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Code and datasets 

An R script with all analyses and the Swedish and global grassland datasets is available at 

https://github.com/KevinVanSundert/NutrientMetrics_GCB_2019_KVS/blob/master/NutrientMetric30 

s_GCB_2019.7z. 

 

Collection and pre-processing of soil data 

Soil sampling and analyses were performed following the ICP Forests manual on sampling and analysis 

of soil (Cools & De Vos, 2016). The results of the soil sampling campaigns between 2003 and 2010 of 35 

286 ICP Forests Level II sites have been assembled in the aggregated forest soil condition database 

(AFSCDB.LII.2.2) (Fleck et al. 2016). This soil database contains the main soil variables of the forest 

floor, the horizons of the mineral soil, and fixed depth layers (0–10, 10–20, 20–40, and 40–80 cm) for 

mineral or peat soil. Apart from the aggregated soil data, the database contains variables calculated 

from raw data (e.g. C:N and C:P ratio, nutrient stocks, etc. - Table S1). Because the metric proposed in 40 

Van Sundert et al. (2018) used soil information for the top 0-20 cm of soil (including the organic layer), 

we also converted the new data to represent this soil depth interval, using the averages weighted by 

mass for each layer.  

 

Calculation of tree stem volume increment 45 

Tree growth on the ICP Forests Level II sites is assessed approximately every 5 years with standardized 

methods since the late eighties (Dobbertin  & Neumann, 2010). Data used for this study cover the 

period from 1995 to 2010, thus including three inventory periods. Diameter at breast height (DBH), 

dead or alive status, and tree height were assessed regularly for every tree (DBH > 5 cm) within a 

monitoring plot according to the manuals of the ICP Forests Programme (ICP Forests, 2010).  50 

 

Tree stem volumes were calculated from DBH and height with allometric relationships accounting for 

species and regional differences (De Vries et al., 2003). The increment of annual stem volume (in m3 

ha-1 yr-1) between two inventories was calculated as the sum of increment of standing trees plus 

ingrowth, and the increment of lost trees until their disappearance. Trees disappeared between two 55 

inventories were assumed to have been lost in the middle of the inventory period and stem volumes 

of these trees at the point of their disappearance was estimated from regressions of stem volumes at 

the beginning and end of the inventory period of available trees. For our analyses, we averaged 

volume increments per site over all inventory periods for which increments were available (e.g. 5 to 

15 years depending on available data). We considered averaging a proxy for productivity over 5 to 15 60 

years as a more reliable option than averaging over the particular five-year inventory period during 

which soil sampling occurred, because the five-yearly productivity is still more sensitive to inter-annual 

variability in weather conditions not taken into account in further analyses (e.g. Anderegg et al., 2015). 

Furthermore, considerable biases due to a mismatch between soil properties and productivity are 

unlikely, because even though variables such as soil C:N ratio and pH, and therefore also soil nutrient 65 

status have been changing over time in Europe between the first and last inventory periods, temporal 

trends within sites are relatively small compared to spatial variation (e.g. studies on European forests 

report multi-decadal pH changes being considerably lower than one unit, while pH in the dataset 

varied by more than three; soil C:N increased up to a few units, whereas organic and mineral soil C:N 

varied spatially between 18-65 and 5-54, respectively - Kirk et al., 2010; Jandl et al., 2012; Novotny et 70 

al., 2015; Binkley & Högberg, 2016). 

https://github.com/KevinVanSundert/NutrientMetrics_GCB_2019_KVS/blob/master/NutrientMetrics_GCB_2019.7z
https://github.com/KevinVanSundert/NutrientMetrics_GCB_2019_KVS/blob/master/NutrientMetrics_GCB_2019.7z
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Table S1. Overview of variables from the European ICP Forests database used in the current study. Plots for 
vegetation and soil monitoring (≥ 0.25 ha; n = 118) are representative samples of the most important forest 
types with a risk for acidification in the country they are found. Forests in the inventory are managed for wood 75 
production. Note that only variables that are presented in the current study are shown for simplicity, while the 
original database contained more variables. Abbreviations: MAT = mean annual temperature; MAP = mean 
annual precipitation; SOC = soil organic carbon concentration; TEB = total exchangeable bases; BS = base 
saturation.  

Data used location climate soila vegetation  
latitude (° N) 

longitude (° E) 

MAT (° C) 

MAP (mm) 

 

organic layer thickness (cm) 

0-20 cm SOC (%)  

organic layer C:N ratio 

mineral soil C:N ratio 

0-20 cm soil C:N ratio 

organic layer pHCaCl2 

mineral soil pHCaCl2 

0-20 cm soil pHwater 

mineral soil TEB (cmol+ kg–1) 

organic layer total P (mg kg–1)b 

mineral soil total P (mg kg–1)b 

organic layer C:P ratiob 

mineral soil C:P ratiob 

age classc  

tree speciesd   

productivitye (m³ ha–1 yr–1) 

stand densityf (trees ha–1) 

leaf N (‰) 

leaf P (‰) 

leaf K (‰) 

leaf Ca (‰) 

leaf Mg (‰) 

leaf S (‰) 

leaf N:P ratio 

a Soil data, collected from 2003 onwards, were taken or derived from the aggregated soil database, provided by the European 80 
Forest Soil Coordination Centre (Fleck et al., 2016). The chemical and physical soil analyses results ought to be representative 
for the whole plot area. The spatial variability is covered by including at least 24 sampling locations in the composite sample. 
For the laboratory analyses of all solid soil parameters, methodology of the ICP Forests soil manual was followed (Cools & 
De Vos, 2016). 
b In this study, we used aqua regia extractable P (ISO 11466, 1995) as the best available proxy for soil total P. Actual total P 85 
as derived from the acid digestion method may therefore have been underestimated (Ivanov, 2012). 
c Tree age was classified into nine 20-year classes (i.e. 0-20, 20-40, etc. up to > 160 in class 9) based on standardized visual 
assessment of crown conditions. In the current study, we treated the class as a continuous variable. 
d Homogeneous, managed stands dominated by Common beech (Fagus sylvatica L.), Pedunculate oak (Quercus robur L.), 
Scots pine (Pinus sylvestris L.) or Norway spruce (Picea abies (L.) H. Karst.) were used for the analyses. 90 
e Stem volume increment, based on the difference in volume between two five-yearly inventories. Productivity data used in 
the current study represent averages over all inventory periods between 1995 and 2010 (i.e. three productivity outcomes 
were averaged when three inventories were performed, but in some cases there were only one or two inventories). We 
preferred averaging over multiple periods over just using one period (e.g. the last one or the one during soil was sampled) 
because the five-yearly productivity is still more sensitive to inter-annual variability in weather conditions not taken into 95 
account in further analyses (e.g. Anderegg et al., 2015).   
f Stand density (eventually only used in exploratory analyses, see ‘removing confounding effects’) was expressed as trees ha–

1 in this study because the alternative Reineke stand density index (which offers the advantage of being orthogonal to age – 
e.g. Solberg et al., 2009) was only available for 55 out of the 118 forests initially used in our study. In the database we used, 
the number of trees ha–1 did not significantly correlate with age (r = -0.09; P = 0.34), and species-specific regression models 100 
that explained productivity by climate, age and stand density did not result in problematic variance inflation (variance 
inflation factor < 4). 
 

 
 105 
 
 
 
 
 110 
 
 
 
 
Table S2 Overview of variables from the Swedish forest and soil database used in the present study, and in Van 115 
Sundert et al. (2018) for development of a first soil nutrient status metric. Each plot for soil and vegetation 
analyses had a 10 m radius and was sampled once during the period 2003-2012. The (mostly managed) forests 
in the inventory represent a random sample of Swedish forests. Note that only variables presented in the current 
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study are shown for simplicity, while the original database contained more variables. Abbreviations: TSUM = 
growing season temperature sum; MAP = mean annual precipitation; SOC = soil organic carbon concentration; 120 
TEB = total exchangeable bases. Data for southern Sweden (n = 1061; this is the region in Sweden where most 
variation in soil variables and productivity occurs, hence data from southern Sweden were used to evaluate 
performance of the metrics in the present study) are available at 
https://github.com/KevinVanSundert/NutrientMetrics_GCB_2019_KVS/blob/master/NutrientMetrics_GCB_20
19.7z  125 

Data used location climate soilb vegetation  
latitude (° N) 

longitude (° E) 

elevation (m) 

TSUMa (° C days) 

MAP (mm) 

 

organic layer thickness (cm) 

0-20 cm SOC (%)  

organic layer C:N ratio 

0-20 cm soil C:N ratio 

organic layer pHCaCl2 

mineral soil pHCaCl2 

0-20 cm soil pHwater 

mineral soil TEB (cmol+ kg–1) 

agec (yrs)  

dominant tree speciesd  

productivitye 

(m³ ha–1 yr–1) 

aTSUM was calculated for each data point based on its latitude, longitude and elevation. 
bn = 3; soil variables were determined using standard sampling and laboratory procedures (e.g. Olsson et al., 2009; Stendahl 
et al., 2010). 
cStand age ranged between 1 and 350 years, with an average of 65 years. 
dSites were classified as either spruce or pine forests if ≥ 50% of the basal area consisted of spruce, resp. pine. 130 
eProductivities (site quality) or mean annual volume increments (MAI) over a full rotation were estimated based on height 
development curves. In situ productivities may be lower, depending on the management.  
 

 
 135 
Table S3. Overview of variables from the global grassland database used in the current study. Abbreviations: 
MAT = mean annual temperature; GSP = growing season precipitation (mm). Data were collected by D. 
Radujkovic by combining published data from fertilizer experiments on grasslands, and unpublished results 
provided by the principal investigators. For the collected published data, search terms “grasslands”, “soil”, 
“ANPP” and “biomass” were used in Web of Science. Only studies containing information on ANPP, soil C:N ratio 140 
and pH were retained. Data and references per site (n = 68) are available at 
https://github.com/KevinVanSundert/NutrientMetrics_GCB_2019_KVS/blob/master/NutrientMetrics_GCB_20
19.7z . 

Data used location climate soil vegetation  
latitude (° N) 

longitude (° E) 

MAT (° C) 

GSP (mm) 

 

soil C (%)a  

soil C:N ratio 

soil pH 

soil total P (ppm) 

soil C:P ratio 

soil total K + Ca + Mg (ppm) 

Productivityb 

(g C m-2 yr–1) 

a Since SOC data were not available for most grassland sites, total C was used instead of SOC to calculate the nutrient metric. 
Grasslands on calcareous soils were omitted from the analysis to ensure total C approximated SOC. 145 
b Aboveground net primary productivity. 

 

 

 

METHODOLOGY: removing confounding effects 150 

Because factors other than the nutrient status also strongly influence plant growth, especially species, 

age and climate, evaluations of soil characteristics, plant stoichiometry and nutrient metrics with plant 
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growth data require removing these confounding effects. In Van Sundert et al (2018), this 

normalization procedure was based on a regression approach, which removed the effect of climate 

and species (stand age was accounted for by expressing forest productivity over a rotation period). 155 

This regression approach was appropriate for the Swedish dataset, where the normalization for 

climate did not confound the relationship between aboveground tree growth and soil properties (e.g. 

Van Sundert et al., 2018). For the ICP Forests dataset, however, this approach was more problematic 

because especially the soil C:N ratio correlated with MAT (Table S5). Also, variation in SOM showed a 

considerable degree of collinearity with climate, especially with MAP (Table S5). For these reasons, we 160 

applied a more advanced normalization procedure; instead of a simple regression approach, we 

applied structural equation modeling (R package lavaan – Rosseel, 2012) to distinguish direct effects 

of soil C:N ratio and SOM that correlate with climate (Fig. S1). As a test, we applied this procedure also 

to the Swedish dataset, but this did not alter the results for that dataset (see Table S9). 

 165 
Figure S1 Generalized path diagram showing the main factors influencing productivity. Structural Equation 

Modeling (SEM) was applied on the path diagram to estimate effects of stand age, climate and soil characteristics 

on productivity per species, while taking into account correlations between climate and soil. Equation 

parameters for all four species were estimated in one single SEM. 

 170 

Strong correlations among climate and soil variables were included in the SEMs of the Swedish, ICP 

and grassland datasets. Based on Tables S4-6, correlations between climate and soil variables > 0.50 

(or < -0.50) were included in the SEMs (criterion 1), and also soil variables exhibiting a correlation > 

0.50 with soil variables that met criterion 1 were included. 

 175 

Based on the SEMs, species-specific equations for productivity (Pi) were derived (Table S7): 

Pi = direct climate effect + soil effect (influenced by climate) + age effect [+ stand density] + ε  (1) 

For each species, productivity was then normalized for climate and age, such that only soil and residual 

effects remained. We did eventually not correct productivity for stand density (the number of trees 

ha–1, which had a positive influence on productivity of pine only), because this worsened SEM fit 180 

measures, therefore making the normalization procedure less reliable (not shown). Whether stand 

density was included in the analyses or not did not bias our results, since productivity normalized for 

climate and age was highly correlated with productivity normalized for stand density in addition 

(Pearson’s r = 0.97). Species-specific normalized productivity for a species (Pnsi) was thus calculated as: 

Pnsi = Pi - direct climate effect - age effect                   (2) 185 

Finally, to make normalized productivity comparable among species within a dataset, the final 

normalized productivity (PN) was computed by setting the averages for each species to zero (number 
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of data points per species = n): 

PN = Pnsi - sum(Pnsi)/n              (3) 

To test whether the results from Van Sundert et al (2018) depended on the normalization procedure, 190 

we tested the SEM-based normalization also for the Swedish dataset used in Van Sundert et al (2018). 

This SEM-based normalized productivity was exactly the same as the normalized productivity derived 

from regression, presented in Van Sundert et al. (2018) (Table S9), hence indicating that possible 

correlation between soil properties and climate did not cause any artifacts. For the datasets 

considered in the current manuscript (ICP Forests, and to a lesser extent the grassland dataset), on 195 

the other hand, the parameter estimates obtained from the SEM approach did differ from those 

obtained through the regression approach. 

 

 
Figure S2 Histograms for the thickness of the organic layer for forests in Sweden (n = 1061) and for the European 200 

ICP Forests sites (n = 103). 

 

 

 

 205 

 

 

 

 

 210 

 

 

 

 

 215 

 

 

 

 

Table S4 Matrix showing correlations (Pearson’s r) among key climate and soil variables in the Swedish conifer 220 

forest dataset. These soil variables in particular were chosen because of their link with the soil nutrient status 

(e.g. Van Sundert et al., 2018), and our observation during exploratory analyses that organic layer characteristics 

in particular explain variation in normalized productivity across both the Swedish and ICP Forests datasets (e.g. 

Table S22). Abbreviations: TSUM = growing season temperature sum (°C days); MAP = mean annual precipitation 

(mm); C:N = soil carbon to nitrogen ratio; pHCaCl2 = soil pH, measured in CaCl2 solution; TEB = total exchangeable 225 



 
 

 
Nutrient metrics in a changing world 

7 
 

bases (cmol+ kg–1); SOC = soil organic carbon concentration (%); org. = organic layer; min. = upper mineral soil; 

0-20 cm = upper 20 cm of the soil, starting on top of the organic layer. Variables were log-transformed in case 

of positive skewness. Underlined correlations were significant (P < 0.05). 

Climate or soil variable MAP C:N org. pHCaCl2 org. ln(TEB) min. ln(SOC) 

0-20 cm 

TSUM +0.11 -0.42 +0.04 +0.08 +0.28 

MAP   -0.11 -0.05 -0.09 +0.13 

C:N org.     -0.53 -0.32 -0.12 

pHCaCl2 org. 

 

ln(TEB) min. 

      +0.60 

  

-0.01 

 

+0.23 

  

  230 
  

 

 

 

 235 
 

 

 

 

 240 
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Table S5 Matrix showing correlations (Pearson’s r) among key climate and soil variables in the European ICP 

Forests dataset. These soil variables in particular were chosen because of their link with the soil nutrient status 

(e.g. Van Sundert et al., 2018), and our observation during exploratory analyses that organic layer characteristics 260 

in particular explain variation in normalized productivity across both the Swedish and ICP Forests datasets (e.g. 

Table S22). Abbreviations: MAT = mean annual temperature (°C); MAP = mean annual precipitation (mm); C:N = 

soil carbon to nitrogen ratio; pHCaCl2 = soil pH, measured in CaCl2 solution; C:P = soil carbon to phosphorus ratio 

(aqua regia extractable phosphorus was used as the best proxy for soil total P); TEB = total exchangeable bases 



 
 

 
Nutrient metrics in a changing world 

8 
 

(cmol+ kg–1); SOC = soil organic carbon concentration (%); org. = organic layer; min. = upper mineral soil; 0-20 cm 265 

= upper 20 cm of the soil, starting on top of the organic layer. Variables were log-transformed in case of positive 

skewness. Underlined correlations were significant (P < 0.05). 

Climate or soil 

variable 

ln(MAP) ln(C:N) 

org. 

pHCaCl2 

org. 

ln(C:P)  

min. 

ln(TEB) 

min. 

ln(SOC) 

0-20 cm 

MAT +0.07 -0.70 +0.26 +0.37 +0.31 +0.18 

ln(MAP)   -0.23 +0.27 +0.24 +0.46 +0.56 

ln(C:N) org.     -0.31 -0.33 -0.42 -0.35 

pHCaCl2 org. 

 

ln(C:P) min. 

 

ln(TEB) min. 

      -0.11 

  

+0.81 

 

+0.19 

+0.11 

 

+0.54 

 

+0.46 

  

Table S6 Matrix showing correlations (Pearson’s r) among key climate and soil variables in the global grasslands 

dataset. These soil variables in particular were chosen because of their link with the soil nutrient status (e.g. Van 270 

Sundert et al., 2018), and our observation during exploratory analyses that organic layer characteristics in 

particular explain variation in normalized productivity across both the Swedish and ICP Forests datasets (e.g. 

Table S8). In this dataset, only mineral soil data were available. Abbreviations: MAT = mean annual temperature 

(°C); GSP = growing season precipitation (mm); C:N = soil carbon to nitrogen ratio; pH = soil pH; P = soil total 

phosphorus (ppm); K + Ca + Mg = sum of total base cations relevant to plant nutrition (ppm); SC = soil organic 275 

carbon concentration (%); min. = upper mineral soil. Variables were log-transformed in case of positive 

skewness. Underlined correlations were significant (P < 0.05). 

Climate or soil 

variable 

ln(GSP) ln(C:N) 

min. 

pH 

min. 

ln(P)  

min. 

ln(K + Ca + Mg) 

min. 

ln(SC) 

min. 

MAT +0.38 +0.11 -0.06 -0.02 +0.17 -0.22 

ln(GSP)   +0.20 -0.63 +0.12 -0.02 +0.35 

ln(C:N) min.     -0.49 -0.03 +0.08 +0.53 

pH min. 

 

ln(P) min. 

 

ln(K + Ca + Mg) min. 

         +0.05 

  

+0.31 

 

+0.58 

-0.65 

 

-0.10 

 

-0.21 

Table S7 Structural equation model (SEM) parameters applied per species and dataset on the path diagram 

presented in Fig. S1, taking into account strongly correlated climate and soil variables (Pearson’s r > 0.50; Tables 

S4-6). Abbreviations: MAI = mean annual volume increment over a rotation period (m³ ha–1 yr–1); CAI = current 280 

(five-year averaged) annual volume increment; ANPP = aboveground net primary productivity (g C m-2 yr–1); on  

TSUM = growing season temperature sum (°C days); MAP = mean annual precipitation (mm); GSP = growing 

season precipitation (mm); age class = forest age, discretized into seven categories; S(O)C = soil (organic) carbon 

concentration (%); C:N = soil carbon to nitrogen ratio; pH = soil pH; org. = organic layer; min. = upper mineral 
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soil; 0-20 cm = upper 20 cm of the soil, starting on top of the organic layer; n/a = not applicable. Variables were 285 

log-transformed in case of positive skewness. Note that the SEMs were merely used for extracting direct climate, 

age and species influence as a better alternative to regression, and not for explaining the path diagram in Fig. 

S1. For the latter, too much variance remained unexplained by the SEMs applied on the Swedish forest and 

global grassland data (Table S8). Errors represent the s.e.m. 

Dataset Response 

variable 

Direct climate effect Age effect Soil effect Correlations 

taken into 

account 

Swedish 

spruce forests 

(n = 1099) 

MAI (+8.1 ± 0.6) * 10-6  

* TSUM² 

(-6 ± 1) * 10-3  

* TSUM 

(+1.0 ± 0.4) * 10-3  

* MAP 

n/a1 (-0.37 ± 0.04)  

* ln(SOC0-20cm) 

(-0.039 ± 0.005)  

* C:Norg. 

ln(SOC0-20cm)  

~ MAP 

C:Norg. 

~ TSUM 

Swedish pine 

forests 

(n = 1422) 

  

 

MAI 

  

  

 

 

 

(-3.0 ± 0.4) * 10-6  

* TSUM² 

(+11.2 ± 0.9) * 10-3  

* TSUM 

(+0.2 ± 0.4) * 10-3  

* MAP 

n/a1 

  

  

 
 

(-0.35 ± 0.03)  

* ln(SOC0-20cm) 

(-0.030 ± 0.004)  

* C:Norg. 

ln(SOC0-20cm)  

~ MAP 

C:Norg.  

~ TSUM 

 

1Age was already accounted for in the response variable by averaging annual volume increment over a rotation period. 290 
2In contrast to forests, age in grassland was not taken into account. 

  

 

 

 295 
 

 

 

 

 300 

 

 

 

 

 305 

 

 

 

 

 310 

 

 

Table S7 (continued). 

Dataset Response 

variable 

Direct climate effect Age effect Soil effect Correlations 

taken into 

account 
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European 

spruce forests 

(n = 23) 

  

European 

pine forests 

(n = 22) 

  

European 

beech forests 

(n = 24) 

  

 

European oak 

forests 

(n = 8) 

  

Grasslands 

worldwide 

(n = 68) 

CAI 

  

  

 

 

CAI 

  

  

 

 

CAI 

  

 

 

 

CAI 

  

  

 

 

ln(ANPP) 

(+0.1 ± 0.2)  

* MAT 

(+5 ± 2)  

* ln(MAP) 

  

(+0.1 ± 0.2)  

* MAT 

(-5 ± 2)  

* ln(MAP) 

  

(+0.2 ± 0.3)  

* MAT 

(–1 ± 3)  

* ln(MAP) 

  

(+1 ± 1)  

* MAT 

(–19 ± 22)  

* ln(MAP) 

  

(-0.01 ± 0.02)  

* MAT 

(+0.4 ± 0.2)  

* ln(GSP) 

(–1.1 ± 0.2)  

* age class 

  

  

(-0.8 ± 0.3)  

* age class 

  

  

(-0.7 ± 0.3)  

* age class 

  

  

(+0 ± 1)  

* age class 

  

 

n/a2 

(-0.1 ± 0.9)  

* ln(SOC0-20cm) 

(-8 ± 2)  

* ln(C:Norg.) 

  

(+1 ± 1)  

* ln(SOC0-20cm) 

(-6 ± 2)  

* ln(C:Norg.) 

   

(-3.7 ± 0.7)  

* ln(SOC0-20cm) 

(+6 ± 3)  

* ln(C:Norg.) 

  

(+2 ± 6)  

* ln(SOC0-20cm) 

(+7 ± 7)  

* ln(C:Norg.) 

  

(-0.21 ± 0.06)  

* ln²(SCmin.) 

(+0.6 ± 0.1)  

* ln(SCmin.) 

(0.0 ± 0.4)  

* ln(C:Nmin.) 

(-0.1 ± 0.1)  

* pHmin. 

ln(SOC0-20cm)  

~ ln(MAP) 

ln(C:Norg.)  

~ MAT 

  

ln(SOC0-20cm)  

~ ln(MAP) 

ln(C:Norg.)  

~ MAT 

   

ln(SOC0-20cm)  

~ ln(MAP) 

ln(C:Norg.)  

~ MAT 

  

ln(SOC0-20cm)  

~ ln(MAP) 

ln(C:Norg.)  

~ MAT 

  

ln²(SCmin.)  

~ ln(GSP) 

ln(SCmin.)  

~ ln(GSP) 

ln(C:Nmin.)  

~ ln(GSP) 

pHmin  

~ ln(GSP) 

ln²(SOCmin.)  

~ ln(C:Nmin.) 

ln(SCmin.)  

~ ln(C:Nmin.) 

pHmin  

~ ln(C:Nmin.) 

ln²(SCmin.)  

~ pHmin 

ln(SCmin.)  

~ pHmin. 

ln²(SCmin.)  

~ ln(SCmin.) 

1Age was already accounted for in the response variable by averaging annual volume increment over a rotation period. 
2In contrast to forests, age in grassland was not taken into account. 315 
 

 

 

 

 320 

 

 

 

Table S8 Fit measures for structural equation models (SEMs) applied on the path diagram of Fig. S1, with 

parameters presented in Table S7 (blue = OK; orange = borderline case; red = not OK). Explanation of fit 325 

measures: implied vs observed = comparison of SEM implied vs observed covariance matrix (OK when P > 0.05); 

robust CFI = robust Comparative Fit Index (OK when ≥ 0.9); robust TLI = robust Tucker Lewis Index (OK when ≥ 

0.9); robust RMSEA = robust Root Mean Square Error of Approximation (OK when ≤ 0.06); SRMR = Standardized 
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Root Mean Square Residual (OK when ≤ 0.05). Note that the SEMs were merely used for extracting direct climate, 

age and species influence as a better alternative to regression, and not for explaining the path diagram in Fig. 330 

S1. For the latter, too much variance remained unexplained by the SEMs applied on the Swedish forest and 

global grassland data. One single model for Sweden, and one single model for Europe were used for estimating 

parameters for multiple species at once. 

Dataset Implied 

vs observed 

Robust 

CFI 

Robust 

TLI 

Robust RMSEA SRMR Model fit on diagram 

in Fig. S1 sufficient 

to explain observed 

values ? 

Swedish 

conifer forests 

(n = 2521) 

  

χ²16 = 10421.58 

P < 0.001 *** 

0.25 -0.41 0.748 0.643 No 

European forests 

(n = 77) 

χ²32 = 39.76 

P = 0.16 

0.94 0.89 0.118 0.138 +/- 

Grasslands 

worldwide 

(n = 68) 

χ²5 = 30.92 

P < 0.001 *** 

0.91 0.61 0.276 0.092 No 

  

 335 
 

 

 

 

 340 

 

 

 

 

 345 

 

 

 

 

 350 

 

 

 

 

 355 

 

 

 

Table S9 Comparison of regression and structural equation model (SEM) parameters for equations describing 

spatial variation in productivity by climate, age, and soil (for b and c) across the Swedish and European ICP 360 

Forests databases. Correlations are given between productivity “normalized” for climate, age and species, 

following cases (a)-(c). Normalization consisted of subtracting the climate and age part of the equation from 

productivity, and setting the average result to zero per species, such that the average normalized productivity 
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was species-independent. Abbreviations: TSUM = growing season temperature sum (°C days), MAP = mean 

annual precipitation (mm), GSP = growing season precipitation (mm), age class = forest age, discretized into 365 

seven categories, S(O)C = soil (organic) carbon concentration (%); C:N = soil carbon to nitrogen ratio; pH = soil 

pH; org. = organic layer; min. = upper mineral soil; 0-20 cm = upper 20 cm of the soil, starting on top of the 

organic layer. Variables were log-transformed in case of positive skewness. Errors represent the s.e.m. 

Dataset Productivity  

~ climate + age 

regression derived 

direct climate effect 

(a) 

Productivity  

~ climate + age + soil 

regression derived 

direct climate effect 

(b) 

Productivity  

~ climate + age + soil 

SEM derived direct 

climate effect  

(c) 

Correlations 

between  

climate- and  age- 

normalized 

productivity   from 

alternative models 

Swedish spruce 

forests 

(n = 1099) 

  

(+9.0 ± 0.6) * 10-6  

* TSUM² 

(-8 ± 1) * 10-3  

* TSUM 

(+0.3 ± 0.3) * 10-3  

* MAP 

(+8.1 ± 0.6) * 10-6  

* TSUM² 

(-7 ± 1) * 10-3  

* TSUM 

(+1.2 ± 0.4) * 10-3  

* MAP 

(+8.1 ± 0.6) * 10-6  

* TSUM² 

(-6 ± 1) * 10-3 * TSUM 

(+1.0 ± 0.4) * 10-3  

* MAP 

a vs b: r = 0.99 

a vs c: r = 1.00 

b vs c: r = 0.99 

Swedish pine 

forests 

(n = 1422) 

 

(-3.0 ± 0.6) * 10-6  

* TSUM² 

(+11.2 ± 0.9) * 10-3  

* TSUM 

(+0.3 ± 0.3) * 10-3  

* MAP 

(-3.0 ± 0.6) * 10-6  

* TSUM² 

(+11 ± 1) * 10-3  

* TSUM 

(+0.6 ± 0.4) * 10-3  

* MAP 

(-3.0 ± 0.4) * 10-6  

* TSUM² 

(+11.2 ± 0.9) * 10-3  

* TSUM 

(+0.2 ± 0.4) * 10-3  

* MAP 

 

 

  370 

  

  

  

  

  375 

 

 

 

 

 380 

 

 

 

 

 385 

Table S9 (continued). 
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Dataset Productivity  

~ climate + age 

regression derived 

direct climate effect 

(a) 

Productivity  

~ climate + age + soil 

regression derived 

direct climate effect 

(b) 

Productivity  

~ climate + age + soil 

SEM derived direct 

climate effect  

(c) 

Correlations 

between  

climate- and  age- 

normalized 

productivity   from 

alternative models 

European spruce 

forests 

(n = 23) 

  

 

 

European pine 

forests 

(n = 22) 

  

 

 

European beech 

forests 

(n = 24) 

  

  

 

 

European oak 

forests 

(n = 8) 

  

  

 

Grasslands 

worldwide 

(n = 68) 

(+0.7 ± 0.2) * MAT 

(+5 ± 2) * ln(MAP) 

(–1.0 ± 0.3)  

* age class 

 

 

 

(+0.5 ± 0.1) * MAT 

(-4 ± 2) * ln(MAP) 

(-0.5 ± 0.3)  

* age class 

 

 

 

(+0.5 ± 0.1) * MAT 

(-4 ± 2) * ln(MAP) 

(-0.5 ± 0.3)  

* age class 

 

 

  

(+1 ± 1) * MAT 

(-6 ± 10) * ln(MAP) 

(-0.3 ± 0.4)  

* age class 

 

 

 

(-0.02 ± 0.01)  

* MAT 

(+0.7 ± 0.1)  

* ln(GSP) 

(+0.6 ± 0.4) * MAT 

(+1 ± 3) * ln(MAP) 

(-0.7 ± 0.4) * age class 

 

 

 

 

(+0.1 ± 0.2) * MAT 

(-4 ± 3) * ln(MAP) 

(-0.7 ± 0.4) * age class 

 

 

 

 

(-0.1 ± 0.4) * MAT 

(–1 ± 4) * ln(MAP) 

(-0.5 ± 0.4) * age class 

  

 

 

 

(+1 ± 3) * MAT 

(-20 ± 37) * ln(MAP) 

(+0 ± 2) * age class 

  

 

 

 

(-0.01 ± 0.02) * MAT 

(+0.4 ± 0.2) * ln(GSP) 

 (+0.1 ± 0.2) * MAT 

(+5 ± 2) * ln(MAP) 

(–1.1 ± 0.2) * age class 

  

 

 

 

(+0.1 ± 0.2) * MAT 

(-5 ± 2) * ln(MAP) 

(-0.8 ± 0.3) * age class 

  

 

 

 

(+0.2 ± 0.3) * MAT 

(–1 ± 3) * ln(MAP) 

(-0.7 ± 0.3) * age class 

  

 

 

 

(+1 ± 1) * MAT 

(–19 ± 22) * ln(MAP) 

(+0 ± 1) * age class 

  

 

 

 

(-0.01 ± 0.02) * MAT 

(+0.4 ± 0.2) * ln(GSP) 

a vs b: r = 0.90 

a vs c: r = 0.91 

b vs c: r = 0.96 

  

  

  

  

  

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

a vs b: r = 0.95 

a vs c: r = 0.95 

b vs c: r = 1.00 

 

 

 

 390 

 

 

 

 

 395 

SOIL OR PLANT DATA TO ASSESS NUTRIENT STATUS? 
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Table S10 Overall mean squared error (ms) after 10-fold cross-validation for candidate model structures that 

explain variation in normalized productivity by key soil characteristics across European beech forests. The 

selected model is marked in gray. Abbreviations and symbols: pH = soil pH, measured in CaCl2 solution; C:P = soil 

carbon to phosphorus ratio (aqua regia extractable phosphorus was used as the best proxy for soil total P); SOC 400 

= soil organic carbon concentration (%) in the upper 20 cm of the soil, starting on top of the organic layer; org. 

= organic layer; min. = upper mineral soil. Variables were log-transformed in case of positive skewness. par X = 

parameter X, corresponding to element no. X in the variables column; “:” = ratio. For simplicity, only models 

including C:P, SOC and pH are shown, as preliminary analyses indicated importance of these variables. Only 

models with up to two explanatory variables were tested because of limited sample size. Errors represent the 405 

s.e.m. 

Variables in model Overall ms Regression statistics 

ln(C:P) min., ln(SOC) 12.7 par 1 = -3 ± 1 

par 2 = -2.0 ± 0.9 

intercept = 16 ± 4 

P < 0.001 *** 

R² = 0.57 

n = 22 

ln(C:P) min., pH org. 11.8   

pH org., ln(SOC) 11.2  

pH² org., pH org. 12.3   

ln²(SOC), ln(SOC) 12.0   

ln(C:P) min. 14.7  

 

 

 

 410 

 

 

 

 

 415 

 

 

 

 

 420 

 

 

 

 

 425 

 

 

 

Table S11 Overall mean squared error (ms) after 10-fold cross-validation for candidate model structures that 

explain variation in normalized productivity by key soil characteristics across European spruce forests. The 430 
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selected model is marked in gray. Abbreviations and symbols: C:N = soil carbon to nitrogen ratio, pH = soil pH, 

measured in CaCl2 solution; C:P = soil carbon to phosphorus ratio (aqua regia extractable phosphorus was used 

as the best proxy for soil total P); TEB = total exchangeable bases (cmol+ kg–1); SOC = soil organic carbon 

concentration (%) in the upper 20 cm of the soil, starting on top of the organic layer; org. = organic layer; min. = 

upper mineral soil. Variables were log-transformed in case of positive skewness. par X = parameter X, 435 

corresponding to element no. X in the variables column; “:” = ratio. For simplicity, only models including C:P, 

SOC and pH are shown, as preliminary analyses indicated importance of these variables. Only models with up to 

two explanatory variables were tested because of limited sample size. Errors represent the s.e.m. 

Variables in model Overall ms Regression statistics 

ln(C:N) org., ln(SOC) 6.81  

ln(C:N) org., pH org. 7.43   

ln(C:N) org. 6.67 slope = -9 ± 2 

intercept = 31 ± 8 

P < 0.001 *** 

R² = 0.43 

n = 22  

ln(C:N) org., ln(C:P) min. 6.87   

ln(C:N) org., ln(TEB) min. 7.00   

 

Table S12 Overall mean squared error (ms) after 10-fold cross-validation for candidate model structures that 440 

explain variation in normalized productivity by key soil characteristics across European pine forests. The selected 

model is marked in gray. Abbreviations and symbols: C:N = soil carbon to nitrogen ratio, pH = soil pH, measured 

in CaCl2 solution; C:P = soil carbon to phosphorus ratio (aqua regia extractable phosphorus was used as the best 

proxy for soil total P); TEB = total exchangeable bases (cmol+ kg–1); SOC = soil organic carbon concentration (%) 

in the upper 20 cm of the soil, starting on top of the organic layer; org. = organic layer; min. = upper mineral soil. 445 

Variables were log-transformed in case of positive skewness. par X = parameter X, corresponding to element no. 

X in the variables column; “:” = ratio. For simplicity, only models including C:N, are shown, as preliminary analyses 

indicated importance of this variable. Only models with up to two explanatory variables were tested because of 

limited sample size. Errors represent the s.e.m. 

Variables in model Overall ms Regression statistics 

ln(C:N) org., ln(SOC) 3.29   

ln(C:N) org., ln(C:P) min. 3.70   

ln(C:N) org., ln(TEB) min. 3.84   

ln(C:N) org., pH org. 8.06   

ln(C:N) org. 3.27 slope = -6 ± 2 

intercept = 22 ± 6 

P < 0.001 *** 

R² = 0.42 

n = 21 

 450 

Table S13 Overall mean squared error (ms) after 10-fold cross-validation for candidate model structures that 

explain variation in normalized productivity by key soil characteristics across European ICP Forests dataset. The 
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selected model is marked in gray. Abbreviations and symbols: C:N = soil carbon to nitrogen ratio, pH = soil pH, 

measured in CaCl2 solution; C:P = soil carbon to phosphorus ratio (aqua regia extractable phosphorus was used 

as the best proxy for soil total P); TEB = total exchangeable bases (cmol+ kg–1); SOC = soil organic carbon 455 

concentration (%) in the upper 20 cm of the soil, starting on top of the organic layer; org. = organic layer; min. = 

upper mineral soil. Variables were log-transformed in case of positive skewness. par X = parameter X, 

corresponding to element no. X in the variables column; “:” = ratio; * = interaction in the model, suggested by a 

regression tree. Errors represent the s.e.m. 

Variables in model Overall ms Regression statistics 

ln(C:N) org., ln(C:P) min., ln(TEB) min., ln²(SOC), 

ln(SOC)   

8.16   

ln(C:N) org., ln(C:P) min., ln(TEB) min., ln(SOC)   7.54   

ln(C:N) org., ln(TEB) min., ln(SOC)   7.34   

ln(C:N) org., ln(SOC)   7.30   

ln(C:N) org., ln(SOC), ln(C:N) org. * ln(SOC) 7.23 par 1 = -7 ± 3 

par 2 = –10 ± 7 

par 3 = 2 ± 2 

intercept = 27 ± 9 

P = 0.001 ** 

R² = 0.17 

n = 72 

ln(C:N) org., ln(C:P) min.., ln²(SOC), ln(SOC), pH² 

org., pH org.   

8.49   

ln(C:N) org., ln(C:P) min.., ln(SOC), pH² org., pH org.   7.86   

ln(C:N) org., ln(C:P) min.., ln(SOC), pH org.   7.53  

ln(C:N) org., ln(SOC), pH org.   7.35  

 460 

 

 

 

 

 465 

 

 

 

 

 470 

 

 

 

 

 475 

 

 

Table S14 Overall mean squared error (ms) after 10-fold cross-validation for candidate model structures that 

explain variation in normalized productivity by foliar stoichiometry across European beech forests. The selected 
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model is marked in gray. Symbol: “:” = ratio. P and N:P were never included in the same model because of 480 

multicollinearity (variance inflation factor > 4). Only models with up to two explanatory variables were tested 

because of limited sample size. 

Variables in model Overall ms Regression statistics 

N 12.7   

P 11.8   

K 11.2 P = 0.93 

n = 22 

Ca 12.3   

Mg 12.0   

S 14.7  

N:P 12.1   

N, P 

N, K 

N, Ca 

N, Mg 

N, S 

N, N:P 

P, K 

P, Ca 

P, Mg 

P, S 

K, Ca 

K, Mg 

K, S 

K, N:P 

Ca, Mg 

Ca, S 

Ca, N:P 

Mg, S 

Mg, N:P 

S, N:P 

14.1 

12.9 

14.0 

13.7 

15.2 

14.1 

12.0 

12.7 

12.8 

15.0 

12.5 

12.6 

16.3 

12.3 

14.8 

15.9 

13.3 

14.8 

12.7 

14.8 

  

 

 

 485 

 

Table S15 Overall mean squared error (ms) after 10-fold cross-validation for candidate model structures that 

explain variation in normalized productivity by foliar stoichiometry across European spruce forests. The selected 
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model is marked in gray. Abbreviations and symbols: par X = parameter X, corresponding to element no. X in the 

variables column; “:” = ratio. P and N:P were not included in the same model because of multicollinearity 490 

(variance inflation factor > 4). For simplicity, only models including N:P are shown, as preliminary analyses 

indicated importance of this variable. Only models with up to two explanatory variables were tested because of 

limited sample size. Errors represent the s.e.m. 

Variables in model Overall ms Regression statistics 

N:P, N 6.66 par 1 = 0.7 ± 0.3 

par 2 = 0.6 ± 0.4 

intercept = -15 ± 5 

P = 0.009 ** 

R² = 0.32 

n = 22  

N:P, K 8.44   

N:P, Ca 8.07   

N:P, Mg 7.36   

N:P, S 8.01   

N:P 7.29   

 

   495 
 

  

 

 

 500 

 

 

 

 

 505 

 

 

 

 

 510 

 

 

 

 

 515 

 

 

 

 

 520 

Table S16 Overall mean squared error (ms) after 10-fold cross-validation for candidate model structures that 

explain variation in normalized productivity by foliar stoichiometry across European pine forests. The selected 
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model is marked in gray. Abbreviations and symbols “:” = ratio. N and S were not included in the same model 

because of multicollinearity (variance inflation factor > 4). Only models with up to two explanatory variables 

were tested because of limited sample size. Errors represent the s.e.m. 525 

Variables in model Overall ms Regression statistics 

N 7.88   

P 5.76   

K 6.48   

Ca 5.08   

Mg 6.20  

S 7.17   

N:P 7.21   

N, P 8.14  

N, K 8.51  

N, Ca 7.38  

N, Mg 9.52  

N, N:P 7.85  

P, K 6.93  

P, Ca 5.60 P = 0.20 

R² = 0.07 

n = 21 

P, Mg 6.52  

P, S 7.52  

P, N:P 7.74  

K, Ca 5.79  

K, Mg 6.40  

K, S 8.23  

K, N:P 8.00  

Ca, Mg 7.90  

Ca, S 6.52  

Ca, N:P 7.32  

Mg, S 8.49  

Mg, N:P 9.73  

S, N:P 7.57  

Table S17 Overall mean squared error (ms) after 10-fold cross-validation for candidate model structures that 

explain variation in normalized productivity by foliar stoichiometry across the European ICP Forests dataset. The 
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selected model is marked in gray. Symbol: “:” = ratio. N/P and N:P, and S and N were never included in the same 

model because of multicollinearity (variance inflation factor > 4). Errors represent the s.e.m. 

Variables in model Overall ms Regression statistics 

N, P, K, Ca, Mg 10.4   

N, K, Ca, Mg 9.66   

K, Ca, Mg 9.25   

Ca, Mg 8.71   

Ca 8.69 P = 0.26 

n = 72 

N:P, K, Ca, Mg 9.97   

S, P, K, Ca, Mg 9.90   

S, K, Ca, Mg 9.35  

S, K, Ca 9.09  

S, K 8.88  

S 9.12  

 530 

 

 

 

 

 535 

 

 

 

 

 540 

 

 

 

 

 545 

 

 

 

 

 550 

 

 

 

 

 555 

Table S18 Selected regression models explaining variation in normalized productivity by foliar stoichiometry 

across a more elaborate version of the European ICP Forests dataset (with data on key soil variables lacking for 
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the principal analyses in this study, but including data on stoichiometry). Abbreviations and symbols: par X = 

parameter X, corresponding to element no. X in the variable’s column; “:” = ratio. Errors represent the s.e.m. 

Species Variables in selected model Regression statistics 

Beech P P = 0.23 

n = 30 

Spruce N:P, K, Mg, ln(S) par 1 = 0.4 ± 0.2 

par 2 = -0.8 ± 0.4 

par 3 = 3 ± 2 

par 4 = 4 ± 3 

intercept = -3 ± 4 

P = 0.004 ** 

R² = 0.25 

n = 42 

Pine Ca slope = 1.0 ± 0.3 

intercept = -3 ± 1 

P = 0.001 ** 

R² = 0.28 

n = 30 

ALL 

(Beech, Spruce, Pine, Oak) 

ln(Ca), ln(Mg) par 1 = 1.5 ± 0.6 

par 2 = –1.7 ± 0.9 

intercept = -2 ± 1 

P = 0.05 * 

R² = 0.04 

n = 114 

 560 

 

 

 

 

 565 

 

 

 

 

 570 

 

 

 

 

 575 

 

 

 

 

 580 

 

 

Table S19  Matrix showing correlations (Pearson’s r) among key soil variables in the European ICP Forests 

dataset. These soil variables in particular were chosen because of their link with the soil nutrient status (e.g. Van 
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Sundert et al., 2018), and our observation during exploratory analyses that organic layer characteristics in 585 

particular explain variation in normalized productivity across both the Swedish and ICP Forests datasets (e.g. 

Table S22). Note that correlations were not identical to those presented in Table S5 because for Table S5, a more 

elaborate version of the ICP Forests dataset was used with sufficient data for normalization of productivity, but 

not for e.g. comparison of soil vs plant data to explain variation in normalized productivity.  Abbreviations: C:N 

= soil carbon to nitrogen ratio; pHCaCl2 = soil pH, measured in CaCl2 solution; C:P = soil carbon to phosphorus ratio 590 

(aqua regia extractable phosphorus was used as the best proxy for soil total P); TEB = total exchangeable bases 

(cmol+ kg–1); SOC = soil organic carbon concentration (%); org. = organic layer; min. = upper mineral soil; 0-20 cm 

= upper 20 cm of the soil, starting on top of the organic layer. Variables were log-transformed in case of positive 

skewness. Underlined correlations were significant (P < 0.05). 

Climate or soil 

variable 

pHCaCl2 

org. 

ln(C:P)  

min. 

ln(TEB) 

min. 

ln(SOC) 

0-20 cm 

ln(C:N) org. -0.21 -0.31 -0.34 -0.31 

pHCaCl2 org. 

 

ln(C:P) min. 

 

ln(TEB) min. 

  -0.14 

  

+0.82 

 

+0.12 

+0.05 

 

+0.54 

 

+0.45 

 595 

 

Table S20 Matrix showing correlations (Pearson’s r) among foliar stoichiometry variables in the European ICP 

Forests dataset. Underlined correlations were significant (P < 0.05). 

Foliar nutrient 

concentration or ratio 

P K Ca Mg S N:P 

N -0.12 +0.80 +0.50 +0.43 +0.90 +0.85 

P   +0.12 -0.21 -0.04 -0.17 -0.57 

K     +0.48 +0.52 +0.80 +0.61 

Ca 

 

Mg 

 

S 

      +0.65 

  

  

+0.59 

 

+0.49 

  

+0.56 

 

+0.44 

 

+0.82 

 

 600 

 

 

 

 

EXAMPLE: A SOIL-BASED METRIC OF THE NUTRIENT STATUS 605 
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Evaluation of the earlier nutrient metric 

Performance of the earlier metric 

Table S21 Ability of the original nutrient metric developed by IIASA (IIASA & FAO, 2012; see also Van Sundert et 

al., 2018 for analysis of the IIASA-metric across all of Sweden) to explain variation in normalized productivity 

across the southern Swedish and European ICP Forests datasets. Same datasets were used as in Table 2. The 610 

IIASA-metric was not evaluated against global grassland data because it requires soil total exchangeable bases, 

which were not available in that dataset. n varied because of data availability. 

Dataset Explanatory power of 

original IIASA-metric 

(mineral soil) 

Explanatory power of 

original IIASA-metric 

(upper 20 cm of soil) 

Swedish conifer forests 

(southern Sweden only) 

P = 0.44 

n = 331 

P = 0.55 

n = 454 

European forests 

 

 

European spruce forests 

 

 

European pine forests 

 

 

European beech forests 

 

P = 0.32 

n = 79 

 

P = 0.64 

n = 28 

 

P = 0.94 

n = 17 

 

P = 0.26 

n = 25 

P = 0.59 

n = 57 

 

P = 0.25 

n = 15 

 

P = 0.75 

n = 15 

 

P = 0.46 

n = 20 

 

 

 615 

 

 

 

 

 620 

 

 

 

 

 625 

 

 

Adjustment of the earlier metric 
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Adjusting the earlier metric 

Table S22 Ability of mineral vs organic soil C:N ratio and pH to explain spatial variation in normalized productivity 630 

of Swedish conifer forests and European forests in the ICP Forests database. Abbreviations: quad = parameter 

estimate for quadratic term; lin = parameter estimate for the linear term of a quadratic function; ic = intercept. 

Note that for the Swedish dataset, only data of southern Sweden were used for heteroscedasticity reasons 

explained in Van Sundert et al. (2018). Moreover, only half of the southern data was used such that this subset 

served as a calibration set to adjust the nutrient metric, and the other half was used to evaluate the adjusted 635 

metric. Parameter estimates shown for pH differ from those in Eq. 7 because the pH optimum was fixed to 4.5 

based on the ICP Forests database. n for the ICP Forests database was larger here than elsewhere in the 

manuscript because of missing data on SOC0-20cm, which was needed for the other analyses. Errors represent the 

s.e.m. 

Dataset Mineral soil C:N ratioa ln(organic soil C:N ratio) Mineral soil 

pHCaCl2 

Organic soil 

pHCaCl2 

Swedish 

conifer 

forests 

 

slope = -0.02 ± 0.01 

ic = 0.6 ± 0.2 

P = 0.10 (*) 

R² = 0.01 

n = 340 

slope = –1.8 ± 0.2 

ic = 5.7 ± 0.8 

P < 0.001 *** 

R² = 0.09 

n = 538 

P = 0.55 

n = 340 

quad = -0.8 ± 0.1 

lin = 7 ± 1 

ic = –13 ± 2 

P < 0.001 *** 

R² = 0.12 

n = 264 

European 

forests 

 

slope = –1.6 ± 0.8 

ic = 5 ± 2 

P = 0.05 * 

R² = 0.03 

n = 118 

slope = -3.2 ± 0.9 

ic = 11 ± 3 

P < 0.001 *** 

R² = 0.09 

n = 112 

P = 0.86 

n = 116 

quad = -0.7 ± 0.4 

lin = 6 ± 3 

ic = –13 ± 6 

P = 0.05 * 

R² = 0.04 

n = 111 

 a The frequency distribution of mineral soil C:N was right-skewed for the ICP Forests database, but not for the Swedish 640 
database, such that C:N was log-transformed for ICP but not for Sweden. 

  

 
 

Figure S3 Normalized productivity versus organic soil pHCaCl2 for (a) forests in the European ICP Forests database 645 

with the necessary data, and (b) conifer forests in the Swedish database. Shaded area around the regression 

curve represents 95% confidence intervals. Parameter estimates for the full dataset are shown in Table S21. 

 

 

 650 

The adjusted metric versus multiple regressions 
 

Table S23 Comparison of nutrient metric abilities to explain variation in productivity across different natural 

P < 0.001 *** 
R² = 0.12 
n = 264 

P = 0.05 * 
R² = 0.04 
n = 111 

(a) (b) 
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gradients in soil characteristics and productivity in Sweden. The adjusted metric refers to the metric presented 

in the current paper (Eqs. 5-7 in 4), whereas the regression equation represents a multiple regression model 655 

using the same soil variables as the adjusted metric (Eq. 8). All three metrics were calibrated using data of 

southern Sweden. The gradients represent regional sets of data points from the Swedish dataset used in the 

current study that did not show large variation in climate, such that productivity could be used as a response 

variable to test the metrics against without the necessity to normalize for climate. More details regarding the 

gradients including selection of the data points and their position within Sweden are given in Van Sundert et al. 660 

(2018). Note that for Norway spruce, no gradient in total exchangeable bases (TEB) without substantial variation 

in climate was found, so that only for Scots pine, there was a gradient in TEB. Errors represent the s.e.m. Errors 

represent the s.e.m. 

Gradient in Sweden Explanatory power of 

metric presented in 

Van Sundert et al. 

(2018) 

Explanatory power of 

adjusted metric 

Explanatory power of 

regression equation 

Norway spruce:  

soil moisture gradient 

slope = 1.6 ± 0.4 

P < 0.001 *** 

R² = 0.13 

n = 133 

slope = 2.3 ± 0.4 

P < 0.001 *** 

R² = 0.26 

n = 74 

slope = 1.1 ± 0.2 

P < 0.001 *** 

R² = 0.27 

n = 74 

Norway spruce: 

productivity gradient 

  

  

Scots pine:  

soil moisture gradient 

  

  

  

Scots pine: 

TEB gradient  

  

  

 

Scots pine: 

productivity gradient  

  

slope = 1.6 ± 0.4 

P < 0.001 *** 

R² = 0.15 

n = 79 

 

slope = 1.4 ± 0.2 

P < 0.001 *** 

R² = 0.21 

n = 142 

  

slope = 1.1 ± 0.3 

P < 0.001 *** 

R² = 0.20 

n = 60 

 

slope = 1.9 ± 0.3 

P < 0.001 *** 

R² = 0.35 

n = 68 

slope = 3.1 ± 0.6 

P < 0.001 *** 

R² = 0.33 

n = 51 

  

slope = 2.1 ± 0.4 

P < 0.001 *** 

R² = 0.27 

n = 83 

 

slope = 1.7 ± 0.6 

P = 0.01 * 

R² = 0.24 

n = 21 

 

slope = 2.7 ± 0.6 

P < 0.001 *** 

R² = 0.31 

n = 44 

slope = 1.6 ± 0.3 

P < 0.001 *** 

R² = 0.30 

n = 51 

  

slope = 1.0 ± 0.2 

P < 0.001 *** 

R² = 0.27 

n = 83 

  

slope = 0.9 ± 0.3 

P = 0.001 * 

R² = 0.26 

n = 21 

  

slope = 1.4 ± 0.3 

P < 0.001 *** 

R² = 0.34 

n = 39 

  

  665 

  

  

  

  

  670 

  

  

Table S24 Tests of variable implementation in regression equation 8, presented as an alternative to the nutrient 

metric in this paper. Associations between residuals of normalized productivities and soil variables used for the 

equation are shown. Abbreviations: SOC = soil organic carbon concentration; soil C:N ratio = soil carbon to 675 
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nitrogen ratio. For the Swedish data, a validation subset of southern Swedish forests was used instead of the 

dataset of entire Sweden to avoid heteroscedasticity-induced artifacts (see Van Sundert et al. (2018)). For the 

grassland dataset, mineral soil data were used to calculate the metric because no organic layer data were 

available. Errors represent the s.e.m. 

Dataset ln SOC (%) ln soil C:N ratio pH 

European 

spruce forests 

(n = 23) 

  

European 

pine forests 

(n = 22) 

  

European 

beech forests 

(n = 24) 

  

P = 0.14 

  

  

  

P = 0.22 

  

  

  

slope = -2.5 ± 0.8 

P = 0.006 ** 

R² = 0.27 

slope = -6 ± 2 

P = 0.03 * 

R² = 0.17 

  

P = 0.67 

  

  

  

P = 0.22 

P = 0.31 

  

  

  

slope = 1.3 ± 0.7 

P = 0.06 (*) 

R² = 0.21 

  

slope = 1.2 ± 0.6 

P = 0.05 (*) 

R² = 0.12 

Grasslands 

worldwide 

(n = 68) 

P = 0.80 

  

  

P = 0.47 

  

  

P = 0.70 

  

 680 
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Applications of the soil-based metric and future prospects 

 

Table S25 Ability of mineral vs organic soil C:P ratio and soil total P to explain spatial variation in normalized 700 
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productivity of European forests in the ICP Forests database. Aqua regia extractable P was taken here as the best 

available proxy for soil total P, such that actual total P as derived from the acid digestion method may have been 

underestimated (ISO 11466, 1995; Ivanov, 2012). Errors represent the s.e.m. 

Dataset ln(mineral soil C:P ratio) Organic soil C:P ratio ln(mineral soil total P) 

(mg kg–1) 

Organic soil total P 

(mg kg–1) 

European 

forests 

 

P = 0.54  

n = 106 

slope = -0.005 ± 0.002 

ic = 2.2 ± 0.9 

P = 0.004 ** 

R² = 0.06 

n = 109 

P = 0.54  

n = 106 

P = 0.18  

n = 113 

European 

spruce forests 

P = 0.96  

n = 42 

slope = -0.008 ± 0.004 

ic = 4 ± 2 

P = 0.03 * 

R² = 0.09 

n = 42 

P = 0.15  

n = 42 

P = 0.31  

n = 43 

European 

pine forests 

slope = 1.3 ± 0.5 

ic = -6 ± 2 

P = 0.01 * 

R² = 0.18 

n = 29 

P = 0.34  

n = 30 

P = 0.18  

n = 29 

P = 0.66  

n = 30 

European 

beech forests 

slope = -3.9 ± 0.8 

ic = 19 ± 4 

P < 0.001 *** 

R² = 0.45 

n = 27 

slope = -0.010 ± 0.004 

ic = 4 ± 2 

P = 0.03 * 

R² = 0.14 

n = 28 

P = 0.81  

n = 29 

P = 0.42  

n = 29 
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