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Abstract An accurate modelling of rockfall runout continues to
be a demanding challenge within the geotechnical and hazards
engineering community. Most existing rockfall dynamic programs
apply effective restitution coefficients to model the energy dissi-
pation during the rock-ground interaction. Recent experimental
measurements, however, reveal the limitations of effective restitu-
tion coefficients, especially to account for scarring with frictional
rebound in soft compactable soils. This study proposes a three-
dimensional, non-smooth computational mechanic approach to
model dissipative rock-ground interactions in soft compactable
soils. The ground is mathematically divided into a soft,
compactable scarring layer and a hard rebound layer. The model
considers the plastic deformation of the ground with rotating
rocks of general, non-spherical shape. The simulated rockfall en-
ergy dissipation is validated at both the single impact and multi-
impact levels using induced 780-kg rockfall experiments per-
formed at Chant Sura, Switzerland, in 2018. Overall, the numerical
results are in good quantitative agreement with the experimental
measurements. Ongoing improvements of the scar drag model are
to integrate rotational drag into the rock energy dissipation term,
and to calibrate the drag parameters in depths using repetitive
rockfall experiments spanning a greater range of rock shapes and
masses.

Keywords Rockfall . Scarring drag . Non-smooth
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Introduction
Rockfall is an ever-present natural hazard encountered in moun-
tainous regions throughout the world. During the past decade,
much effort has been invested to computationally model rockfall
motion in order to plan measures that prevent the loss of human
lives and destruction of public infrastructure (Volkwein et al. 2011;
Bourrier et al. 2012; Lambert et al. 2013; Thoeni et al. 2014;
Macciotta et al. 2015; Corona et al. 2017; Effeindzourou et al.
2017; Gao and Meguid 2018; Toe et al. 2018; Volkwein et al. 2018).
One of the major applications of rockfall trajectory modelling is to
produce hazard maps that delineate dangerous rockfall runout
zones.

At first glance, rockfall modelling must appear trivial, because
simple collisional mechanics can be applied to describe the rock-
ground interaction. Much research has been performed that at-
tempts to capture the energy loss of rock upon impact with terrain
surface within the framework of the so-called restitution coeffi-
cient (Asteriou and Tsiambaos 2018; Gratchev and Saeidi 2018;
Wang et al. 2018). The restitution coefficient can be in general
defined as the ratio between the rebound and the incident velocity
of rock at the impact point in both the contact normal and
tangential directions (Asteriou et al. 2012). Some variations of
definition exist that aim to incorporate the change of rotational
motion of rock due to its collision at boundaries, such as

multiplying a weight factor to the traditional normal and tangen-
tial restitution coefficients, or utilizing instead the square root of
the ratio between the rebound and the incident kinetic energy
(Zhang et al. 2018). From the practical point of view, the rockfall
modes incorporating restitution coefficient supply as a simplified
yet powerful tool for engineers who need to derive practical and
sometimes conservative risk assessment for rockfall runout zones
and protection measures (Dorren 2016).

Recent real-scale field experiments in different slope conditions
with rocks of natural shape, however, reveal the complexity of the
rock-ground interaction (Caviezel and Gerber 2018; Caviezel et al.
2019). Falling rocks exhibit a wide range of dynamic interaction
modes with the ground including bouncing, rolling and sliding (Li
and Lan 2015). In the end, the application of restitution coefficients
exhibits some limitations because it models only one particular
interaction mode: bouncing. In reality, the accurate modelling of
the energy dissipation during the rock-ground interaction is an
extremely challenging task. The most significant problem is that
rock impacts generate severe plastic deformation of the ground
surface, leaving scars of varying dimensions depending on the
collisional energy of rock (Gischig et al. 2015). The soil can be
sheared, splashed and/or compacted in dependence of the rock’s
impact angle, translational velocity, rotational speed, rock mass
and shape, see Fig. 1

Numerical methods that utilise restitution coefficients have at
least two natural drawbacks. Firstly, they do not reflect the com-
plexity of the rock-ground scarring phenomena such that in prin-
ciple, it is only applicable to model how a small rock collides with
a hard bedrock slope where negligible ground deformation is
expected. One admits that this is a very rare case in practical
applications. Secondly, it is extremely laborious, if not impossible,
to identify a suitable restitution coefficient to reproduce the energy
loss of rock at every plastic rock-ground impact. This is due to the
fact that an accurate determination of a restitution coefficient
relies on separating the influence of all the different factors in-
volved in the collisional impact such as soil properties and rock
geometry, size and orientation at contact. Because the restitution
coefficient is mainly investigated at the single impact scale, the
extension to a complete trajectory, involving multiple impacts, is
difficult because of the spatial variability of the slope properties
from the release to runout zone. Consequently, these models try to
overcome these inherent drawbacks by incorporating Monte-Carlo
stochastic processes at every impact.

The complex rock-soil interaction sets up a challenge to rigid-
body rockfall models. Without incorporating rock-ground scar-
ring, a clear picture of the rock-substrate interaction cannot be
obtained. Hence, the goal of this study is to propose an energy
dissipation model that incorporates rock-ground scarring effects.
The new modelling scheme falls into our previously proposed
non-smooth mechanics framework (Christen et al. 2012; Leine
et al. 2014; Bartelt et al. 2016; Lu et al. 2018) and is applied to
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simulate three-dimensional solid rigid bodies impacting soft
compactable soils. In addition, the implemented numerical meth-
od is fully applicable to generally shaped rocks undergoing rota-
tions. The fragmentation of rock following strong impacts is not
considered here since this is another challenging issue (Gang et al.
2018; Li et al. 2018), which goes beyond the scope of this study. Due
to the limited rock energy investigated (kinetic energies ≪80 GJ),
other energy dissipation forms such as seismic wave propagation
and sound dissipation coming along with extremely energetic
rockfalls (Blasio et al. 2018) are likewise not of interest.

In the following sections, the theoretical aspects supporting our
simulations are firstly explained in particular addressing rockfall
energy dissipation due to scarring. Then, the computational me-
chanics algorithms are validated by using induced rockfall exper-
imental data (Caviezel et al. 2019) obtained with in situ
measurement techniques (Caviezel et al. 2018a; Caviezel et al.
2018b) at Chant Sura, Switzerland, in 2018. Note that the presented
work does not aim for a detailed calibration of the governing
parameters for rockfall energy dissipation; it is to demonstrate
that the proposed algorithm is able to capture the essential fea-
tures of a rock-ground interaction with scarring. Finally, the per-
formance of the simulations is discussed from perspectives of both
result accuracy and model feasibility.

Modelling rockfall energy dissipation incorporating rock-ground
scarring

Rockfall dynamics described in non-smooth mechanics framework
To model rockfall trajectories in general, three-dimensional ter-
rain, we apply non-smooth mechanics coupled with hard contact
laws (Leine et al. 2014; Lu et al. 2018). The non-smooth approach
requires two coordinate systems to model non-spherical
(polyhedral) rockfalls on a three-dimensional terrain. The first
one is the global, inertial-frame I, which is anchored at the origin
O of the simulated system, usually given by coordinate system of
the digital elevation model. The axes eIX and eIY span the horizontal
plane, while the axis eIZ extends along the vertical, counter-
gravitational direction. The second one is the local, eigenframe
K, which is attached to the centre of mass S of the rock. The three
axes eKx , e

K
y and eKz are overlapping with the rock’s principal axes of

moment of inertia. At any time t, the position and orientation of a
rock are given by the generalised coordinates q:

q ¼ rIOS
pIK

� �
∈R7 ð1Þ

where rIOS is the positional vector connecting O and S, and pIK is
the four-dimensional orientation indicator, i.e. quaternion, satis-
fying ∥pIK ∥ = 1 (Lu et al. 2015). The time derivative of q leads to the
dimension-reduced, generalised rock velocities u:

u ¼ ∂
∂t

q ¼ r˙
I
OS
p˙ IK

� �
¼ VI

S
ΩK

� �
∈R6 ð2Þ

where VI
S is the translational velocity vector expressed in I, and ΩK

is the rotational velocity vector represented in K. The time evolu-
tion of VI

S reads as follows:

∂
∂t

MΓVS
I� � ¼ MΓV˙ S

I ¼ FI
g þ FI

d ð3Þ

where MΓ is the mass of rock. FI
g and FI

d are, respectively, the
gravitational force and the external damping force exerting at S. The
external damping force refers to the scarring drag force introduced
later in the text. The air resistance is not considered (Blasio et al. 2018).
Accordingly, the time evolution of ΩK obeys Euler’s equation:

θKS Ω
˙ K þ ΩK � θKS Ω

K ¼ TK ð4Þ

where θKS defines the inertia tensor for the rock in K, and TK is the
additional torque generated by contact forces acting on the boundary of
rock. When there is no rock-ground collision, TK is simply set to zero.
Hence, the equation of rock motion can be summarised as follows:

Mu˙ −h q; u; tð Þ ¼ W qð Þλ
M ¼ MΓI3�3 03�3

03�3 θKS

� �

h q; u; tð Þ ¼ FI
g þ FI

d; −ΩK � θKS Ω
K

� 	T

8>>><
>>>:

ð5Þ

where λ is the contact force vector applying at the rock’s geomet-
rical boundary, W(q) is the so-called matrix of generalised force
directions transferring all the λ elements from the rock boundary

Fig. 1 Chant Sura, Switzerland, 2018: Typical scars left on the terrain surface by an about 800-kg man-made rock during an induced rockfall experiment. Note the
different shapes of the scars. See also the model validation part for the detailed scar dimensions
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to the force and torque at the rock centre of mass, and h(q, u, t) is the
term containing the external damping force and the gyroscopic force
generated by the non-spherical rock rotation. Equation 5 needs to be
solved iteratively using time-stepping schemes (Studer et al. 2008).

Numerically, a contact is detected when at least one boundary
point (vertex) of the rock ‘penetrates’ into the surface of terrain
defined by the digital elevation model (Leine et al. 2014), generating
an effective overlap or a negative gap Gmeasured along eIZ . At every
contact point, a local contact frame C is constructed within the frame
I specifying the contact normal and tangential directions, such that
the contact forces are decomposed onto these directions. In the
contact normal direction, the Signorini condition correlates the
normal contact force λN and the gap function G following:

0≤λN⊥G≥0 ð6Þ
This formula indicates λN ≥ 0 for a closed contact characterised

by G = 0 (actually G ≤ 0 is allowed in the modelling only for the
contact detection purpose), and λN = 0 for a case of no contact
with G > 0. In the contact tangential directions, the spatial Cou-
lomb’s friction law is applied:

−VT ¼ 0f g if∥λT∥ < ∥μΛλN∥; sticking
R≥0λT if∥λT∥ ¼ ∥μΛλN∥; slipping



ð7Þ

where μΛ is the sliding friction coefficient. Note the mechanical
structure switches from the sticking to the slipping mode if the
frictional force λT increases and reaches the sliding frictional force
μΛλN. The negative sign in Eq. 7 means that λT always acts along
the counter-direction of the tangential velocity VT.

Rockfall energy dissipation due to rock-ground scarring
To simulate rock-ground interaction, the terrain is divided into a
plastic, deformable scarring layer Σ and a non-deformable, hard
contact ‘slippage’ plane Λ. Both the scarring layer Σ and the rebound
plane Λ are located below the digital elevation model. This division is
the core assumption of the model. Three sub-processes are considered
as follows: (1) the rock Γ enters the scarring layer Σ (scarring phase);
(2) the rock Γ slides along the rebound planeΛ (sliding phase); (3) the
rock Γ rebounds (rebounding phase). Table 1 defines the parameters
that are used to describe a rock-ground interaction process.

To find the appropriate form of the drag resistance, we apply the
work energy theorem to the collisional system consisting of the rock Γ
and the scarring layer Σ, see Fig. 2. Consider first the case of a rock’s
vertical drop onto a horizontal ground forming an entirely plastic
collision, where the rock does not rebound out of the soil substrate
and all the kinetic energy is dissipated. To simplify our derivation, we
assume that the work that gravity does to the rock along the braking
distance dΣ is much smaller than that of the braking force FI

d and thus
can be omitted. In this case, the change in rock kinetic energy ΔKΓ is
proportional to the product of FI

d and dΣ:

ΔKΓ ¼ 1
2
MΓV2

Γ−0 ¼ FId−F
I
g

� 	
dΣ≈FI

ddΣ

¼ ∫t0 F
I
d tð Þ∥ζ˙ Γ tð Þ∥dt

ð8Þ

whereVΓ corresponds to the speed of rock right before it contacts with
the ground surface. Here, we also assume that FI

d acts along the
vertical direction; thus, dΣ is equivalent to the maximum rock

penetration depth dmax
Σ . We now express the drag force in the soil

substrate as a velocity squared resistance parameterised by the scar-
ring coefficient CI

d , which is equivalent in form to drag defined in fluid
dynamics:

FI
d tð Þ ¼ 1

2
CI
dρΣAΓ tð Þ∥ζ˙ Γ tð Þ∥2 ð9Þ

where AΓ(t) is the cross-sectional area of the penetration scar.
From the work energy theorem, the physical meaning of the
dimensionless scarring coefficient can then be discerned,

Table 1 Parameter definitions for describing a rock-ground interaction process

Symbol Unit Definition

Γ Rock

Σ Scarring layer

Λ Rebound plane

X, Y, Z m Terrain (global) coordinates

x, y, z m Rock (local) coordinates

t s Time

Rock Γ

MΓ kg Mass of rock

VΓ m s−1 Velocity of rock

V⊥
Γ

m s−1 Vertical velocity of rock

V−
Γ

m s−1 Velocity of rock before scarring

Vþ
Γ

m s−1 Velocity of rock after scarring

VΓ→ Σ m s−1 Velocity of rock during scarring

VΓ→ Λ m s−1 Velocity of rock during sliding

ζΓ(t) m Rock penetration depth at t

AΓ(t) m2 Effective area of rock in scar at t

Scarring layer Σ

Me
Σ

kN m−2 Soil mechanical strength

ρΣ kg m−3 Soil density

dmax
Σ

m Maximum rock penetration depth

lΣ m Scar length on terrain surface

CI
d

Scar drag coefficient

CI
f

Scar drag coefficient (fluid part)

CI
s

Scar drag coefficient (solid part)

Rebound plane Λ

sΛ m Sliding distance on rebound plane

μΛ Sliding friction coefficient

μmin
Λ

Minimum friction coefficient

μmax
Λ

Maximum friction coefficient

κΛ Slippage hardening coefficient

βΛ Slippage softening coefficient
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CI
d≈

1
2
ρΓd

3
ΓV

2
Γ

1
2
ρΣ∫

t
0AΓ tð Þ∥ζ

˙
�

Γ
tð Þ∥3dt

¼ ρΓd
3
ΓV

2
Γ

ρΣ∫
t
0 AΓ tð Þ∥ζ˙

�

Γ
tð Þ∥Þ ∥ζ˙

�

Γ
tð Þ∥2Þdt

�� ð10Þ

where dΓ is a length scale of the rock, and the term AΓ(t)∥ζ̇Γ tð Þ∥
represents the incremental dimensions of the scar at time t. The
significant conclusion from this analysis is that (1) the drag force
acting on the rock will be parameterised as a velocity squared
dependent drag, (2) the drag coefficient physically represents the
ratio between the characteristic volumes of the rock and the scar and
(3) the soil compacting rate can influence the drag coefficient. At
least CI

d can be approximated from field observations where maxi-
mumpenetration depth dmax

Σ and scar length lΣ can bemeasured and
compared with the characteristic length of the rock dΓ.

In the above analysis, all the kinetic energy of the rock is
dissipated and the rock comes to a standstill. There is no
rebound. The drag coefficient therefore provides the mean drag
force over the braking distance. In reality, the soil in the scar is
being compacted (or removed by splashing) and at a certain
stage, the substrate can no longer deform. That is, there exists
a penetration depth, denoted as dmax

Σ , at which the increment
in braking distance becomes infinitely small. This stage marks
the end of the scarring phase and the beginning of the rebound
process. It can well be that this stage is reached before all the
kinetic energy in the rock is lost. We thus define a mean
scarring drag over the distance before the rock completely
rebounds out of or stops in the scar. To simplify our calcula-
tion, it is presumed that the drag force acts at the mass centre
of rock, i.e. in the scarring layer, the rock holds its moving
direction and rotational speed before it reaches the rebound
plane Λ where no further penetration is allowed. We now
dissect the three phases of a scarring impact.

Phase 1: Scarring phase—the rock Γ enters the scarring layer Σ
Figure 3 illustrates the process that a rock Γ enters the scarring
layer Σ. Right before the rock Γ enters the scarring layer Σ, the
maximum scar depth (rebound depth) dmax

Σ that can be generated

by this impact is evaluated. Importantly, dmax
Σ relies not only on

the mechanical strengthMe
Σ of the ground material but also on the

mass, collisional speed, and even the orientation of the non-
spherical rock at impact. To this end, Gerber (2019) proposed a
rock penetration equation obtained through fitting the experimen-
tal data for freely, vertically dropped rocks of various masses and
initial heights, and considering Hertz theory for the contact forces
calculation. This formula reads as follows:

dmax
Σ ¼ 0:1 �M

1
3
Γ �Me

Σ
−0:4 � ∥V⊥

Γ ∥
0:8 ð11Þ

where again, as listed in Table 1, dmax
Σ is the maximum rock

penetration depth (rebound depth), MΓ is the mass of rock, Me
Σ

is the mechanical strength of soil and V⊥
Γ is the vertical component

of rock velocity right before it touches ground surface. In this
study, Eq. 11 is implemented to determine dmax

Σ , and the influence
of terrain slope at the impact point on dmax

Σ is not taken into
account. Note that in Eq. 11, the parameter Me

Σ has a unit
kN m−2 (Table 1) though the following Me

Σ values are listed in a
unit MN m−2 only for the purpose of simple expression.

When the rock comes into contact on the top of terrain surface,
the soil layer, suffering from the external pressure, ‘flows’ around
the rock-ground intersecting faces. This flow of the surrounding
fine particles, alike fluid, exerts a drag force against the rock
motion (Blasio et al. 2018). On the other hand, upon rock collision,
the ground can be compacted. This compaction process normally
leads to an increase in drag force, i.e. the drag coefficient grows as
a result of particle jamming (Albert et al. 2001).

We therefore divide the scarring drag coefficient into two pro-
cesses shown by:

CI
d ¼ CI

f þ CI
s ð12Þ

where CI
f is the drag coefficient accounting for the fluid behaviour

of soil, and CI
s is the additional drag coefficient taking into account

of the soil compaction. Here, CI
f is assumed to be a constant value

1.0, and CI
s varies with soil mechanical strength Me

Σ and rock mass
MΓ. On one hand, for a given Me

Σ value, we anticipate a higher CI
s

for a larger MΓ, which in general corresponds to a deeper pene-
tration depth dmax

Σ . On the other hand, for a given MΓ value, one
expects that CI

s decreases with decreasingMe
Σ as it is more difficult

to build up a high resultant stress and thus a strong local plastic
yielding in a looser granular media.

Phase 2: Sliding phase—the rock Γ slides along the rebound plane Λ
Figure 4 shows the second phase for the rock-soil interaction that a
rock Γ slides along the rebound plane Λ. Λ is formed when the
rock cannot compress the soil any further; thus, it is equivalent to
a hard, non-deformable ground. At this stage, in the scarring layer,
the rock can no longer move along the ground normal direction
but slide forwards on Λ. In addition to the scarring drag force, the
rock is subjected to a frictional force changing over time, resulting
in a rock velocity VΓ→Λ and a subsequent change of the moving
direction and the rotational velocity. Slippage along the hard, non-
deformable contact plane is governed by the Coulomb’s friction
law, i.e. λT = (sΛ)λN, where the frictional force λT is non-linearly
correlated with the normal contact force λN due to the fact that
material accumulation with slippage distance sΛ causes the

Fig. 2 To find the scarring drag parameters, we apply the work energy theorem
stating that the product of the braking force FI

d and braking distance dΣ is equal
to the loss of rock kinetic energy. The rock is simplified as a sphere
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frictional coefficient μΛ to increase (Leine et al. 2014). This process
is described using the following equation:

μΛ sΛð Þ ¼ μmin
Λ þ 2

π
� μmax

Λ −μmin
Λ

� � � arctan κΛsΛð Þ ð13Þ

κΛ controls how fast the increase in μΛ will force the rock to
jump away from Λ. Equation 13 raises μΛ(sΛ) as long as one active
contact point is detected between the rock and the rebound plane;
otherwise, sΛ decays according to a factor βΛ following Eq. 14,
which, in turn, decreases μΛ(sΛ) with time obeying Eq. 13 until μmin

Λ
is reached:

sΛ˙ ¼ −βΛsΛ ð14Þ

Phase 3: Rebounding phase—the rock Γ rebounds
Figure 5 shows the last phase for the rock-soil interaction: the
sliding phase ends when the contact of rock with the rebound
plane breaks. This rebounding phase continues until the rock
completely leaves the scarring layer Σ. Again, it is assumed that
during this process, the rock does not change its moving direction
and rotational speed but still experiences scarring drag force. After
completion of rock-ground interaction, the rock travels at Vþ

Γ . In
general, Vþ

Γ < V−
Γ due to energy dissipation, but Vþ

Γ > V−
Γ is

possible for highly elastic impacts (Caviezel et al. 2019).

Meanwhile, a final scar length lΣ can be observed on the surface
of terrain showing the effective range of this impact.

Validation of the rockfall energy dissipation model using induced
rockfall experiments
In this section, we validate the proposed scarring model by com-
paring simulation results with energy dissipation data acquired
from induced rockfall experiments. We use both single ground
impact and entire trajectories that is multi-ground impacts. The
aim of the work is to scrutinise how Eq. 9 (scarring drag) and Eq. 11
(penetration distance to rebound) behave and thus to validate
whether the energy dissipation due to rock-ground impacts can
be precisely simulated using this modelling approach.

Setup of rockfall experiments at Chant Sura in Switzerland
The setup for the full-scale, induced rockfall experiments is pre-
sented in detail by Caviezel et al. (Caviezel et al. 2019) and will not
be entirely repeated here except to mention the key experimental
conditions. The experiments were performed at Chant Sura (Fig. 6,
slope angles, 40 − 80∘, WSG 84 : 46.74625,9.96720), which is ap-
proximately 12 km south-east of Davos, Switzerland. The release
platform (the inset of Fig. 6) was installed at an altitude of 2380 m
above sea level. The path of a falling rock can be sequenced into
three parts: (1) the acceleration zone, i.e. the region from the
releasing point to the upper side of the almost vertical cliff, (2)

Fig. 4 Sliding phase: the rock Γ slides along the rebound plane Λ. This process begins when the penetration depth is equal to the maximum scar depth ζΓ(t) = dmax
Σ .

The frictional coefficient increases while rock slips on the rebound plane Λ. The velocity of the rock at this stage is VΓ→Λ. The sliding phase ends when the
contact of rock with the rebound plane is broken

Fig. 3 Scarring phase: the rock Γ enters the scarring layer Σ. The rock is penetrating a vertical distance ζΓ(t) until it reaches the rebound plane Λ. The velocity of the rock
at this stage is VΓ→Σ. The sliding phase begins when the penetration depth is equal to the maximum scar depth ζΓ(t) = dmax

Σ . The scarring drag force experienced by
the rock in the scarring layer is proportional to its frontal, effective area AΓ(t), i.e. the projected area of the rock-soil intersecting body onto a plane that is
perpendicular to the rock velocity. Note that AΓ(t) depends on rock orientation, velocity direction and penetration distance
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the transition zone, i.e. the region between the lower side of the
cliff and the beginning of the scree field and (3) the deposition
zone, i.e. the scree field. In Fig. 6, the upper and lower boundaries
of the cliff and the beginning of the scree field are marked using
red, dotted lines. The yellow, dashed line indicates the general rock
propagation on the terrain surface, which was observed in the
experiments and is used later for the single impact validation.
Note three-dimensional trajectory reconstruction methods are
addressed in detail by Caviezel et al. (Caviezel et al. 2019).

A 780-kg man-made, perfectly symmetric, platy rock (dimen-
sions on the major axes of moment of inertia: 0.93 × 0.93 ×
0.47 m), a standardised boulder shape regulated by the official
European Technical Assessment Approval Guidelines, was used in
the experiments. The in situ sensor, mounted as accurately as
possible at the rock centre of mass, measured translational accel-
erations along (eIX , e

I
Y , e

I
Z) up to 400 g and rotational velocities

around (eKx , e
K
y , e

K
z ) up to 4000∘ s−1 with a recording frequency of

1000 Hz. In order to precisely reconstruct the rockfall trajectory,
the surface resolution of the digital elevation model was originally

gained at a 5-cm scale and the altitude uncertainties were ±3 cm.
The rock translational velocities during the airborne phase, be-
tween any two neighbouring scars, were retrieved via high-
resolution stereoscopic videogrammetry (Caviezel et al. 2019).
The rock rotational velocities, during the whole falling process,
were directly read out from the gyroscopic sensor. The scar di-
mensions were manually measured in the field, with the scar
length lΣ being the maximum size of scar on the slope surface
measured along the rock moving direction, and the scar depth
dmax
Σ being the vertical distance from the deepest point in the scar

to the slope surface.

Setup of numerical environment for rockfall simulations
The numerical environment for our rockfall simulations is
established as follows. The rock of the same shape and mass is
constructed by using a polyhedron with 24 vertices. The resolution
of the digital elevation model is set to 0.5 m, which is comparable
with the smallest dimension of the rock. In order to start a rock
single impact simulation to compare with the experimental data,

Rock Γ

Scarring 
layer Σ

Rebound plane Λ

Surface scar 
length 

Side View Front View

Rock Γ Maximum scar
depth 

Rebound plane Λ
Sliding distance 

Rock Γ

Fig. 5 Rebounding phase: the rock Γ rebounds. Scarring drag still acts on the rock during the rebounding phase, which ends when the rock completely detaches from the
scarring layer Σ

Fig. 6 Rockfall testing environment at Chant Sura, Switzerland, in 2018. A 780-kg man-made platy rock was transported by helicopter to a plateau of 2380 m high above
sea level and repetitively released, resulting in a running distance of approximately 250 m on the slope. One general rock propagation path observed in the experiments is
indicated using a yellow, dashed line. The terrain topography is divided into three parts: the acceleration zone that is before the cliff, the transition zone that is between
the cliff and the scree and the deposition zone that is the scree. The boundaries of these regions are marked using red, dotted lines
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one follows the following steps to specify rock dynamics (see also
Table 2 for the key parameters reconstructed/measured from the
experiments):

& Starting position: Referring to the yellow, dashed line in Fig. 6,
the coordinates Xstart

Γ and Ystart
Γ are determined using one

arbitrary position on the ballistic trajectory of the rock, that
is reconstructed from the experiments by Caviezel et al.
(Caviezel et al. 2019), before the rock collides with terrain
surface. The coordinate Zstart

Γ is adjusted such that the virtual
rock reaches the terrain surface at the same instant as in the
experiment.

& Translational velocity: The translational velocities of the real
rock extracted along (eIX , e

I
Y , e

I
Z) at the starting position are set

to the virtual rock.

& Initial orientation: The initial orientation of the virtual rock is
carefully positioned such that it is rolling downwards the slope
following the actual rock moving direction.

& Rotational velocity: The resultant rotational speed of the real
rock obtained at the starting position is applied to the virtual
rock on the major axis of moment of inertia eKz , aligning with
the rotational direction of the real rock, without taking into
account the small rock wobbling around eKx and eKy .

Based on the scar measurement data that we have obtained,
only the middle part of the region between the cliff and the scree
(i.e. the altitude is between 2276.55 and 2310.14 m) is analysed,
which includes in total 4 rock-ground impacts (Table 2). The
correspondingly generated scars’ dimensions are shown in Fig. 7.

The time step for the simulations is 0.002 s and rock dynamics
data is output every time step. It is validated that 0.002 s is
sufficiently accurate for our simulations by comparing the changes
of rock energy with those obtained at an even smaller time step
0.001 s. Each simulation lasts 1 s ensuring that at the end the rock
jumps out of the scar again. We assume that ρΣ is a typical,
constant value of 1700 kg m−3 (Dorren 2016). At the rebound
plane, a fixed parameter set is utilised as follows (Bartelt et al.
2016): μmin

Λ ¼ 0:55, μmax
Λ ¼ 2:0, βΛ = 185 and κΛ = 3.

The following model validation procedures are further carried
out for evaluating each single impact listed in Table 2:

& Determining the rock incident velocity: The vertical component
V⊥

Γ of V−
Γ is selected from the reconstructed experimental

rockfall trajectory right before the rock enters the scarring
layer Σ.

& Determining the range of soil mechanical strength: Based on
the known V⊥

Γ and the measured scar depth dmax
Σ , a proper

range of the soil mechanical strength Me
Σ (±1 MN m−2) can be

determined.

& Determining the scar drag coefficient: The scar drag coefficient
CI
s is tuned in order to obtain the comparable Vþ

Γ and lΣ with
the experimental data.

Finally, the averaged Me
Σ and CI

s are utilised for performing the
whole trajectory simulation at Chant Sura and the results (e.g.
translational and rotational velocities, jump height and jump
length) obtained are compared with the 5 experimental runs
(Caviezel et al. 2019) on statistical levels.

Table 2 Key parameters reconstructed/measured from the experiments for 4 rock-ground impact dynamics

Impact 1 2 3 4

Tstart (s) 1691.92 1692.89 1693.58 1694.32

Rock Γ

VX
Γ (m s−1) 5.56 5.30 5.34 5.34

VY
Γ (m s−1) −14.62 −12.70 −12.31 −14.19

VZ
Γ (m s−1) −11.20 −10.74 −10.36 −8.52

Vres
Γ (m s−1) 19.24 17.46 16.95 17.39

ωx
Γ (rad s−1) −23.55 −25.98 −29.21 −28.59

ωy
Γ (rad s−1) −0.19 3.97 −2.61 −1.87

ωz
Γ (rad s−1) 3.75 1.09 −0.13 −1.56

ωres
Γ (rad s−1) 23.85 26.30 29.33 28.69

Scarring layer Σ

dexpΣ (m) 0.13 0.15 0.18 0.21

lexpΣ (m) 1.40 1.80 1.55 1.52

Xstart
Σ (m) 2793293.57 2793297.18 2793300.21 2793303.71

Ystart
Σ (m) 1180191.09 1180181.46 1180173.11 1180163.68

Zstart
Σ (m) 2307.06 2299.46 2292.43 2286.58
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Rockfall energy dissipation on a single impact level
Figure 8 compares rockfall energy dissipation on a single impact
level between the experiments and simulations. For each impact, 5
simulations are performed with varying Me

Σ in a given range of
±1 MN m−2. Note that different simulations may result in the same
energy change due to the small variation of Me

Σ and thus the
maximum scar depth, which would lead to the identical contact
condition between the rock and ground for the given time step. In
experiments, the rock-ground impacts last about 0.2 s, and before
impact, the rock’s rotational energy is approximately only 20% of its
translational energy. The small modulating of the gyroscopic data
steering during the rock’s airborne phase is due to slight misalign-
ment of the in situ sensor with respect to the rock’s centre of mass.
Interestingly, by well controlling Me

Σ and CI
s values, it is feasible to

accurately reproduce the translational energy loss but only to ap-
proximately predict the rotational energy trend for the rock. This is
not very surprising since our scar drag model assumes that the
scarring drag force acts at the rock centre of mass, i.e. no additional
torque would be exerted on the object. Depending on the rock
dynamics and slope conditions, the actual impacts might even speed
up the rotation (Fig. 8b and d). In simulations, this leap of rotational

speed can be only reflected by the hard contact between rock and the
rebound plane such that the contact forces generate a torque which
‘aligns’ with the current rotational direction.

Table 3 further lists the scar depths dsimΣ and scar lengths lsimΣ
obtained for the 4 impacts from simulations. One notices that
these results are already in a very comparable shape with the
experimental values (listed in the brackets in Table 3). In addition,
(1) Me

Σ varies on a slope between different impacts, depending on
the composition of the granular material at the impact site; (2) CI

s

tends to be higher whenMe
Σ is larger, i.e. the harder soil material can

exert more drag to the rock; (3) for the sameMe
Σ and similar dsimΣ , the

value of CI
s seems to be on a comparable level; nonetheless, it is

difficult to clearly identify a correlation between dsimΣ and CI
s as the

soil compacting rate might also have an influence on CI
s (see Eq. 10).

Rockfall energy dissipation on a complete trajectory level
For the validation of rockfall energy dissipation on a complete
trajectory level, we assume that the entire slope is composed of a
homogeneous soil material, i.e. Me

Σ ¼ 15 MN m−2 and CI
s ¼ 1:5.

Although this assumption is very rough, it allows us to have the
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Fig. 7 The spatial dimensions of scars reconstructed from rockfall experiments corresponding to the impact (a) 1, (b) 2, (c) 3 and (d) 4 listed in Table 2, respectively
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a b

c d

e f

g h

Fig. 8 Comparison of rock translational (a, c, e, g) and rotational (b, d, f, h) energy change as a function of time due to the single impacts (Table 2) obtained from experiments
(black circle) and simulations (coloured lines): impact 1 (a, b); impact 2 (c, d); impact 3 (e, f); impact 4 (g, h). For each impact, 5 simulations are performed with only varying the
soil mechanical strengthMe

Σ in a small range (±1 MN m−2). Note the differences in the translational and rotational energy magnitudes

Table 3 Numerically obtained soil mechanical strength Me
Σ, scar drag coefficient C

I
s , scar depth dsimΣ and scar length lsimΣ for the impacts listed in Table 2. The

measured scar depth dexpΣ and scar length lexpΣ are again shown in the brackets for the comparison purpose

Impact Me
Σ (MN m−2) CI

s dsimΣ (dexpΣ ) (m) lsimΣ (lexpΣ ) (m)

1 25 4.0 0.14 ± 0.01 (0.13) 1.80 ± 0.02 (1.40)

2 15 1.5 0.16 ± 0.01 (0.15) 1.64 ± 0.02 (1.80)

3 10 0.1 0.18 ± 0.01 (0.18) 1.26 ± 0.01 (1.55)

4 10 0.5 0.18 ± 0.00 (0.21) 1.77 ± 0.25 (1.52)
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first investigation on how the scar drag model is performing in
capturing rock’s energy for an entire trajectory path. The virtual
rock is at start placed at the same release point as in the experi-
ments (the rock centre of mass has a 1 m offset along eIZ relative to
the terrain surface). Before releasing, the rock is given a random
orientation and an initial speed − 1 m s−1 along eIY that is pointing
to the downward slope. Originally, the rock rotational velocities
are zeros. In total, 5000 independent simulations are performed.

As we concentrate on validating the scar drag model incorpo-
rating rock-soil interactions, only the slope region before the scree
field is considered for analyses. Here, the acceleration zone (region
1) refers to an altitude Z ≥ 2338 m, and the transition zone (region
2) refers to an altitude 2267 ≤ Z < 2338 m. As first tests, random 5
rock trajectories from the 5000 simulations are selected to com-
pare with the data acquired from the 5 experimental runs (Caviezel
et al. 2019). The box plots showing 1.5 times inter quartile range
(IQR) containing about 99% of the population and the probability
density functions (PDFs) are displayed for the simulations and
experiments using several observed rock quantities over the entire
falling process: translational speed, rotational speed, jump height
and jump length. Jump height is defined as the plumb-vertical
distance from the rock centre of mass S to the terrain surface,
while jump length is determined as the linear distance from the
projection of S on the terrain surface during rock’s free flight to
the one previous projection of S on the terrain surface when the
rock just detaches from the scarring layer Σ. Note that all the
above quantity values are collected every measuring/modelling
time step, excluding, however, the time when the rock is in contact
with Σ. Subsequently, as many as 500 random 5 rock trajectories
are repetitively selected from the 5000 simulations for calculating
the averaged rock quantity values. According to the central limit
theorem, the distributions of these sample averages should obey
normal distribution functions, and the means of these samples
provide us good estimations for the means of the population. It is
thus interesting to identify how close the numerical means are
lying relative to the experimentally observed values.

Figures 9, 10, 11 and 12 plots on statistical levels, respectively, the
rock translational speeds, rotational speeds, jump heights and jump
lengths using a randomly selected 5-trajectory sample from the
simulations. The results are also compared with those of the 5
experimental runs. It is immediately noticeable that the rock is
moving faster and becoming more jumpy after the cliff (region 2)
than before the cliff (region 1). Overall, one finds good agreement
between the numerical and experimental results in region 1. Howev-
er, in region 2, the agreement seems to be poorer. The translational
and rotational speed of the virtual rock is approximately centred
around 17 m s−1 and 1700 º s−1, respectively, at the same time
corresponding to a smaller maximummoving speeds compared with
those of the real rock. In addition, the jump height and length of the
virtual rock are larger in contrast to those of the real rock. These
observations can be linked to at least two facts: (1) The scar drag
model does not integrate the effect of scarring drag force on the rock
rotational speed, while in reality, this force can either speed up or
slow down a rock’s rotation (see Fig. 10d where the range of the
experimental PDF is wider than in the numerical one). This explains
the exceptional performance of the model in region 1 where the
translational and rotational speeds of rock are both relatively small,
such that the influence of a rotational drag on rock dynamics is not

evident. (2) Owning to the method to estimate the maximum rock
penetration depth (Eq. 11) and the proportion of the scarring drag
force to the rock translational speed (Eq. 9), the less ‘dynamic’,
virtual rock will tend to generate shallow scars and lose less energy
during scarring, leading, in turn, to a larger jump height and length
compared with the real rock.

Figure 13 further shows the virtual rock’s translational speeds,
rotational speeds, jump heights and jump lengths in regions 1 and
2, using data of 500 randomly selected 5-trajectory samples from
the 5000 simulations. The aim of this test is to avoid the potential
risk of collecting a biased 5-trajectory sample in Figs. 9, 10, 11 and
12. As expected, the distributions of these sample averages can be
well fitted by normal distribution functions. In addition, almost all
the mean quantity values, calculated using the 5 experimental
runs, lie within the tail of the normal distribution curves, except
that in region 2, the experimentally averaged jump length is sig-
nificantly smaller in contrast to that of the modelling (see Fig. 13h).
Moreover, Fig. 13b and d show that the virtual rock moves slower
but rotates faster compared with the real one. Again, based on the
current numerical algorithms, the disagreement observed above
can be attributed to the facts showcased in Figs. 9, 10, 11 and 12 that
(1) in our simulations, the rock rotational energy acts as an energy
reservoir affecting rock translational energy and jump conditions,
and (2) the less ‘dynamic’, virtual rock will tend to experience less
scarring drag force yielding a relatively larger jump height and
length in comparison with the real rock (Fig. 13f and h).

On the performance of scar drag model in rockfall energy dissipation
We are aware that there are no ‘true’ values for the studied rockfall
dynamics, in particular considering that only 5 experimental runs
are under investigation here. However, by performing one sample
t test (two-tailed) over the limited experimental data, we are able
to interpret from a perspective of statistical significance, the per-
formance of the scar drag model in reproducing at least these 5
rocks’ energy dissipation. Hence, we continue with one sample t
test (two-tailed) with 5% significance to access if a null hypothesis
is valid. The null hypothesis, or H0 hypothesis, assumes that there
exists no statistically significant difference between the ‘true’mean
of the experimental results and the mean of the numerical results.
This analysis predicts for rock dynamic quantities, i.e. translation-
al and rotational speeds, jump height and jump length, the prob-
ability p value of obtaining a discrepancy at least the same
magnitude as the observed discrepancy shown in Fig. 13. A p value
corresponding to 5% or less indicates that it is very unlikely in
reality to observe the given numerical results under H0 hypothesis.
The testing results obtained are shown in Table 4. Most of the H0
hypothesis are rejected based on the employed numerical param-
eters Me

Σ (15 MN m−2) and CI
s (1.5), which is apparent from Fig. 13

because most of the experimentally obtained mean quantity values
are close to the tail of the numerically fitted normal distribution
curves. Nonetheless, it is premature to directly conclude that our
simulations overall underfit the experimental data. At least more
experimental data should be collected in the future to give us more
valid, ‘true’ rock dynamic quantities for comparison purpose.

The above one sample t test also points to another issue: should
one consider the practical significance when explaining the com-
parison results between simulations and experiments? The answer
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is yes. Because it is highly likely that one achieves an observation
which is statistically significant but might not be practically sig-
nificant. For instance, in region 2, the rock rotates with an average

speed of 1652.72 º s−1 in experiments and 1745.29 º s−1 in simula-
tions (see Fig. 13d). If 1652.72 º s−1 were already obtained from
averaging a ‘sufficiently’ large experimental data set (in practice,

a b

c d

Fig. 10 Statistical plots of rock rotational speeds from a randomly selected 5-trajectory sample (region 1: acceleration zone; region 2: transition zone). a, b Box plots of
rotational speeds in experiments (a) and simulations (b). c, d Probability density functions of rotational speeds in region 1 (c) and region 2 (d)

a b

c d

Fig. 9 Statistical plots of rock translational speeds from a randomly selected 5-trajectory sample (region 1: acceleration zone; region 2: transition zone). a, b Box plots of
translational speeds in experiments (a) and simulations (b). c, d Probability density functions of translational speeds in region 1 (c) and region 2 (d)
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this is almost never possible), one would ask whether this about
5% difference relative to the experimental data in rotational speed

is of any practical interest. On the other hand, an excessively finely
tuned set of numerical parameters based on the limited

a b

c d

Fig. 11 Statistical plots of rock jump heights from a randomly selected 5-trajectory sample (region 1: acceleration zone; region 2: transition zone). a, b Box plots of jump
heights in experiments (a) and simulations (b). c, d Probability density functions of jump heights in region 1 (c) and region 2 (d)

a b

c d

Fig. 12 Statistical plots of rock jump lengths from a randomly selected 5-trajectory sample (region 1: acceleration zone; region 2: transition zone). a, b Box plots of jump
lengths in experiments (a) and simulations (b). c, d Probability density functions of jump lengths in region 1 (c) and region 2 (d)
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experimental data may even cause overfitting problems to the
models, which means the models can only well simulate the
existing rockfall trajectories but will fail to ‘predict’ the future

rockfall dynamics. This is apparently worth paying attention to
when developing rockfall simulation software only aiming for an
‘exact’ match between the modelling and existing events.

a b

c d

e f

g h

Fig. 13 Statistical plots of rock translational speed (a, b), rotational speed (c, d), jump height (e, f) and jump length (g, h) in region 1 (a, c, e, g) and region 2 (b, d, f, h)
obtained from both experiments and simulations. The histograms (blue), fitted by the normal distribution functions (black), are corresponding to 500 randomly selected 5-
trajectory samples from the 5000 simulations. The red, solid lines show the mean rock quantity values calculated via using the 5 experimental runs
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One advantage of the proposed scar drag model is that only two
parameters are required to be determined before performing a
simulation: Me

Σ and CI
s . Normally when one looks at the terrain

topography with its geomorphological features, combining the
measured rock mass and scar depths, one can already suggest a
range for the Me

Σ values. The subsequent task is to adjust the CI
s

value in a search grid for statistically and practically comparable
numerical results with those of reality. For this purpose, one can
even specify different Me

Σ and CI
s values for varying slope condi-

tions. To test the sensitivity of our modelling results toMe
Σ and CI

s ,
we have performed another 4 groups of 5000 simulations varying
Me

Σ from 10 to 20 MN m−2 and CI
s from 1.0 to 2.0. The same post-

processing procedure as shown in Fig. 13 has been conducted in
order to compare the averaged rock dynamic quantities among the
groups (Table 5). One can see that the model performance is quite
consistent in the sense that rock tends to show a lower kinetic
energy if one decreases Me

Σ potentially increasing the maximum
rock penetration depth or increases CI

s directly enhancing the
scarring drag force. This characteristic lays a solid foundation for
the practical use of our rockfall energy dissipation model.

Conclusions and future work
Modelling rockfall energy dissipation due to impacts with scarring
in soft compactable soils is the focus of this study. Instead of
invoking effective restitution coefficients to model the rock energy
loss at impacts, we propose to divide the rock-ground interaction
into three separate processes involving a soft, deformable scarring
layer and a hard, non-deformable rebound plane. The rock-
ground impact process can then be divided into (1) a scarring
phase, (2) a sliding phase on the rebound plane and (3) a
rebounding phase in which the rock exits the scar. This model
considers the plastic nature of the ground materials experiencing
external collision and integrates both the fluid and solid behaviour
of soil particles into the scarring drag force.

The scar drag model has been validated on both single impact
and multi-impact, trajectory levels using induced 780-kg rockfall
experiments performed at Chant Sura, Switzerland, in 2018. It can
be concluded from our model validation that the new algorithm is
able to capture to a large extent the energy loss of ground-
impacting rocks. Regarding the model accuracy, the numerical
results are in quantitatively good agreement with those obtained
from the experiments, i.e. the rock dynamics such as translational
and rotational speeds, jump height and jump length can be well
captured through the energy dissipating processes. In particular,
the performance of the model is exceptional when the rotational
speed of rock at impact is relatively small. Regarding the model
feasibility, the current scar drag model is easy to control in practice
as there are only two physical parameters needed to be specified,
namely the soil mechanical strength Me

Σ and the scar drag coeffi-
cient due to soil compaction CI

s . The simulated results are consis-
tent because rockfall energy dissipation can be well managed by
regulating Me

Σ and CI
s .

The above conclusions lay a solid foundation for applying our
scar drag model on a wide extent of rockfall processes. The
ongoing improvements of the computational algorithms focus on
three aspects: (1) incorporating a rotational drag model in the
scarring layer into the current non-smooth mechanics framework.
This would help partially reducing the reducible errors discussed
in this study; (2) collecting more experimental data for the

Table 4 Performing one sample t test (two-tailed) with 5% significance under H0
hypothesis over the key rock dynamic quantities using the experimental and
simulation results shown in Fig. 13

Region Dynamic quantity p value H0 test

1 Translational speed <0.0001 Reject

Rotational speed <0.0001 Reject

Jump height <0.0001 Reject

Jump length 0.1024 Accept

2 Translational speed <0.0001 Reject

Rotational speed <0.0001 Reject

Jump height <0.0001 Reject

Jump length <0.0001 Reject

Table 5 Comparison of the averaged rock dynamic quantities obtained from 500 randomly selected 5-trajectory samples from the 5000 simulations with varying CI
s and

Me
Σ values

CI
s , M

e
Σ

(MN m−2)
Region Translational

speed (m s−1)
Rotational

speed (º s−1)
Jump

height (m)
Jump

length (m)

1.5, 15 1 10.53 ± 0.43 922.93 ± 46.13 1.34 ± 0.10 4.09 ± 0.41

2 17.44 ± 0.59 1745.29 ± 66.85 1.95 ± 0.17 9.92 ± 0.69

1.5, 10 1 10.27 ± 0.38 904.68 ± 41.30 1.30 ± 0.09 3.83 ± 0.39

2 15.43 ± 0.58 1552.80 ± 65.63 1.67 ± 0.14 7.83 ± 0.59

1.5, 20 1 10.73 ± 0.43 938.32 ± 46.16 1.38 ± 0.11 4.28 ± 0.46

2 18.63 ± 0.64 1852.61 ± 70.62 2.15 ± 0.21 11.31 ± 0.88

1.0, 15 1 10.76 ± 0.43 938.39 ± 47.28 1.37 ± 0.10 4.29 ± 0.43

2 18.64 ± 0.63 1852.21 ± 69.29 2.14 ± 0.21 11.25 ± 0.87

2.0, 15 1 10.39 ± 0.38 915.40 ± 41.58 1.33 ± 0.09 3.97 ± 0.38

2 16.37 ± 0.62 1647.01 ± 69.86 1.78 ± 0.15 8.73 ± 0.65
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purpose of detailed model calibration. Currently, a series of rock-
fall experiments is being performed at Chant Sura using rocks of
two shapes (flat and equant) ranging from 45 kg to 2.5 metric tons;
(3) utilizing the rockfall energy dissipation model to terrains of
various topographies and rocks spanning a greater range of shapes
and masses. This is significant for natural hazards engineers who
need representative values of soil mechanical strength and scar
drag coefficient in order to apply the model in different geological
settings.
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