 0.0202). In contrast, F_{ST} estimated with the Whitlock & 360 Guillaume (2009) approach was 0.0056 (95% confidence interval: 0.0051, 361 Both methods show that F_{ST} is small, which reflects recent 362 divergence between Swiss populations (approximately 200 generations if 363 we assume a colonization 8 kyr BP and a generation time of 40 years) and 364 ongoing gene flow due to long-distance dispersal. Further, F_{ST} from driftsel 365 is likely lower because *driftsel* explicitly models the demographic distances 366 between populations, and it is less sensitive to the level of polymorphism in 367 marker loci (Karhunen & Ovaskainen, 2012). Demographic distances 368 between populations estimated using RAFM or the software STRUCTURE 369 were similar; the highest similarity between the two was achieved for K=4 in STRUCTURE (Mantel statistic of 0.891, which is similar to 371 deviations between different chains of AFM; see Supplementary Methods 372 S2 for more details). 373

Adaptive trait divergence across all populations

Similar degrees of adaptive divergence were revealed using the *S*-test of (Ovaskainen *et al.*, 2011) and classic $Q_{ST} - F_{ST}$ comparison (Whitlock & Guillaume, 2009) across traits (Table 2). Using either of the methods, the strongest signature of selection was observed for seedling Height followed by the Bud Break traits, then for Growth Duration and Diameter. Traits

measured both in 2013 and 2014 revealed similar signatures of selection, but in the $Q_{ST}-F_{ST}$ test Terminal Bud Break was only marginally significant in 2014. Maximum Growth Rate and Cessation showed no evidence of adaptive divergence in either of the tests due to their high within population variance (Table 2).

Several trait pairs showed a signature of selection using the S-test, 385 mostly those that already did so in the single trait analysis (Fig. 2a). We 386 extracted the genetic correlations between traits from the posterior mean 387 ancestral G-matrix (G_A), and assessed if the 95% credible interval included 388 zero (Fig. 2a, Supporting Information Table S3). Trait pairs that involved 389 Height had the highest S statistics, but their genetic correlations did not 390 differ from zero. Bud break often had high genetic correlations with growth 391 traits and also high S values. The lowest S was observed between the 392 Maximum Growth Rate and Growth Cessation (Fig. 2a). We used a 393 standardized Mantel test following Cheverud (1988) to compare the 394 phenotypic variance-covariance matrix (P-matrix) with G_A . The null 395 hypothesis is no association between genetic and phenotypic matrices. The 396 test was averaged across the posterior distribution of G_A . Five trait pairs 397 had significantly different G_A - and P-matrices (Mantel-test, p>0.05), but 398 only two had r_g different from zero (Supporting Information Table S3): Terminal and Lateral Bud Break, and Terminal Bud Break and Growth 400 Duration. These two trait pairs were more strongly genetically correlated than expected based on the phenotypes (Fig. 2b). The posterior mean r_g 402 was at its maximum value for Terminal and Lateral Bud Break, which is likely due to developmental constrains. Further, Terminal Bud Break and 404 Growth Duration also had a 38% higher genetic than phenotypic correlation (Fig. 2b).

407 Adaptive life-history strategies of particular populations

Unusual trait divergence at several populations contributed to the overall 408 signature of selection using the S test. Fig. 3 shows, for each trait, how much each population diverged from the ancestral mean and if this 410 divergence is more than expected by drift. The highest number of populations with adaptive divergence was observed for Height (Fig. 3a-b): 412 seven (in 2013) and eight (in 2014) out of 19 populations deviated from their 413 neutral expectations. All these outlier populations evolved towards a 414 higher mean height and no populations have been selected for reduced 415 height. The S-test revealed also a signature of selection for Diameter (Table 416 2), however, none of the particular populations showed unusual divergence 417 (Fig. 3c-d). Yet, since there was a strong genetic correlation between 418 Height and Diameter, the same populations showed the largest Diameter as 419 for Height (Fig. 3a-d). The signature of selection on bud break traits was 420 dominated by divergence in one population (SIR) that had unusually early 421 bud break (Fig. 3e-g). Similarly, for Growth Duration, unusually longer 422 growth duration was detected in two populations only, SIR and MGY (Fig. 423 3i). 424

In the two trait analysis, the correlated evolution of Bud Break and
Growth Duration and Rate of particular populations became even more
apparent (Fig. 4). SIR and MGY still showed a signature of selection, but at
the opposite end of the trait space, and population VRG evolved towards
late Terminal Bud Break and shorter Growth Duration. These patterns can
be interpreted as contrasting life-history strategies. SIR and MGY followed

a "start early and grow slowly" strategy, i.e. they burst buds early and then
grow for a long time at a low rate, while at the other end of trait space,
population VRG followed a "start late and grow fast" strategy, i.e. bursts
buds late, but then grows fast for a short period of time (Fig. 4).

Phenology and growth traits' posterior mean additive genetic trait 435 values were significantly correlated with δ^{13} C in adult trees measured 436 in-situ (2013 Terminal Bud Break, r=-0.54, p-value = 0.033; 2014 Terminal 437 Bud Break r=-0.5, p-value = 0.055; 2013 Lateral Bud Break r=-0.56, p-value = 438 0.025, 2013 Maximum Growth Rate r=-0.53, p-value = 0.041; 2013 Growth 439 Duration r=0.53, p-value = 0.037). The correlations with the 440 phenology-growth complex were such that the "start early and grow slowly" seedling strategy had, on average, higher water use efficiency in 442 adults, while the "start late and grow fast" seedling strategy low water use 443 efficiency in adult trees (Fig. 4). In contrast, the other traits were not 444 correlated with mean δ^{13} C (absolute value of r < 0.25 and p-value > 0.58). 445 p-values were corrected for multiple testing using the method of correction for non-independent tests (Cheverud, 2001); see all additive trait 447 value-mean δ^{13} C correlations in Supplementary Information Fig. S3.

49 Environmental drivers

Environmental PC axes explained a non-zero proportion of the trait divergence for most traits, but the highest correlations (>90%) were obtained for Height, Lateral Bud Break and Growth Duration (Table 3). Notice that, not surprisingly, these traits showed a signature of selection with the S-tests (Table 2 and Fig. 3). For each of these traits a particular aspect of the environment mattered. For Height, and also for Diameter to

some extent, environmental PC axis 1 showed the highest correlations with trait divergence (Table 3). The raw environmental variables that had the 457 highest loadings on PC1 were variables related to the mean and variance in temperature, such as Annual Mean Temperature (bio.1), Elevation, 459 potential evapotranspiration (PET.thorn), Late frost (late.frost2), or 460 Isothermality (bio.3) (see the list of top ten variables in Table S2). Fig. 5a 461 shows the full environmental space defined by PC1 and PC4, which was the 462 second most important axis for Height: populations that evolved towards a 463 taller stature are situated in the warmer and more thermally stable part of 464 the climatic space. 465

For the phenology-growth complex, PC axes 2 and 5 had the highest 466 correlations with trait divergence (Table 3). The environmental variables 467 with the highest loadings on these axes were principally variables related to 468 the mean and variance in precipitation, such as Annual Precipitation (bio.12), 469 Precipitation Seasonality (bio.15), Precipitation of Wettest Quarter (bio.16) 470 (see the list of top ten variables in Table S2). Thus, the "start early and grow 471 slowly" seedling strategy of SIR and MGY, together with their high water 472 use efficiency as adult trees (Fig. 4), has potentially evolved as a response 473 to the low yearly total amount of precipitation (755mm in SIR and 801mm 474 in MGY) and low precipitation seasonality (Fig. 5b). At the other end of the 475 trait space, the climate of population VRG is characterized by high levels of 476 yearly total precipitation (1621mm) and ample winter snow as reflected by its higher precipitation seasonality (Fig. 5b).

479 Evolutionary potential

We found the highest potential for evolution in three growth traits: Maximum Growth Rate, Growth Duration and Diameter, while spring phenology showed the lowest potential for evolution (Table 2). Estimating 482 the additive genetic variance across the 19 populations and 57 families (three families per population) involves the assumption that the additive 484 genetic variance is constant across the sampling area. We tested this hypothesis using the larger data set used by Frank et al. (2017b) involving 4107 observations from 91 populations and 259 families. We found that estimates of CV_A were not strongly affected by the reduction in sample size, 488 and h^2 and CV_A were similar across three main geographic regions of Switzerland (Supplementary Methods S1), suggesting that our sample size was sufficient to estimate the evolutionary potential across the 19 populations. 492

Discussion Discussion

494 Are there general patterns of adaptation across a

heterogeneous environment?

In this study, we found evidence for locally adapted life-history strategies across a heterogeneous Alpine landscape. The high number of populations leveraged the power of classical $Q_{ST} - F_{ST}$ tests and led to similar global conclusions than the *S*-test of Ovaskainen *et al.* (2011) (Table 2). However, using our novel methodology, we were also able to identify adaptive

life-history strategies in a multi-trait space and pinpoint which populations show a signature of adaptive divergence (Ovaskainen et al. (2011) and 502 Supplementary Methods S3). In particular, we identified two groups of correlated characters whose evolution could be driven by the 504 environmental cues. First, our results suggest that the two morphological 505 characters, Height and Diameter, evolve in a correlated manner, and that 506 warmer and more thermally stable environments select for larger stature (Fig. 5a). Second, we identified a phenology–growth trait complex that may 508 evolve in response to precipitation. Populations from areas characterized 509 by generally low levels of precipitation (i.e. with drought) evolved to start 510 the growing season early and then grow slowly, and also to have a high 511 water use efficiency (Fig. 4 and 5b). These populations, SIR and MGY, 512 originate from a dry inner Alpine valley of Switzerland, the Rhône Valley. 513 Further, the other Rhône Valley populations, GRY and BRS, and populations 514 from other areas of Switzerland with a similar climate, such as the Rhine 515 valley (JEZ) and Ticino (PRA) are also the closest in the phenology-growth 516 trait space to SIR and MGY (Fig. 1). In contrast, VRG, situated in a valley 517 characterized by ample precipitation, evolved towards a "start late and 518 grow fast" strategy. Again, independent data from adult trees corroborated 519 our findings, VRG, and other populations from humid sites, such as GRB and MUO, had a low water use efficiency (Fig. 4). 521

The length of the annual development cycle of temperate trees is constrained between two opposing forces: maximizing the length of the vegetative season while avoiding late frost and summer drought. This life-history trade-off is particularly important in mountainous environments, where the length of the growing season is often limited by

late snow or compromised by summer drought in dry, inner Alpine valleys. Our study region is relatively small, and limited to one part of the Alpine 528 However, the correlation between the phenology-growth Range. life-history trade-off in seedlings and water use efficiency in adults 530 provides independent evidence for this trade-off (Fig. 4), and supports the 531 existence of a general pattern of adaptation across a mountainous 532 landscape. Thus, we speculate that the phenology-growth life-history 533 trade-off may be more general across other mountainous regions and 534 provide a testable prediction in other mountain ranges and species. 535

Why are some traits under selection and not others?

Demonstrating selection for taller stature in a tree is not surprising because tall stature has numerous fitness advantages. Taller seedlings/young trees 538 have access to more light and can out-compete their neighbors, and high 539 stature in mature trees can facilitate pollen and seed dispersal (Petit & Hampe, 2006). Interestingly, at least some of the populations that appear to have been selected for larger stature (Fig. 3a-b) are located on the Swiss 542 Plateau, where the effect of forest management cannot be fully excluded 543 (e.g. Bürgi & Schuler, 2003). Since tree height is also a key trait from an 544 economical point of view, there is a possibility that the observed patterns are, in part, a result of artificial selection for height. 546

A long-standing hypothesis in evolutionary biology is that traits
belonging to the same functional and/or developmental group are
genetically more integrated than traits with different functions or
developmental origins (Berg, 1960, Pigliucci & Preston, 2004). Several
empirical studies found evidence that there is greater genetic and

phenotypic character integration within suites of functionally or developmentally related traits than between them, e.g. within or between 553 floral vs. vegetative traits in plants (Waitt & Levin, 1998, Baranzelli et al., 2014). Here, we found two trait pairs with an ancestral G-matrix that was 555 significantly different from the P-matrix, and in both cases the genetic 556 correlation was significantly higher than the phenotypic correlation. First, 557 between Terminal and Lateral Bud Break the genetic correlation was one, 558 which illustrates a complete character integration (Fig. between Terminal Bud Break and Growth Duration (Fig. 4), which suggests 560 that at the physiological and molecular level, spring phenology and growth 561 are strongly linked. 562

There is overwhelming evidence of adaptive clines for bud set (a proxy 563 for growth cessation) in many forest tree species, including conifers, but 564 none in Abies species (Alberto et al., 2013). Consistently, in this study, 565 Growth Cessation did not show evidence of adaptive divergence. The 566 explanation may lie in the deterministic bud development of Abies species (Cooke et al., 2012). They produce terminal buds during the summer at the 568 tip of each leading branch shoot and remain dormant during the following winter. Each bud contains a preformed stem unit composed of internodes 570 and leaf primordia that will grow to branches and photosynthesizing needles, respectively, during the following growing season. 572

Potential limitations and caveats

Adaptive trait divergence may be a result of local adaptation or adaptive phenotypic plasticity (Merilä & Hendry, 2014). To tell these two apart, one has to measure trait values of a particular genotype across different

Common garden studies of forest trees often observe environments. site-specific effects for growth or phenology, indicative of adaptive 578 plasticity (Alberto et al., 2013). For example, Santos-del Blanco et al. (2013) found a growth-reproduction trade-off in Pinus halepensis, with trees in 580 high stress sites investing more in reproduction and trees in low stress sites 581 investing more in vegetative growth. Here, we only had a single common 582 garden and the relocation to Jura did not affect all provenances the same 583 way. Thus, we could not distinguish between local adaptation and adaptive 584 plasticity. Nevertheless, even if plasticity is known to play an important 585 role in explaining phenotypic differences, the signature of adaptive 586 divergence is often confirmed across all tested common garden sites (e.g. Rodríguez-Quilón et al., 2016).

Plasticity could have also caused the observed spatial variation in δ^{13} C 589 measured in adult trees in-situ. It appears that the importance of plastic and 590 genetic factors is species specific even among conifers. For example, in 591 Pinus sylvestris, Santini et al. (2018) suggested that plastic, and not genetic, responses dominate the inter-population variability in water use efficiency, 593 even though, admittedly they did not have progeny information. 594 contrast, Voltas et al. (2008) reported large genetic differences among 595 populations in *Pinus halepensis* using a common garden trial. δ^{13} C is also prone to temporal, year-to-year, fluctuations because it integrates the 597 photosynthetic activity through the period the tissue was synthesized, which is a single growing season. While measures of δ^{13} C are often 599 correlated across years (e.g. Chevillat et al., 2005), environment can also have an effect (e.g. Rinne et al., 2015). For example, a temporal increase in 601 water use efficiency due to anthropogenic CO_2 and N fertilization have

been reported across different forest tree species across Europe (Saurer et~al., 2014). Finally, spatial variation, notably latitudinal and altitudinal trends, in δ^{13} C have long been demonstrated (Körner et~al., 1991). However, it is often difficult to pinpoint single environmental variables across regional or continental spatial scales that explain the variation in δ^{13} C (Leonardi et~al., 2012). Thus, we estimated that any attempts for environmental corrections of the population mean δ^{13} C would lack a solid basis.

Common garden studies that use seeds from wild populations may 611 provide inaccurate estimates of population differentiation, particularly for 612 early traits, due to environmental maternal effects (Bossdorf et al., 2005). 613 Quantitative genetic studies that control for genetic and/or epigenetic 614 maternal effects in forest trees are still rare (Alberto et al., 2013). Although 615 there is evidence for long-lasting effects of seed size in Pines (Zas & 616 Sampedro, 2015, Surles et al., 1993), such effects are less obvious in other 617 conifers (St. Clair & Adams, 1991). Nevertheless, we controlled for the 618 average seed weight of the families in the Bayesian animal model (see also 619 Supplementary Methods S1), which is admittedly just one component of 620 the maternal effects. More recently, the role of epigenetic "memory" effects 621 has been demonstrated in forest trees (Prunier et al., 2016). For example, a 622 common garden transplantation experiment of Norway spruce and 623 European larch found that the previous year's environment and provenance contributed to the current year's bud break phenology 625 (Gömöry et al., 2015). Similar effects could have played a role in our experiments, however, all populations experienced the same year-to-year 627 environmental fluctuations.

The design of the common garden study suffers from three potential limitations. First, for height, the results might be sensitive to 630 non-randomization in the nursery (see Supplementary Methods S1). Seedlings were likely stressed from the replanting from the nursery to the 632 common garden location in 2012, which may still be detectable in 2013 633 Height (Supplementary Methods S1), and in 2014, a frost event in March 634 damaged some seedlings. However, even with this new stress, the evidence 635 for adaptive trait differentiation was almost identical to that in 2013 (e.g. Fig. 3). Second, we had phenotypic observations from three families per 637 population, which is rather low. Nevertheless, using the full phenotypic 638 data set of Frank et al. (2017b) across 91 populations, we were able to combine populations from nearby regions, thereby increasing the number of families to 5.3 families per population, on average. We found that 641 estimates of evolutionary potential and also Q_{ST} were extremely similar to 642 those obtained from three families (Supplementary Methods S1). Third, we 643 estimated the evolutionary potential, in particular, the evolvability, across many populations, thereby assuming that the additive genetic variance is 645 constant across the study region. Laboratory experiments have shown that the G-matrix can change in response to drift or selection, but maybe not in 647 the wild (Delahaie et al., 2017). To test this hypothesis, we estimated the h^2 and CV_A separately for the three main climatic regions as defined by 649 foresters. We found that the evolutionary potential was similar across the three regions (Supplementary Methods S1), suggesting that the assumption 651 of constant additive genetic variance across Swiss populations is acceptable. Overall we found that CV_A was much more robust to any of the 653 three above-cited issues than h^2 , in agreement with previous studies

Practical implications and the future of silver fir in the study area

Silver fir has been identified as a conifer with great ecological and 658 economic potential for the future because of its high tolerance to bark beetle attacks (Wermelinger, 2004), and because it may cope well with 660 drought stress (Lebourgeois et al., 2013, Vitali et al., 2017, Frank et al., Nevertheless, silver fir may already be threatened in some 2017a). 662 Mediterranean areas, where die-back events have been documented (Cailleret et al., 2014), or in Southwestern Europe, where reduced growth 664 has been reported (Gazol et al., 2015). In this study we found that silver fir was able to evolve to a taller stature in warm and thermally stable regions, 666 such as the Swiss Plateau. Indeed, positive effects of climate warming have been observed in temperate forest trees, where warming enhanced growth (Gazol et al., 2015). Since height, diameter and growth rate have the highest evolvability and strongest signature of selection among the studied traits 670 (Table 2), we may speculate that some populations will respond with enhanced growth. However, the predicted pace of climate change is much 672 faster than it has been during post-glacial expansion/re-colonization, thus assisted migration may provide a practical solution to overcome this rapid 674 rate of change (Aitken & Bemmels, 2016). Based on our results, populations 675 of the Rhône and Rhine Valleys could provide drought tolerant seed sources for future plantations in other parts of Switzerland.

Data archiving

SNP and δ^{13} C data have been submitted to Dryad (https://doi.org/ 10.5061/dryad.s205vd8).

681 Acknowledgements:

We thank all members of the ADAPT project that provided the phenotypic data for this study, especially Aline Frank, Caroline Heiri and Peter Brang, 683 and to the leader of the EADAPT project, Andrea Kupferschmid, who provided the height and diameter data for 2014. The project was funded by 685 a research grant from the Center for Adaptation to a Changing Environment (ACE) at the ETH Zurich. KC was supported by an ACE 687 fellowship and by a Marie Skłodowska-Curie fellowship (FORGENET). We thank Kristian Ullrich for help with the SNP selection, and Dirk Karger with extracting the climatic data from the data bases. The contribution of several field and lab workers was necessary for the sample collection and 691 preparation for DNA extraction and genotyping, in particular, we thank Catherine Folly, René Graf, and Olivier Charlandie. We thank Annika 693 Ackermann (Grassland Isolab, ETH Zurich), who performed the stable isotope measures, and Fabian Deuber for sample preparation. 695

Compliance with ethical standards

697 Conflict of interest

The authors declare that they have no conflict ofinterest.

References

- Ackerly D, Loarie S, Cornwell W, Weiss S, Hamilton H, Branciforte R, Kraft
- N (2010) The geography of climate change: implications for conservation
- biogeography. *Divers Distrib*, **16**: 476–487.
- Aitken SN, Bemmels JB (2016) Time to get moving: assisted gene flow of
- forest trees. *Evol Appl*, **9**: 271–290.
- Alberto F, Bouffier L, Louvet JM, Lamy JB, Delzon S, Kremer A (2011)
- Adaptive responses for seed and leaf phenology in natural populations
- of sessile oak along an altitudinal gradient. J Evol Biol, 24: 1442–1454.
- Alberto FJ, Aitken SN, Alía R, et al. (2013) Potential for evolutionary
- responses to climate change evidence from tree populations. Global
- 710 Change Biol, **19**: 1645–1661.
- Austin MP, Van Niel KP (2011) Improving species distribution models for
- climate change studies: variable selection and scale. *† Biogeogr*, **38**: 1–8.
- Baranzelli MC, Sérsic AN, Cocucci AA (2014) The search for Pleiades in
- trait constellations: Functional integration and phenotypic selection in the
- complex flowers of Morrenia brachystephana (Apocynaceae). J Evol Biol,
- **27**: 724–736.
- Beguería S, Vicente-Serrano SM (2017) SPEI: calculation of the standardised
- precipitation-evapotranspiration index. *R package version 1.7*, **1**.
- Berg R (1960) The ecological significance of correlation pleiades. *Evolution*,
- 720 **14**: 171–180.

- Booth TH, Nix HA, Busby JR, Hutchinson MF (2014) Bioclim: the first species distribution modelling package, its early applications and relevance to most current maxent studies. *Divers Distrib*, **20**: 1–9.
- Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005)

 Phenotypic and genetic differentiation between native and introduced

 plant populations. *Oecologia*, **144**: 1–11.
- Brendel O, Le Thiec D, Scotti-Saintagne C, Bodénès C, Kremer A, Guehl JM
 (2008) Quantitative trait loci controlling water use efficiency and related
 traits in *Quercus robur* L. *Tree Genet Genomes*, 4: 263–278.
- Brendel O, Pot D, Plomion C, Rozenberg P, Guehl JM (2002) Genetic parameters and QTL analysis of δ^{13} c and ring width in maritime pine.

 Plant Cell Environ, 25: 945–953.
- Burga CA, Hussendörfer E (2001) Vegetation history of *Abies alba* Mill. (silver fir) in Switzerland–pollen analytical and genetic surveys related to aspects of vegetation history of *Picea abies* (L.) H. Karsten (Norway spruce). *Veg Hist Archaeobot*, **10**: 151–159.
- Bürgi M, Schuler A (2003) Driving forces of forest management an analysis
 of regeneration practices in the forests of the Swiss Central Plateau during
 the 19th and 20th century. For Ecol Manage, 176: 173–183.
- Cailleret M, Nourtier M, Amm A, Durand-Gillmann M, Davi H (2014)

 Drought-induced decline and mortality of silver fir differ among three sites
 in Southern France. *Ann For Sci*, **71**: 1–15.
- Chenoweth SF, Blows MW (2008) Q_{ST} meets the G matrix: The

- dimensionality of adaptive divergence in multiple correlated quantitative
- traits. *Evolution*, **62**: 1437–1449.
- Cheverud JM (1988) A comparison of genetic and phenotypic correlations.
- *Evolution*, **42**: 958–968.
- $_{\mbox{\tiny 748}}$ Cheverud JM (2001) A simple correction for multiple comparisons in interval
- mapping genome scans. *Heredity*, **87**: 52–58.
- Chevillat VS, Siegwolf RT, Pepin S, Körner C (2005) Tissue-specific variation
- of δ^{13} c in mature canopy trees in a temperate forest in central Europe.
- 752 Basic Appl Ecol, **6**: 519–534.
- Chevin LM, Lande R (2010) When do adaptive plasticity and genetic
- evolution prevent extinction of a density-regulated population? *Evolution*,
- 755 **64**: 1143–1150.
- Cooke JE, Eriksson ME, Junttila O (2012) The dynamic nature of bud
- dormancy in trees: environmental control and molecular mechanisms.
- 758 Plant Cell Environ, **35**: 1707–1728.
- Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable
- isotopes in plant ecology. *Annu Rev Ecol Syst*, **33**: 507–559.
- De Kort H, Vander Mijnsbrugge K, Vandepitte K, Mergeay J, Ovaskainen O,
- Honnay O (2016) Evolution, plasticity and evolving plasticity of phenology
- in the tree species Alnus glutinosa. J Evol Biol, **29**: 253–264.
- Delahaie B, Charmantier A, Chantepie S, Garant D, Porlier M, Teplitsky
- C (2017) Conserved g-matrices of morphological and life-history traits
- among continental and island blue tit populations. *Heredity*, **119**: 76.

- Falush D, Stephens M, Pritchard JK (2003) Inference of population structure
- using multilocus genotype data: linked loci and correlated allele
- frequencies. *Genetics*, **164**: 1567–1587.
- $_{\mbox{\scriptsize 770}}~$ Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination
- and photosynthesis. *Annu Rev Plant Biol*, **40**: 503–537.
- Frank A, Howe GT, Sperisen C, Brang P, Clair JBS, Schmatz DR, Heiri C
- (2017a) Risk of genetic maladaptation due to climate change in three major
- European tree species. *Global Change Biol*, **23**: 5358–5371.
- Frank A, Sperisen C, Howe GT, Brang P, Walthert L, Clair JBS, Heiri C (2017b)
- Distinct genecological patterns in seedlings of Norway spruce and silver
- fir from a mountainous landscape. *Ecology*, **98**: 211–227.
- Gaspar MJ, Louzada JL, Silva ME, Aguiar A, Almeida MH (2008) Age trends in
- genetic parameters of wood density components in 46 half-sibling families
- of Pinus pinaster. Can J For Res, **38**: 1470–1477.
- Gazol A, Camarero JJ, Gutiérrez E, et al. (2015) Distinct effects of climate
- warming on populations of silver fir (Abies alba) across Europe. J Biogeogr,
- **42**: 1150–1162.
- Gilbert KJ, Whitlock MC (2015) $Q_{ST} F_{ST}$ comparisons with unbalanced
- half-sib designs. *Mol Ecol Resour*, **15**: 262–267.
- Gömöry D, Foffová E, Longauer R, Krajmerová D (2015) Memory effects
- associated with early-growth environment in Norway spruce and
- European larch. Eur J Forest Res, **134**: 89–97.

- Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. *Ecol Lett*, **8**: 461–467.
- Hansen TF, Pélabon C, Houle D (2011) Heritability is not evolvability. *Evol Biol*, **38**: 258.
- Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. *Int J Climatol*, 34: 623–642.
- Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United

 States. J Am Water Resour Assoc, 36: 387–397.
- Hengl T, de Jesus JM, Heuvelink GB, *et al.* (2017) SoilGrids250m: Global gridded soil information based on machine learning. *PLoS One*, **12**: e0169748.
- Hewitt GM (1999) Post-glacial re-colonization of european biota. *Biol* \mathcal{J} *Linn Soc*, **68**: 87–112.
- Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) Package dismo'. *Circles*, **9**.
- Houle D (1992) Comparing evolvability and variability of quantitative traits.
 Genetics, **130**: 195–204.
- Johnsen KH, Flanagan LB, Huber DA, Major JE (1999) Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in *Picea mariana*: analyses from a half-diallel mating design using field-grown trees. *Can J For Res*, **29**: 1727–1735.

- Karger DN, Conrad O, Böhner J, *et al.* (2017) Climatologies at high resolution
 for the Earth's land surface areas. *Sci Data*, **4**: 170122.
- Karhunen M, Merilä J, Leinonen T, Cano JM, Ovaskainen O (2013) driftsel:
- An R package for detecting signals of natural selection in quantitative
- traits. *Mol Ecol Resour*, **13**: 746–754.
- Karhunen M, Ovaskainen O (2012) Estimating population-level coancestry coefficients by an admixture F model. *Genetics*, **192**: 609–617.
- Karhunen M, Ovaskainen O, Herczeg G, Merilä J (2014) Bringing habitat
- information into statistical tests of local adaptation in quantitative traits:
- A case study of nine-spined sticklebacks. *Evolution*, **68**: 559–568.
- Kawecki TJ (2008) Adaptation to marginal habitats. *Annu Rev Ecol Evol Syst*, **39**: 321–342.
- Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. *Ecol Lett*,
 7: 1225–1241.
- Körner C, Farquhar G, Wong S (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. *Oecologia*, **88**: 30–40.
- Kremer A, Ronce O, Robledo-Arnuncio JJ, et al. (2012) Long-distance gene
- flow and adaptation of forest trees to rapid climate change. *Ecol Lett*, **15**:
- 830 378-392.
- Kruuk LE, Slate J, Wilson AJ (2008) New Answers for Old Questions: The
- Evolutionary Quantitative Genetics of Wild Animal Populations. Annu
- 833 Rev Ecol Evol Syst, **39**: 525–548.

- Kunstler G, Albert CH, Courbaud B, *et al.* (2011) Effects of competition on tree radial-growth vary in importance but not in intensity along climatic gradients. *J Ecol*, **99**: 300–312.
- Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce *Abies alba* tree-ring sensitivity to summer drought in the Vosges mountains,

 Western Europe. *For Ecol Manage*, **303**: 61–71.
- Leonardi S, Gentilesca T, Guerrieri R, *et al.* (2012) Assessing the effects of
 nitrogen deposition and climate on carbon isotope discrimination and
 intrinsic water-use efficiency of angiosperm and conifer trees under rising
 CO₂ conditions. *Global Change Biol*, **18**: 2925–2944.
- Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates
 postglacial gene flow among refugia. *Proc Natl Acad Sci U S A*, 99: 14590–
 14594.
- Liepelt S, Cheddadi R, de Beaulieu JL, *et al.* (2009) Postglacial range
 expansion and its genetic imprints in *Abies alba* (Mill.) A synthesis from
 palaeobotanic and genetic data. *Rev Palaeobot Palynol*, **153**: 139–149.
- Lind BM, Menon M, Bolte CE, Faske TM, Eckert AJ (2018) The genomics
 of local adaptation in trees: Are we out of the woods yet? *Tree Genet*Genomes, 14: 29.
- Martin G, Chapuis E, Goudet J (2008) Multivariate Q_{ST} – F_{ST} comparisons: A neutrality test for the evolution of the G matrix in structured populations.

 Genetics, **180**: 2135–2149.
- McDowell NG, Ryan MG, Zeppel MJ, Tissue DT (2013) Feature: Improving

- our knowledge of drought-induced forest mortality through experiments, 857 observations, and modeling. New Phytol, 200: 289–293. 858
- Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic 859 plasticity: the problem and the evidence. *Evol Appl*, 7: 1–14. 860
- Mittell EA, Nakagawa S, Hadfield JD (2015) Are molecular markers useful 861 predictors of adaptive potential? *Ecol Lett*, **18**: 772–778. 862
- Moran E, Lauder J, Musser C, Stathos A, Shu M (2017) The genetics of drought 863 tolerance in conifers. New Phytol, 216: 1034-1048. 864
- Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, Belletti P, Neale 865 DB (2012) The geographical and environmental determinants of genetic 866 diversity for four alpine conifers of the European Alps. *Mol Ecol*, **21**: 5530– 867 5545.
- Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet, 12: 111-122.
- Ovaskainen O, Karhunen M, Zheng C, Arias JMC, Merilä J (2011) A new 871 method to uncover signatures of divergent and stabilizing selection in quantitative traits. Genetics, 189: 621-632. 873
- Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst, 37: 187–214.

875

- Pigliucci M, Preston KA (2004) Phenotypic integration: studying the ecology 876 and evolution of complex phenotypes. Oxford University Press, Oxford, UK. 877
- Polechova J (2018) Is the sky the limit? on the expansion threshold of a species' range. PLoS Biol, 16: e2005372. 879

- Prunier J, Verta JP, MacKay JJ (2016) Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. *New Phytol*, **209**:
- 882 44-62.
- Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA,
- Milyutin LI (2002) Intraspecific responses to climate in *Pinus sylvestris*.
- 885 Global Change Biol, **8**: 912–929.
- Resende M, Munoz P, Acosta J, et al. (2012) Accelerating the domestication of
- trees using genomic selection: accuracy of prediction models across ages
- and environments. *New Phytol*, **193**: 617–624.
- Rinne KT, Saurer M, Kirdyanov AV, Bryukhanova MV, Prokushkin AS,
- 890 Churakova O, Siegwolf RT (2015) Examining the response of needle
- carbohydrates from Siberian larch trees to climate using compound-
- specific δ^{13} C and concentration analyses. Plant Cell Environ, 38: 2340–
- 893 2352.
- Rodríguez-Quilón I, Santos-del Blanco L, Serra-Varela MJ, Koskela J,
- 895 González-Martínez SC, Alía R (2016) Capturing neutral and adaptive
- genetic diversity for conservation in a highly structured tree species. *Ecol*
- 897 Appl, **26**: 2254–2266.
- ⁸⁹⁸ Roschanski AM, Csilléry K, Liepelt S, et al. (2016) Evidence of divergent
- selection for drought and cold tolerance at landscape and local scales in
- Abies alba Mill. in the French Mediterranean Alps. Mol Ecol, 25: 776–794.
- Ruosch M, Spahni R, Joos F, Henne PD, van der Knaap WO, Tinner W (2016)
- Past and future evolution of *Abies alba* forests in Europe comparison of

- a dynamic vegetation model with palaeo data and observations. *Global*Change Biol, **22**: 727–740.
- Santini F, Ferrio J, Hereş AM, *et al.* (2018) Scarce population genetic differentiation but substantial spatiotemporal phenotypic variation of water-use efficiency in *Pinus sylvestris* at its western distribution range.
- 908 Eur Journal For Res, **137**: 863–878.
- Santos-del Blanco L, Bonser S, Valladares F, Chambel M, Climent J (2013)
- Plasticity in reproduction and growth among 52 range-wide populations
- of a Mediterranean conifer: adaptive responses to environmental stress. \mathcal{J}
- 912 Evol Biol, **26**: 1912–1924.
- Saurer M, Spahni R, Frank DC, *et al.* (2014) Spatial variability and temporal trends in water-use efficiency of european forests. *Global Change Biol*, **20**: 3700–3712.
- Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. *Annu Rev Ecol Evol Syst*, **38**: 595–619.
- Schäfer MA, Berger D, Rohner PT, *et al.* (2018) Geographic clines in wing morphology relate to colonization history in New World but not Old World populations of yellow dung flies. *Evolution*, **72**: 1629–1644.
- St Clair J, Adams W (1991) Effects of seed weight and rate of emergence on early growth of open-pollinated Douglas-fir families. *For Sci*, **37**: 987–997.
- Sultan SE, Spencer HG (2002) Metapopulation structure favors plasticity over
 local adaptation. *Am Nat*, **160**: 271–283.

- Surles SE, White TL, Hodge GR, Duryea ML (1993) Relationships among seed
 weight components, seedling growth traits, and predicted field breeding
 values in slash pine. Can J For Res, 23: 1550–1556.
- Van der Knaap W, van Leeuwen JF, Finsinger W, *et al.* (2005) Migration and population expansion of *Abies, Fagus, Picea*, and *Quercus* since 15000 years in and across the Alps, based on pollen-percentage threshold values. *Quat*Sci Rev, 24: 645–680.
- Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. *Evolution*, **39**: 505–522.
- Vitali V, Büntgen U, Bauhus J (2017) Silver fir and Douglas fir are more
 tolerant to extreme droughts than Norway spruce in south-western
 Germany. *Global Change Biol*, pp. 5108–5119.
- Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying

 phenological plasticity to temperature in two temperate tree species. *Funct*Ecol. 24: 1211–1218.
- Voltas J, Chambel MR, Prada MA, Ferrio JP (2008) Climate-related variability
 in carbon and oxygen stable isotopes among populations of aleppo pine
 grown in common-garden tests. *Trees*, 22: 759–769.
- Waitt DE, Levin DA (1998) Genetic and phenotypic correlations in plants: a
 botanical test of Cheverud's conjecture. *Heredity*, **80**: 310–319.
- Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer drought
 severity index. J Climate, 17: 2335–2351.

- ⁹⁴⁷ Wermelinger B (2004) Ecology and management of the spruce bark beetle *Ips*
- typographus—a review of recent research. For Ecol Manage, 202: 67–82.
- Whitlock MC (2008) Evolutionary inference from Q_{ST} . Mol Ecol, **17**: 1885–1896.
- Whitlock MC, Guillaume F (2009) Testing for spatially divergent selection:
- omparing Q_{ST} to F_{ST} . Genetics, **183**: 1055–1063.
- ⁹⁵³ Yeaman S, Jarvis A (2006) Regional heterogeneity and gene flow maintain
- variance in a quantitative trait within populations of lodgepole pine. *Proc*
- 955 R Soc London, Ser B, **273**: 1587–1593.
- ⁹⁵⁶ Zas R, Sampedro L (2015) Heritability of seed weight in maritime pine,
- a relevant trait in the transmission of environmental maternal effects.
- 958 Heredity, **114**: 116.

Table 1: Geography and environmental variables calculated for the period of 1 January 1901 - 31 December 1978 from monthly mean, minimum and maximum temperature and total precipitation (CRU TS v. 4.01 data Harris *et al.* (2014) downscaled using CHELSA (Karger *et al.*, 2017)), and available water capacity (AWC, Soilgrids data base Hengl *et al.* (2017)). Abbreviations: PET: Potential Evapotranspitation; scPDSI: Palmer's Drought Severity Index, SPEI: Standardised Precipitation-Evapotranspiration Index.

Variable	Description	Mean	(Min., Max.)						
Geography	<u> </u>								
Long	Longitude (degrees)	8.3	(6.2, 10.5)						
Lat	Latitude (degrees)	46.7	(46.1, 47.3)						
Elev	Elevation (m a.s.l)	1062.2	(481, 1602.5)						
Slope	Slope (%)	40	(0,70)						
Standard bioclimatic indexes									
bio.1	Annual Mean Temperature	6.1	(3.1, 9.3)						
bio.2	Mean Diurnal Range (Mean of monthly Tmax - Tmin))	8.9	(8.6, 9.2)						
bio.3	Isothermality (bio.2/bio.7) (* 100)	23.9	(23.2, 24.6)						
bio.4	Temperature Seasonality (standard deviation *100)	663.7	(636.4, 676.9)						
bio.5	Max Temperature of Warmest Month	24.2	(21, 27.4)						
bio.6	Min Temperature of Coldest Month	-13	(-15.8, -10)						
bio.7	Temperature Annual Range (bio.5-bio.6)	37.2	(36.2, 37.9)						
bio.8	Mean Temperature of Wettest Quarter	9.5	(-2.6, 17.7)						
bio.9	Mean Temperature of Driest Quarter	-1.7	(-6.1, 3.9)						
bio.10	Mean Temperature of Warmest Quarter	16.8	(13.8, 20)						
bio.11	Mean Temperature of Coldest Quarter	-6	(-8.5, -3.3)						
bio.12	Annual Precipitation	1176.4	(505.6, 1690.9)						
bio.13	Precipitation of Wettest Month	281	(128.1, 432.6)						
bio.14	Precipitation of Driest Month	4	(0.4, 9.1)						
bio.15	Precipitation Seasonality (Coefficient of Variation)	50	(46,55.3)						
bio.16	Precipitation of Wettest Quarter	641.2	(274.2, 1024.7)						
bio.17	Precipitation of Driest Quarter	55.6	(24.5, 83.7)						
bio.18	Precipitation of Warmest Quarter	277.3	(156, 442.9)						
bio.19	Precipitation of Coldest Quarter	222.7	(65.6, 452.7)						
Drought									
AWC	Available Water Capacity	163.9	(147.7, 184.5)						
PET.thorn	Mean annual PET (Thornthwaite)	43.8	(37.3, 51.8)						
PET.harg	Mean annual PET (Hargreaves)	52.6	(47.3, 59.4)						
SPEI.m1	Number of month with SPEI < -1	162	(144, 178)						
SPEI.m2	Number of month with SPEI < -2	13.8	(7,22)						
SPEI.q5	5% quantile of SPEI	-1.6	(-1.6, -1.5)						
SPEI.q1	1% quantile of SPEI	-2.1	(-2.2, -1.9)						
scPDSI.m3	Number of month with $scPDSI < -3$	42.6	(29,53)						
scPDSI.m4	Number of month with scPDSI < -4	9.6	(2, 14)						
scPDSI.q5	5% quantile of scPDSI	-3.2	, ,						
scPDSI.q1	1% quantile of scPDSI	-4.5	(-4.9, -4.1)						
Late frost									
late.frost	Min temperature of the first month of the year	1.7	(1.4, 2)						
	with mean temperature > 5°C		(4 =)						
late.frost2	Min temperature of May	4.7	(1.5, 8.2)						

Table 2: Evidence of adaptive divergence across 19 Swiss silver fir (*Abies alba* Mill.) populations using the $Q_{ST} - F_{ST}$ test of Whitlock & Guillaume (2009) and the *S*-test of Ovaskainen *et al.* (2011). 2.5%, 97.5% are the lower and upper 95% confidence intervals for Q_{ST} . The evolvability suggested by Houle (1992) was estimated using a linear mixed effects model (see Supplementary Methods S1 for details).

Trait	$Q_{ST} - F_{ST}$ test				S-test	Evolvability
	Q_{ST}	2.5%	97.5%	p-value	S	CV_A
Height 2013	0.18	0.05	0.42	0.003	1.00	0.100
Height 2014	0.29	0.11	0.59	0.002	1.00	0.153
Diameter 2013	0.09	0.00	0.29	0.044	0.92	0.161
Diameter 2014	0.08	0.00	0.23	0.042	0.83	0.153
Terminal Bud Break 2013	0.15	0.01	0.64	0.054	0.94	0.021
Terminal Bud Break 2014	0.18	0.04	0.57	0.025	0.86	0.021
Lateral Bud Break 2013	0.12	0.02	0.35	0.020	0.96	0.020
Maximum Growth Rate 2013	0.06	-0.02	0.28	0.133	0.67	0.184
Growth Duration 2013	0.25	0.05	0.96	0.035	0.93	0.097
Growth Cessation 2013	0.23	-2.62	2.75	0.081	0.54	0.004

Table 3: H^* -test for the first five principal components of the environmental variables listed in Table 1 for each trait. H^* and the cumulative variance explained by each PC axes are expressed as percentages. For each trait, the highest H^* value is highlighted in bold. The variables with the highest loadings on each of the PC axes are the following: PC1: bio.2 (Mean Diurnal Range) and Elevation, PC2: bio.10 (Mean Temperature of the Warmest Quarter) and PET.harg, PC3 and 4: none, PC5: bio.8 (Mean Temperature of the Warmest Quarter) and bio.15 (Precipitation seasonality)

Trait	PC1	PC2	PC3	PC4	PC5
Height 2013	92	62	35	74	41
Height 2014	94	60	33	73	42
Diameter 2013	88	45	31	66	40
Diameter 2014	78	42	29	67	45
Terminal Bud Break 2013	12	84	32	68	94
Terminal Bud Break 2014	23	82	30	35	88
Lateral Bud Break 2013	17	80	16	47	95
Maximum Growth Rate 2013	51	70	31	49	86
Growth Duration 2013	08	92	56	70	93
Growth Cessation 2013	20	73	55	33	44
Cumulative Variance	38	56	70	79	84

Figure legends

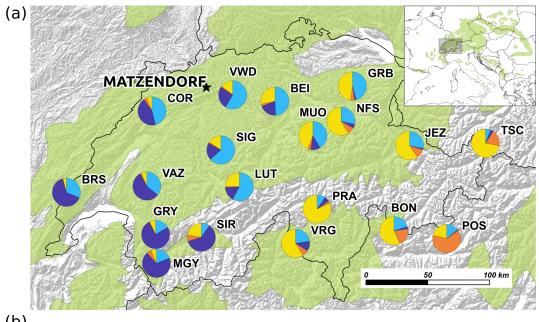
Fig. 1. (a) Geographic location of the silver fir (*Abies alba* Mill.) populations indicated by a summary of the STRUCTURE results with K=4. Each pie shows the average coancestry of the sampled, on average, 20 individuals from the 19 populations from the four assumed genetic clusters. (b) Drift distances between populations as estimated with the admixture F-model (AFM). Coancestry between populations is the mean of the posterior means from 10 independent Markov chains. Distances were calculated from the posterior mean coancestry matrix to draw the dendrogram.

Fig. 2. (a) The strength of selection acting on a given pair of traits measured using the *S* statistics of Ovaskainen *et al.* (2011), and the genetic correlation between them estimated from the ancestral *G*-matrix (see Supplementary Methods S3 for formulae). Points and trait names in blue indicate trait pairs with genetic correlations significantly different from zero. (b) Phenotypic and genetic correlations between trait pairs estimated from the *P*- and the ancestral *G*-matrix. Points and trait names in blue indicate trait pairs with genetic correlations significantly different from zero and different from phenotypic correlations. The trait abbreviations for 2013 are as follows: H2013: Height 2013, D2013: Diameter 2013, TBB2013: Terminal Bud Break 2013, LBB2013: Lateral Bud Break 2013, MGR2013: Maximum Growth Rate 2013, GD2013: Growth Duration 2013, GC2013: Growth Cessation 2013, and with identical letter codes for 2014.

Fig. 3. Adaptive divergence for each trait separately. (a–j) Panels show the estimated ancestral additive mean trait value (horizontal line), the amount of trait divergence from this mean that is expected based on drift (gray envelop), and the estimated posterior distribution of the additive trait values for each population (boxes). Blue boxes indicate strong evidence of selection at the particular population. Populations are ordered on each panel according to their additive trait values.

Fig. 4. Correlated adaptive divergence in a two-trait space between Terminal Bud Break, Growth Duration and Maximum Growth Rate. Colors indicate the mean water use efficiency (δ^{13} C) of ten adult trees from the given population. Less negative δ^{13} C indicate higher water use efficiency. The capital letter A in the middle of the ellipses indicates the estimated ancestral additive mean trait value. Ellipses represent the median amount of trait divergence that is expected based on drift for each population (null hypothesis). Population codes (3 letters) represent the median of the posterior distribution of the additive trait values for each population. Populations with strong evidence of selection using the *S*-test are highlighted with an ellipse in color (identical to that of the population code). Ellipses of populations that do not deviate from drift are shown in gray.

Fig. 5. Principal component (PC) analysis of the environmental variables listed in Table 1 with populations (three letter codes) highlighted in blue if they showed evidence of selection in the S-tests for 2013 or 2014 Height (a) and for Terminal Bud Break, Maximum Growth Rate and Duration (b). Each panel shows the environmental space with the first two PC axes that had explained the highest amount of variance using the H^* -test, which were PC 1 and 4 for 2013 or 2014 Height, and PCs 2 and 5 for Bud Break and Growth Duration.



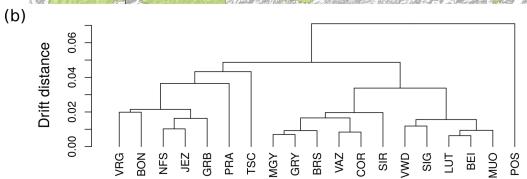


Figure 1

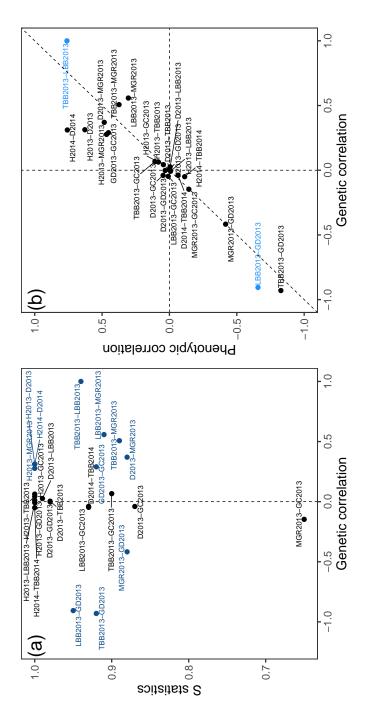


Figure 2

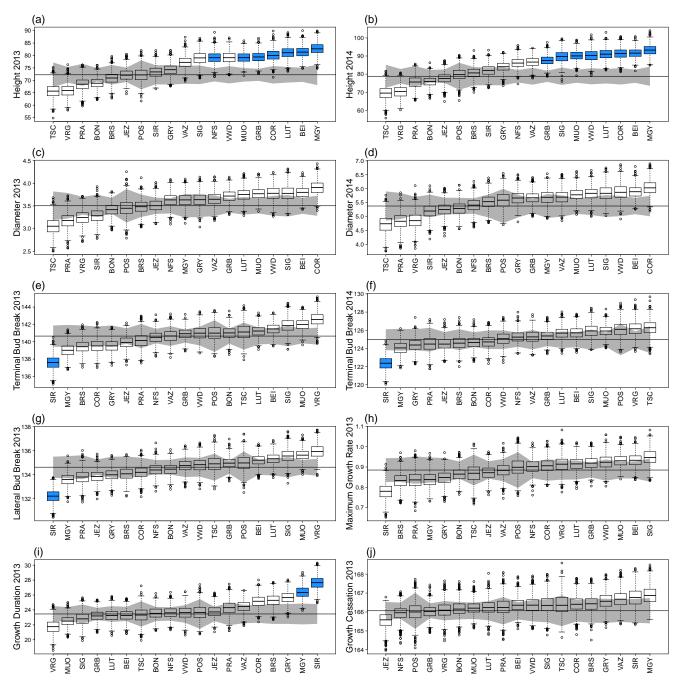


Figure 3

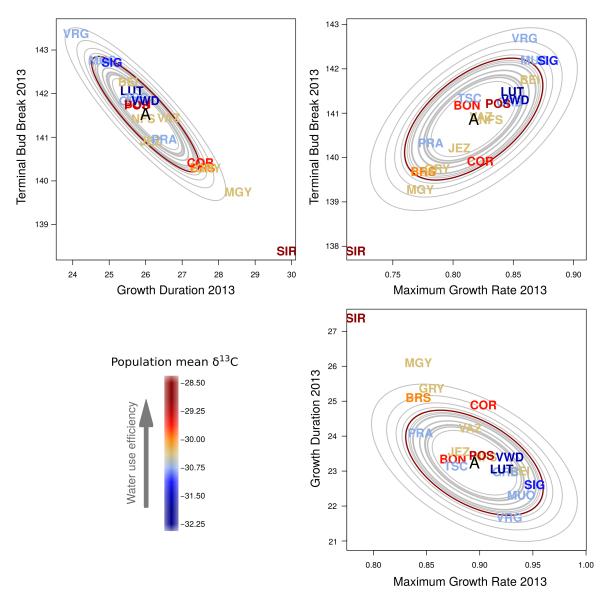


Figure 4

