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Abstract 15 

Modern multifunctional forest management can profit from high-quality information on the 16 

potential distribution of woody species generated by species distribution models (SDMs). 17 

Forest structure is an important factor in determining the distribution of woody species in 18 

forests, for example because it affects light conditions within forest stands. Remotely sensed 19 

data from light detection and ranging (LiDAR) can capture this three-dimensional structure 20 

of forests, leading to the expectation that LiDAR-derived data should enhance the predictive 21 

performance of SDMs. We test if and how LiDAR-derived data increases the predictive 22 

performance of SDMs for light-demanding and shade-tolerant shrub and tree species in Swiss 23 

Forests. Our analyses suggest that LiDAR-derived data generally increases predictive 24 

performance of models. However, the response to including LiDAR-derived data varies 25 

depending on plant functional type: the increase in predictive performance is largest for light-26 

demanding shrubs, reduced for light-demanding trees, and is lost for shade-tolerant species. 27 

We further find that shade-tolerant and light-demanding species show opposing responses 28 

along the LiDAR-derived predictors. Our results suggest that LiDAR-derived data indeed 29 

capture some aspects of light availability in forests, and that including LiDAR-derived 30 

predictors in SDMs should be considered for light-demanding shrubs, but may be of less use 31 

for trees (especially if shade-tolerant). We conclude that improving SDMs and resulting maps 32 

by including LiDAR-derived predictors potentially helps to ameliorate multifunctional, 33 

biodiversity-friendly forest stand management. 34 
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1 Introduction 39 

The growing engagement for multifunctional, biodiversity-friendly forest management 40 

(Gustafsson et al., 2012; Lindenmayer and Franklin, 2002), has spurred the interest in 41 

modeling the potential distribution of forest species using so-called species distribution 42 

models (Guisan and Thuiller, 2005; SDMs, Guisan and Zimmermann, 2000). The quality and 43 

usefulness of SDMs for forest species depends on developing accurate and precise predictors 44 

for climatic conditions (e.g., temperature), local resource availability (e.g., soil 45 

characteristics) and structural forest features (e.g., crown heterogeneity). In recent years, 46 

airborne light detection and ranging (LiDAR) data became increasingly available and have 47 

proven to be important predictors in biodiversity modeling. For example, LiDAR data 48 

enhance species richness predictions (Bouvier et al., 2017; Camathias et al., 2013; Clawges et 49 

al., 2008; Simonson et al., 2014; Zellweger et al., 2016), improve predicting community 50 

composition and changes (Thers et al., 2017; Zellweger et al., 2017), help explaining animal 51 

distribution and behavior (Ciuti et al., 2018; Davies et al., 2017; Froidevaux et al., 2016), and 52 

increase the quality of SDMs for birds (Farrell et al., 2013; Vierling et al., 2013; Zellweger et 53 

al., 2013). 54 

The main factor that makes LiDAR data informative in biodiversity modeling is their 55 

capacity to describe the 3D structure of vegetation, particularly in forests (Lefsky et al., 56 

2002). Forest structure, in turn, is known to be a key determinant of the distribution of woody 57 

plant species in forests because it affects both the quantity and heterogeneity of light, a key 58 

resource for woody species growing in forests (Bartels and Chen, 2010; Kumar et al., 2010). 59 

Forest disturbance, natural or induced by management, affects light availability, diversity and 60 

composition of understory tree and shrub species in the short and long term (Ares et al., 61 

2010; e.g., Halpern et al., 2012; Taki et al., 2010). In the absence of management or 62 

disturbance, mortality-induced changes in the abundance patterns of canopy species change 63 



the canopy structure and its light transmittance, which affects the composition of subcanopy 64 

communities (reviewed in Barbier et al., 2008). Despite these demonstrated effects of forest 65 

structure on the distribution of woody species, and in contrast to animal ecology (Davies and 66 

Asner, 2014), quantitative vegetation structural attributes based on LiDAR data have rarely 67 

been used in species distribution models for woody species. 68 

The use of LiDAR data in SDMs for woody species can be problematic because woody 69 

species are not only affected by vegetation structure, they also define it to a large degree. In 70 

other words, woody species define the 3D structure of forests habitats, but this structure also 71 

defines how suitable that habitat is for woody species. Although this circularity is routinely 72 

used when attempting to map the actual distribution of woody species (Alonzo et al., 2014; 73 

Brandtberg, 2007; e.g. Holmgren and Persson, 2004; Shi et al., 2018), it can lead to the 74 

underestimation of suitable habitat when spatially projecting the potential distribution of 75 

woody species using SDMs (Bradley et al., 2012). Essentially, this could mean that managers 76 

take wrong decisions because of erroneous predictions from SDMs (for example, because 77 

potentially suitable habitat is not recognized). In an attempt to develop guidance on when and 78 

how to include LiDAR data in SDMs of woody species, we propose to define ecologically 79 

based hypotheses on how the use of LiDAR data should affect the predictive performance of 80 

SDMs for different functional groups (light-demanding vs. shade-tolerant shrubs and trees), 81 

and how these functional groups respond along pivotal LiDAR gradients. 82 

The goal of this study is to reveal the usefulness and appropriateness of including LiDAR 83 

data in SDMs for woody species. We used the extensive data of the Swiss National Forest 84 

Inventory (Brassel and Lischke, 2001) for testing four hypotheses (Table 1). The fact that 85 

forest structure is important in determining habitat and light conditions in forests leads to the 86 

hypothesis H1 that LiDAR data should generally increase the predictive performance of 87 

SDMs for woody species. The second hypothesis H2 relates to the growth-form of woody 88 



species. Whereas tall-growing trees can reach the canopy at some point and thus are exposed 89 

to direct sunlight, the smaller shrubs will never reach the canopy. Hence, we expect that the 90 

increase of predictive performance is greater in SDMs for shrubs than for trees. The third 91 

hypothesis H3 is associated with the light requirements of woody species. Shade-tolerant 92 

species, as indicated by their name, can tolerate shade, which implies that they also can grow 93 

in conditions with more available light. This is not true for light-demanding species: they 94 

demand a minimum of available light. Therefore, we expect that the positive effect of LiDAR 95 

data on the predictive performance of SDMs should be greater in light-demanding species 96 

than in shade-tolerant species. The fourth hypothesis H4 predicts opposing responses along 97 

LiDAR gradients for woody species with differing light requirements. We hypothesize that 98 

light-demanding species should positively relate to LiDAR data that characterize open, 99 

sparsely vegetated forest stands, while shade-tolerant species should relate positively to 100 

LiDAR data that captures shading through (dense) vegetation. We tested the four hypotheses 101 

by assessing the predictive performance of a set of SDMs without LiDAR data (based solely 102 

on climatic, topographic and soil predictors) and with LiDAR data for a total of eight species, 103 

by choosing two woody species from each of the four functional groups (shade-tolerant and 104 

light-demanding shrubs and trees).  105 



Table 1 The four hypotheses H1 to H4 that are tested in this study are in the first column, with a prediction 106 

on what we expect to find in the statistical analyses in the second column (for details on the statistical analyses 107 

see section 2.4.1). 108 

Hypothesis Prediction 

H1 LiDAR data should generally increase the 

predictive performance of SDMs 

higher intercept for models that include 

LiDAR data 

H2 increase of predictive performance when 

including LiDAR data is greater in SDMs 

for shrubs than for trees 

negative interaction effect for trees 

H3 increase of predictive performance when 

including LiDAR data is greater in SDMs 

for light-demanding species than for 

shade-tolerant species 

negative interaction effect for shade-

tolerant species 

H4 shade-tolerant and light-demanding 

species should show opposing responses 

along LiDAR gradients 

details see Figure 1 and section 2.2.3 

 109 

2 Methods 110 

2.1 Study area and species data 111 

Our study area is Switzerland, covering an area of ca. 41’000 km2 in Europe (45,82° to 112 

47,81° N, 5,96° to 10,5° E). Approximately one third of the country is covered by forests, and 113 

99% of these forests are distributed between 330 and 2140 m a.s.l. We used presence-absence 114 

data of woody species from the fourth National Forest Inventory (NFI4, 2009 to 1017). The 115 

Swiss NFI collects data of 138 woody species across a regular grid with 1.4 km resolution 116 



(Keller, 2011). At each forested grid-location (N= 6352), the NFI records the presence of all 117 

woody species with heights taller than 40 cm in a circular area of 200 m2 (7.98 m radius). In a 118 

larger circle of 500 m2 (12.62 m radius), all trees with a diameter at breast height larger than 119 

36 cm are recorded. In accordance with Zurell et al.(2019), all species that were not recorded 120 

as present were assumed to be absent. 121 

Our hypotheses (see Table 1) relate to four distinct functional groups of woody species (light-122 

demanding vs. shade-tolerant shrubs and trees). Therefore, we used information from the 123 

Flora Indicativa (Landolt et al., 2010) in order to characterize all species regarding their light 124 

requirements and life form. We classified all species from the Swiss NFI that were listed in 125 

the Flora Indicativa as phanerophyte and grow taller than 4 meters as tree species. We used 126 

the “light indicator value” that describes the species’ light requirements using five classes 127 

that range from one (deep shade) to five (full light): we classified all species with indicator 128 

values 1-2 (deep shade, shade) as shade-tolerant and those with values 4-5 (well-lit, full light) 129 

as light-demanding. An indicator value of 3 indicates medium light conditions and was 130 

therefore not added to either class. The resulting list contained 24 candidate species (see 131 

Table A1 in the supplementary information) from which two species for each of the four 132 

functional classes were selected. We considered the number of observations in the Swiss NFI 133 

as selection criteria as well as the economic importance (in the case of tree species), while 134 

simultaneously aiming for a broad taxonomic coverage. The selected set of species included 135 

Juniperus communis and Prunus spinosa (light-demanding shrubs), Daphne mezereum and 136 

Lonicera nigra (shade-tolerant shrubs), Populus termula and Pinus sylvestris (light-137 

demanding trees), Fagus sylvatica and Picea abies (shade-tolerant trees; see Table A1 for a 138 

tabular listing of the selected species). 139 



2.2 Environmental data 140 

2.2.1 Climate, topography, soils 141 

We compiled a set of 17 climatic and 40 topographic predictors as well as one soil predictor 142 

at a resolution of 25 m, which corresponds well with the species data of the reference area in 143 

the NFI (a circle with a diameter of 25.24 m). The climatic predictors were based on monthly 144 

temperature, precipitation, and potential evapotranspiration layers from Zimmermann and 145 

Kienast (1999). The topographic predictors were based on a 25 m digital elevation model for 146 

Switzerland (Swisstopo, 2010a) in order to reflect the topography of the surrounding 147 

landscape, and were calculated using the SAGA GIS v. 2.1.2 (Baltensweiler et al., 2017; 148 

Conrad et al., 2015). We also used a 5 m digital elevation model to describe 149 

microtopographic variation within a cell of the target resolution (Swisstopo, 2010b). The soil 150 

predictor consisted of a modeled pH layer that was based on >1500 soil profiles in Swiss 151 

forests. Please see Table A2 for the details of these climatic, topographic and soil predictors 152 

which were selected while building the SDMs. 153 

2.2.2 LiDAR-derived predictors 154 

We derived vegetation structural indicators (average vegetation height, vegetation cover, 155 

foliage height diversity, and vertical coefficient of variation) at the same resolution (25 m) 156 

from a nation-wide LiDAR dataset, provided by the Swiss Federal Office of Topography 157 

(Swisstopo, 2010b), updated with various cantonal LiDAR datasets. The Swisstopo LiDAR 158 

dataset was acquired during multiple seasons between 2000 and 2007 with a minimal point 159 

density of 0.5 m-2 (Artuso et al., 2003). The data acquisitions of cantonal datasets occurred in 160 

the years 2005 to 2014 with a return density between 4 to 15 points/m2. Subsampling areas of 161 

higher point densities to the lower densities showed that the variation in density did not affect 162 

the pixel specific values of the structural variables at the resolution of 25 meters (in 163 

agreement with Wilkes et al., 2015; Table A3). 164 



As LiDAR data was only available for areas below ca. 2000 m a.s.l, we had to remove NFI-165 

observations without LiDAR data, leading to a total N = 5551 observations. 166 

Using the LAStools software (Isenburg, 2015), we developed four LiDAR-derived predictors 167 

(average vegetation height, vegetation cover, foliage height diversity, and vertical coefficient 168 

of variation) to describe forest structure. To normalize the LiDAR return heights we used the 169 

SwissALTI3D digital terrain model that has a horizontal resolution of 2 m by 2 m and is 170 

based on the Swisstopo LiDAR dataset and reaches ± 0.5 m accuracy (one standard 171 

deviation) in all three dimensions (Swisstopo, 2010b). Average vegetation height was 172 

calculated as the mean height of all points between 0.4 and 55.0 m. We chose the lower limit 173 

to align with the minimal size that plants had to reach in order to be recorded in the Swiss 174 

NFI (40 cm), and the upper limit of 55 m in order to eliminate erroneous LiDAR returns 175 

above occurring tree heights. Note that average vegetation height is not equivalent to canopy 176 

height (height of returns at the top of the canopy), but is instead affected by all returns within 177 

a 25 m pixel throughout the vertical vegetation column between 0.4 m and 55 m. Vegetation 178 

cover was calculated as all first returns above 40 cm divided by all first returns, which 179 

indicates how much of a 25 m cell is covered by vegetation taller than 40 cm. Foliage height 180 

diversity (FHD) describes how LiDAR returns are distributed among 5 m vertical bins, and 181 

was calculated as the Shannon Index 𝐻 = − ∑ 𝑝𝑖 ln (𝑝𝑖), where 𝑝𝑖 is the proportion of returns 182 

in bin 𝑖 relative to all returns. Vertical coefficient of variation was calculated as the 183 

coefficient of variation of all returns (the standard deviation divided by the mean height of all 184 

returns). 185 

2.2.3 Light availability along LiDAR-derived predictors 186 

We here outline how we expected light-availability in a forest stand to change along the 187 

LiDAR-derived predictors (see also Figure 1). We expected light availability to decrease with 188 

increasing average vegetation height because maximal light availability for the understorey is 189 



reached when there are no or just a few large trees, whereas in forest stands with high, closed 190 

canopies, light availability  for the understorey is low  (Figure 1a). Light availability within  191 

forest stand is expected to decrease with increasing vegetation cover (Figure 1b). A low 192 

vertical coefficient of variation is caused by low variation of returns in high canopies, a 193 

situation that leads to low light availability in a stand. Conversely, one finds high vertical 194 

coefficients of variation if vertical variation is high relative to a low average canopy height. 195 

Consequently, we expected light availability on low vegetation heights to increase along the 196 

vertical coefficient of variation (Figure 1c). FHD captures how returns are distributed among 197 

vertical bins of vegetation height. It is lowest if all returns are concentrated in one or a few 198 

bins, which is the case in very low vegetation, where a lot of light is available. Highest FHD 199 

is expected if returns are evenly distributed across all height-bins, offering less light within 200 

the stand than the low vegetation that leads to high FHD. Therefore, we expect light 201 

availability to decrease along FHD (Figure 1d). 202 

2.3 Distribution modeling 203 

2.3.1 Variable selection 204 

Our hypotheses required to fit two types of models for each species: one with only climatic, 205 

topographical, and soil predictors, and one including LiDAR-derived predictors. We selected 206 

the six most important but only weakly correlated variables for each type of model using a 207 

deterministic approach. We first ran a logistic regression for each species and predictor with a 208 

linear and quadratic term, and ranked each predictor’s predictive power using the average 209 

out-of-bag true skill statistic (TSS; Allouche et al., 2006) from a 20-fold cross validation. 210 

Starting from the best performing predictor (rank one), we iteratively removed highly 211 

correlated predictors with a Pearson correlation coefficient |r| > 0.7 in order to avoid multi-212 

collinearity (Dormann et al., 2013) before selecting the next best predictor. For the models 213 

without LiDAR data, the six best-ranked, uncorrelated, predictors describing climate, 214 



topography, and soil were chosen, separately for each species. For the models that included 215 

LiDAR data, the three best LiDAR-derived predictors were given the best ranks and 216 

complemented with the three best-ranked predictors out of the climatic, topographic, and soil 217 

predictor group. This procedure ensured that both models types (with and without LiDAR) 218 

had the same number of predictors (6) and this means that the three LiDAR predictors were 219 

included at the cost of three abiotic predictors. Table A4 lists the combination of variables 220 

used for each type of model and species. 221 

2.3.2 Modeling procedure 222 

In line with current standards (Araújo et al., 2019), we used an ensemble of models to assess 223 

predictive performance of SDMs with and without LiDAR data. For each species and 224 

predictor-set we used the following five algorithms and packages in the R statistical software 225 

(Version 3.4.4, R Core Team, 2018): generalized linear model (GLM, Nelder and 226 

Wedderburn, 1972) and generalized additive model (GAM, Hastie and Tibshirani, 1990; 227 

using mgcv, Wood, 2006) with binomial error distribution and logit link, random forest (RF, 228 

Breiman, 2001; using randomForest, Liaw and Wiener, 2002), artificial neural network 229 

(ANN, Ripley, 1996; using nnet, Venables and Ripley, 2002) and MaxEnt (using dismo, 230 

Hijmans et al., 2017; Phillips et al., 2006). GLMs were fitted using linear and quadratic 231 

terms. GAMs were fitted with up to four degrees of freedom (k=5). Both RFs and ANN were 232 

tuned to optimize parameter settings. For RFs, we optimized number of trees selecting from 233 

500, 1000, or 2000 trees, chose the best-performing minimal size of terminal nodes from two, 234 

three, or five, and chose the optimal number of candidate variables at each split from one, 235 

two or four variables. For ANNs, we chose the best combination of number of hidden layers 236 

(two, four, six, eight, or ten) and weight decays (0.001, 0.01, 0.05, 0.1, 0.25). MaxEnt models 237 

were fitted with default settings, except that a minimum of 100 observations was required to 238 

include hinge features, and a minimum of 150 observations to include product features. 239 



2.3.3 Model performance 240 

We assessed model performance via cross-validation using a repeated split-sample approach. 241 

For each repeat, we randomly split the NFI data into 70 % training, and 30 % testing data. 242 

Each of the five models was fitted on the training data, and the testing data was used to 243 

predict the probability of occurrence for the given species. These probabilities were 244 

transformed into binary predictions of presence/absence by optimizing a threshold that 245 

maximized TSS. We then calculated TSS on the held-out test data (TSSCV) for each of the 246 

five models, eight species, two sets of variables, and 20 cross-validation repeats as the basis 247 

to test hypotheses H1 to H3. 248 

 249 



 250 

Figure 1 Illustration of expected light availability(orange lines in the background) within a forest stand along 251 

the four LiDAR-derived predictors used in this study. Note that the expected light availability here only 252 

illustrates the general expected trend (actual light availability could to display a more complex response). The 253 

inset boxes illustrate exemplary LiDAR point clouds of a 25 m pixel along three points of the LiDAR-derived 254 

predictor (indicated by black dashed lines). Each inset box shows a subplot in 3D on the left, and a second 255 



subplot in 2D with the view from the perspective illustrated by the red arrows. The colors of LiDAR points 256 

illustrate their return height above ground (see color legend). 257 

2.4 Hypothesis Testing 258 

2.4.1 Statistical analyses 259 

We used a mixed effect model in order to test hypotheses H1, H2 and H3. Predictive 260 

performance of models (the TSSCV values) constituted the response in this mixed effect 261 

model. Predictor-set (SDMs without vs. SDMs including LiDAR-derived predictors), life 262 

form (shrubs vs. trees) and light requirement (shade-tolerant vs. light-demanding) were 263 

included as fixed effects. We further included the interactions between predictor-set and life 264 

form, as well as between predictor-set and light requirement. Hypothesis H1 predicts a 265 

positive intercept for the predictor-set “with LiDAR”. The interactions between predictor-set 266 

and life form, and between predictor-set and light requirement were included to test 267 

hypothesis H2 and H3. Both these hypotheses predict that the increase in predictive 268 

performance (not its absolute value) changes with a functional attribute of the species. Hence, 269 

in the statistical model we have to inspect the interactions that modulate the increase in 270 

predictive performance, and not the intercepts (the absolute values) themselves. H2 predicts a 271 

negative coefficient for the interaction between predictor-set and life form (trees vs. shrubs), 272 

and hypothesis H3 predicts a negative coefficient for the interaction between predictor-set 273 

and light requirement (shade-tolerant vs. light-demanding). We included a random intercept 274 

for each species, model algorithm and cross-validation repeat to account for repeated 275 

measurements and for differences in model performance between species and models. We 276 

tested for significance of the effects by inspecting the 95 % confidence intervals (CIs) of a 277 

posterior sample of the effects. These samples were generated by sampling the estimated 278 

distribution of the effect (given by the point estimate and its standard error). The mixed 279 



model was built using the lme4 R-package (Bates et al., 2015), the CIs were computed using 280 

the arm R-package (Gelman and Su, 2018). 281 

2.4.2 Response curves 282 

We generated partial response curves of how the probability of occurrence changes along the 283 

LiDAR-derived predictors to test hypothesis H4. Generally, partial response curves are 284 

produced by calculating the predicted probability of occurrence along the focal predictor, 285 

while all other predictors are fixed (here: at their mean). In our study, we generated ensemble 286 

response curves, where the partial responses of the five models along each LiDAR-derived 287 

predictor was averaged. Models that performed better thereby received more weight than 288 

models with lesser performance (average TSSCV values were used as weights). We used the 289 

weighted standard deviation of the predicted probabilities across the five models to illustrate 290 

uncertainty among the five model algorithms. The generated response curves were used to 291 

assess whether the responses of light-demanding vs. shade-tolerant species show the 292 

opposing patterns, as predicted by hypothesis H4. 293 

3 Results 294 

On average, predictive performance of models (TSSCV) was 0.45 (±0.13; standard deviation) 295 

across all species, models, and cross-validation repeats when LiDAR data were not included. 296 

Performance across models was similar, with RFs (0.46±0.12), GAMs (0.46±0.12) and 297 

Maxent models (0.46±0.12) performing better than GLMs (0.45±0.14) and ANNs 298 

(0.44±0.14). Fagus sylvatica reached the best TSSCV (0.65 ±0.02), whereas Populus tremula 299 

only reached 0.23 (±0.08). When including LiDAR-derived predictors, the changes in TSSCV 300 

ranged from −0.18 to 0.27 in absolute terms, whereas relative changes ranged from −48.51 % 301 

to 501.94 % (negative values indicate that models without LiDAR data performed better). 302 



The functional groups reacted differently to the inclusion of LiDAR data (Figure 2). The 303 

strongest increase in TSS median was 7.5 % (quartile range: 0.7 to 15.8 %) for light-304 

demanding shrubs (J. communis and P. spinosa), and similar for light-demanding trees 6.9 % 305 

(from 0.4 for P. tremula to 23.2 for P. sylvatica). In contrast, we observed a decrease in 306 

median TSS in shade-tolerant shrubs (−4.2; −10.7 to 6.2 %, D. mezerum and L. nigra) and 307 

trees (−6.3 %; −10 to −1.1 %, F. sylvatica and P. abies). Accordingly, models for light-308 

demanding species increased in performance by 7.18 % (0.60 to 18.26 %), whereas those for 309 

shade-tolerant species decreased in performance by −5.36 % (−10.20 to 1.35 %). When 310 

inspecting life form, we observed that including LiDAR-derived predictors did only 311 

marginally affect models for trees (0.05 %; −7.36 to 7.81 %), but had a higher effect on 312 

shrubs (2.32 %; −6.16 to 13.56 %). 313 

Models that included LiDAR-derived predictors performed better in five out of eight species 314 

compared to the models without LiDAR data. F. sylvatica and L. nigra showed a decrease in 315 

predictive performance when including LiDAR data, and for P. abies predictive performance 316 

did not differ. Nevertheless, species varied considerably in how model performance changed 317 

with inclusion of LiDAR data. The two extreme examples included trees: P. tremula had a 318 

median increase of 23.3 % (4.6 to 51.6 %) in TSSCV, whereas model performance for F. 319 

sylvatica decreased by −9.1 % (−11.1 to −7.4 %). The difference between extremes was 320 

smaller for shrubs: TSSCV for L. nigra decreased by −8.0 % (−12.4 to −4.4 %) and increased 321 

for J. communis by 13.8 % (2.9 to 23.4 %). For more details on species-specific results see 322 

Figure 2 and Table A5. 323 

Analyses indicated that both the main effect for predictor-set as well as its interactions with 324 

life form and light requirement were significant (Table 2). In contrast, the main effects for 325 

life form and light requirement were not significant. The main effect of predictor-set 326 

indicated that TSSCV increased for light-demanding shrubs when including LiDAR-derived 327 



predictors. This increase was, however, reduced for tree species, especially so for shade-328 

tolerant species, as indicated by the two negative interaction terms. The large effect for the 329 

interaction between predictor-set and light requirement means that  model performance 330 

estimates of models with LiDAR data for shade tolerant species are lower than for light-331 

demanding species (see the model coefficients in the central panels of Figure 2). 332 

 333 

Table 2 The results for the fixed effects of the mixed model that statistically tested whether the predictive 334 

performance of SDMs (measured as TSSCV) changed as predicted by hypotheses H1, H2 and H3. The first 335 

column gives the estimate the second and third column define the lower and upper limits of the 95 % 336 

Confidence Intervals (CI). Significant effects (i.e. CIs do not include zero) in bold. Note that we highlight in the 337 

first column in brackets what levels the fixed effects take (the levels mentioned for the intercept constitute the 338 

base levels). 339 

 

estimate lower CI upper CI 

Intercept 

(no LiDAR, shrubs, light-demanding) 0.426 0.272 0.589 

predictor-set 

(with LiDAR) 0.047 0.039 0.054 

life form 

(trees) −0.001 −0.192 0.189 

light requirement 

(shade-tolerant) 0.051 −0.128 0.239 

predictor-set : life form 

(with LiDAR, trees) −0.016 −0.024 −0.006 

predictor-set : light requirement 

(with LiDAR, shade-tolerant) −0.061 −0.069 −0.052 



 340 

 341 

Figure 2 Summary figure of results for shrubs in a) and trees in b). The left panels show model performance 342 

(TSSCV) for models without the use of LiDAR data, right panels show model performance for models that 343 

included LiDAR-derived predictors. The central panels (with inset axes for TSSCV) illustrate the interaction 344 

effects as estimated by the mixed effect model, highlighting that the inclusion of LiDAR-derived predictors 345 

increases model performance for light-demanding species (light green), but decreases model performance for 346 

shade-tolerant species (dark green). 347 

 348 
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The majority of ensemble response curves for light-demanding species indicated that the 349 

probability of occurrence for a given species decreased along any of the four LiDAR-derived 350 

predictors (see examples in Figure 3 and the complete set of response curves in Figure A1 351 

and Figure A2), except along foliage height diversity which displays a hump-shaped pattern 352 

for J. communis and P. sylvestris and an invariant response for P. spinosa. P. sylvestris 353 

further exhibits a positive response along vegetation cover and hump-shaped responses along 354 

average canopy height, which is diverging from the most common pattern of light-demanding 355 

species (Figure 3). Most ensemble response curves for shade-tolerant species showed an 356 

opposite pattern: the probability of occurrence of most species increased along the LiDAR-357 

derived predictors (see the examples in Figure 3). The exceptions here concern average 358 

vegetation height and canopy variation for D. mezereum (decreasing probability of 359 

occurrence and invariant response, respectively), as well as vegetation cover for F. sylvatica, 360 

FHD for L. nigra, and average vegetation height for P. abies (all hump-shaped, see examples 361 

in Figure 3). 362 

 363 

 364 



 365 

Figure 3 Expected (a, b) and unexpected (c, d) partial response curves for the shade-tolerant F. sylvatica (a) 366 

and L. nigra (c) and light-demanding P. tremula in (b) and P. sylvestris in (d). Solid black lines indicate the 367 

weighted ensemble responses and grey polygons reflect the weighted standard deviation across the five model 368 

algorithms. Note that we assumed light availability to decrease with increasing average vegetation height, 369 

vegetation cover and FHD, and to increase with vertical coefficient of variation. Also note that the response of 370 

F. sylvatica along vegetation cover is not as expected, whereas the response of L. nigra along vegetation cover 371 

is as expected. Partial response curves for each species and model algorithm along all LiDAR-derived predictors 372 

are displayed in Figure A1 and Figure A2. 373 
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4 Discussion 375 

Our study showed that the inclusion of LiDAR-derived predictors in SDMs is beneficial for 376 

light-demanding species, especially shrubs. Results also indicated that light-demanding and 377 

shade-tolerant species generally exhibit opposing responses along LiDAR-derived predictors. 378 

SDMs and resulting distribution maps for woody species can thus be improved by using 379 

LiDAR data, especially when following a set of recommendations based on the life form and 380 

light requirements of species. 381 

4.1 LiDAR and model performance 382 

Our results from the statistical analyses indicate that LiDAR data does increase model 383 

performance, and that this increase is less pronounced in shade tolerant species and in tree 384 

species, congruent with the predictions from hypotheses H1 to H3. A closer inspection of the 385 

results, however, reveals variation across the investigated species. In line with our hypothesis 386 

H3, model performance of all four light-demanding species increased when including 387 

LiDAR-derived predictors, but only one shade-tolerant species exhibited the same response. 388 

We argue that our structural predictors derived from LiDAR data captured substantial aspects 389 

of the limiting light availability in forests and thus are valuable predictors in SDMs of light-390 

demanding species. This is also in accordance with the literature of SDMs that included 391 

forest structure derived from LiDAR data for animal species which depend on open forest 392 

stands (see Davies and Asner, 2014 for examples). 393 

Shade-tolerant species, on the other hand, are less limited by light conditions, and their 394 

distribution could be more affected by other environmental factors such as climate or soil 395 

properties. In our study, the inclusion of LiDAR-derived predictors was at the cost of 396 

excluding such environmental factors. Apparently, this cost was higher than the benefit from 397 

including forest structural data, leading the models with LiDAR data to perform worse than 398 

the models based solely on climate, topography and soil characteristics for most shade-399 



tolerant species. The only exception is D. mezereum, where model performance increases by 400 

10% on average. The response curve for D. mezereum along the vegetation cover gradient is 401 

similar to those of other shade-tolerant species, its response along average height and canopy 402 

variation, however, rather parallels those from light-demanding species (Figure A1). Further 403 

investigations that go beyond the scope of this study would be required to assess if the 404 

observed similarity to response curves of light-demanding species is responsible for the 405 

exceptionally high increase in model performance of D. mezereum when including LiDAR-406 

derived predictors. 407 

We also found differences between life forms in how model performance increased with 408 

LiDAR-derived predictors. In line with the prediction of our hypothesis H2, we found that 409 

models for tree species profit less from LiDAR-derived predictors than models for shrub 410 

species. Indeed, we find a higher increase in model performance for light-demanding shrub 411 

species than for light-demanding tree species (light green model coefficients in Figure 2). 412 

Shrubs are part of the understorey, and as such are more affected by the overstorey forest 413 

structure than the investigated tree species that grow tall enough to become part of the upper 414 

canopy, where light is not a limiting factor. The significant interaction also indicates a 415 

stronger decrease in model performance for shade-tolerant tree species than for shrubs (dark 416 

green model coefficients in Figure 2). This is likely the consequence of the large drop in 417 

model performance for F. sylvatica when LiDAR-derived predictors are part of the predictor-418 

set (a median decrease of −9.1 %, Table A5). Across a large part of the Swiss lowlands, F. 419 

sylvatica is the most abundant and dominant tree species (Brzeziecki et al., 1993; Ellenberg, 420 

1988; Keller et al., 1998). Meier and colleagues (2011) found that beech dominance against 421 

its main competitors across Europe is influenced by climate, specifically temperature (degree 422 

day sum) and summer precipitation. It is striking that the LiDAR-derived predictors replaced, 423 

beside a topographic predictor, precipitation of the driest month and summer/winter ratio of 424 



precipitation (Table A4). Hence, the large decrease in model performance is most likely 425 

caused by the substitution of such informative climatic predictors with LiDAR-derived 426 

predictors due to the design of our study, which required the number of predictors to be 427 

constant across the predictor-sets. However, when constructing the best possible SDM for F. 428 

sylvatica with the data at hand (an inventory with thousands of high-quality presence/absence 429 

observations), we would rather add LiDAR-derived predictors to a chosen set of climatic, 430 

topographic, and soil predictors instead of replacing any of these abiotic predictors. 431 

4.2 Responses along LiDAR predictors 432 

We found that the majority of the partial responses along LiDAR-derived predictors follow 433 

the patterns that we predicted based on how we expect light-availability in a forest stand to 434 

change along the LiDAR-derived predictors. Consistent with this, we found opposing 435 

responses along most LiDAR-derived predictors for shade-tolerant vs. light-demanding 436 

species, just as predicted by hypothesis H4. These opposing responses support our 437 

assumption that the chosen predictors indeed capture relevant aspects of light availability in 438 

forest stands. However, it is important to note that the LiDAR-derived predictors we used to 439 

describe forest structure can also be proxies for other factors affecting the occurrence of 440 

woody species. For example, shrubs in the understorey are not only affected by light 441 

availability, but also by the distinct understorey microclimate (Bramer et al., 2018) that was 442 

potentially captured by our structural predictors derived from LiDAR data (Frey et al., 2016; 443 

Zellweger et al., 2018). 444 

The fact that our LiDAR-derived predictors are potentially correlated with additional, 445 

unobserved environmental variables could potentially explain some of the unexpected partial 446 

responses. The “chicken and egg” issue raised by Bradley et al. (2012) in combination with 447 

the fact that light requirements of tree species change with their life stage offers an alternative 448 

explanation. For example, we observed a positive association of P. sylvestris occurrence 449 



probability with vegetation cover, even though one would expect a light-demanding species 450 

to show the opposite trend. However, the light requirement is highest at the rejuvenation 451 

stage, whereas an adult P. sylvestris tree reaches the canopy, where light is not a limiting 452 

resource. And at this adult stage, the full-grown tree contributes a lot to the vegetation cover 453 

of its forest stand, which in turn determines how suitable that forest stand will be as 454 

determined to the SDM (high, according to partial response of P. sylvestris along vegetation 455 

cover). Finding detailed explanations for the shapes of all partial responses along the LiDAR-456 

derived predictors is clearly beyond the scope of our study. And the fact that we don’t have 457 

adequate explanations, for example, for the unexpected response patterns of P. sylvestris or 458 

the u-shaped response of F. sylvatica along vegetation cover suggests that further research 459 

with targeted analyses is needed to address these issues. 460 

4.3 Challenges and Opportunities 461 

In general, it is important to recall the partial circularity inherent to models that use LiDAR-462 

derived predictors to model a state of woody species distribution within a stand dynamic 463 

process: LiDAR data picks up vegetation structural attributes that are on the one hand 464 

important in determining their distribution, but on the other hand are also affected by their 465 

inherent distribution. In accordance with earlier recommendations (Bradley et al., 2012), we 466 

caution against interpreting the derived maps as the potential distribution of a species. Further 467 

research is needed to better disentangle the chicken from the egg, i.e., to disentangle the 468 

effects of trees on canopy structure form the effects of canopy structure on the distribution of 469 

tree species. Separating tree species observations into under- and overstorey canopy 470 

individuals, potentially also in life stages (seedlings, young trees, canopy trees) could shed 471 

light on how and when during their life cycle tree species are affected by the canopy 472 

structure, and how and when they are affecting the canopy structure. 473 



Focusing on the specifics of our study, we see a possible limitation in the number of species 474 

that we analyzed. We are confident that our results represent general trends for plant 475 

functional groups, but our results also indicate that single species can exhibit unexpected 476 

responses (e.g., P. sylvestris, D. mezereum). Therefore, instead of deciding whether or not to 477 

include LiDAR data in SDMs of woody species simply according to their plant functional 478 

group, we suggest to test if predictive performance of SDMs indeed increases when including 479 

LiDAR-derived predictors. In addition, we would like to point out that the absolute changes 480 

in model performance in our comparisons, as assessed by TSSCV are rather small. Average 481 

absolute changes per species range from 0.006 to 0.07, with a mean of 0.04. However, 482 

especially the light-demanding shrubs show increases of up to >0.15 for certain cross-483 

validation repeats, which we certainly consider worthwhile. Further research is needed to 484 

study if the small absolute differences could be explained by the design of our study and turn 485 

out to increase when the addition of LiDAR-derived predictors does not replace abiotic 486 

predictors. 487 

We anticipate that positive effects of LiDAR-derived predictors on SDMs could also be 488 

found for non-woody species such as herbaceous species or bryophytes and lichens that 489 

inhabit forests. Modelling of such species by means of LiDAR data would not be affected by 490 

the chicken-egg problem because those species groups hardly affect the forest structure as 491 

characterized by LiDAR-derived predictors. However, non-woody species inhabiting the 492 

understorey strongly depend on light conditions. Indeed, recent studies show that LiDAR-493 

derived data are well suited to approximate light-demands of herbaceous understory 494 

communities (Alexander et al., 2013). 495 

Remote sensing products already have proven their value in the management of invasive 496 

species (e.g., Hantson et al., 2012; Müllerová et al., 2017), and we expect that LiDAR-497 

derived predictors that inform on light availability also have the potential to improve maps of 498 



the potential distributions of invasives. Such maps could, for example, identify potential 499 

hotspots for the establishment of black-listed species that are especially competitive under 500 

favorable light conditions and (start to) inhabit Swiss forests, such as Black locust (Robinia 501 

pseudoacacia) in light forests or Cherry laurel (Prunus laurocerasus) along forest edges 502 

(Delarze et al., 2015; Info Flora, 2014). 503 

4.4 Recommendations for Application 504 

Our study set out to discover if LiDAR data is useful when modeling the distribution of 505 

woody species, and to confirm predicted differences between functional groups of woody 506 

species based on specific hypotheses. Our recommendations are based on our results that 507 

show that LiDAR-derived predictors generally increase model performance and are 508 

especially useful when modeling the distribution of light-demanding shrubs. 509 

We emphasize that the inclusion of LiDAR-derived predictors prevents the possibility to 510 

project the models to future conditions, simply because structural data of future forest stands 511 

cannot be acquired. However, using forest structural data in distribution models fitted in one 512 

area may allow to project models to new areas, given LiDAR data is available for these new 513 

areas in a similar quality. Note that we suggest to apply block cross-validation in order to 514 

assess the transferability of the fitted SDMs (Roberts et al., 2017) when aiming for projection 515 

to another area. 516 

When aiming for producing the best possible maps for management purposes, we recommend 517 

to include LiDAR-derived predictors into SDMs for woody species if the species is light-518 

demanding, especially so if shrubs are concerned. For such species, LiDAR data exhibit 519 

considerable potential to improve species distributions maps. If occurrence data is limiting 520 

the number of predictors that can be included in SDMs, we warn against a non-reflected 521 

inclusion of LiDAR-derived predictors. The case of F. sylvatica exemplifies that replacing 522 

important abiotic predictors with LiDAR-derived predictors can harm the performance of 523 



SDMs. Hence, we recommend to test the predictive performance of models with/without 524 

LiDAR-derived predictors when the number of predictors is limited or to apply ensembles of 525 

small models (Breiner et al., 2015). Our recommendations provide a basis how remote-526 

sensing technologies and highly resolved parameters of vegetation structure can increase the 527 

accuracy of spatially explicit models for woody species. As such, these models and resulting 528 

maps have the potential to inform multifunctional, biodiversity-friendly stand management. 529 
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Klötzli (1972). Mitt. Eidgenöss. Forsch.anst. Wald Schnee Landsch. 73, 91–357. 660 

Kumar, P., Chen, H.Y.H., Thomas, S.C., Shahi, C., 2010. Linking resource availability and 661 

heterogeneity to understorey species diversity through succession in boreal forest of 662 

Canada. J. Ecol. 91, 1931–1938. https://doi.org/10.1111/1365-2745.12861 663 

Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., Nobis, M., Rudmann-664 

Maurer, K., Schweingruber, F.H., Theurillat, J.-P., Urmi, E., Vust, M., Wohlgemuth, T., 665 

2010. Flora Indicativa, 2nd ed. Haupt, Bern. 666 

Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. Lidar Remote Sensing for 667 

Ecosystem Studies. Bioscience 52, 19. https://doi.org/10.1641/0006-668 

3568(2002)052[0019:LRSFES]2.0.CO;2 669 

Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest. R News 2, 18–22. 670 

Lindenmayer, D.B., Franklin, J.F., 2002. Conserving Forest Biodiversity: A Comprehensive 671 

Multiscaled Approach. Island Press. 672 

Meier, E.S., Edwards, T.C., Kienast, F., Dobbertin, M., Zimmermann, N.E., Edwards Jr, T.C., 673 

Kienast, F., Dobbertin, M., Zimmermann, N.E., 2011. Co-occurrence patterns of trees 674 

along macro-climatic gradients and their potential influence on the present and future 675 

distribution of Fagus sylvatica L. J. Biogeogr. 38, 371–382. 676 

https://doi.org/10.1111/j.1365-2699.2010.02405.x 677 



Müllerová, J., Bartaloš, T., Brůna, J., Dvořák, P., Vítková, M., 2017. Unmanned aircraft in 678 

nature conservation: an example from plant invasions. Int. J. Remote Sens. 38, 2177–679 

2198. https://doi.org/10.1080/01431161.2016.1275059 680 

Nelder, J.A., Wedderburn, R.W.M., 1972. Generalized Linear Models. J. R. Stat. Soc. A. 135, 681 

370–384. https://doi.org/10.2307/2344614 682 

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species 683 

geographic distributions. Ecol. Modell. 190, 231–259. 684 

https://doi.org/10.1016/j.ecolmodel.2005.03.026 685 

R Core Team, 2018. R: A language and environment for statistical computing. 686 

Ripley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge University Press, 687 

Cambridge. 688 

Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S., 689 

Lahoz-Monfort, J.J., Schr??der, B., Thuiller, W., Warton, D.I., Wintle, B.A., Hartig, F., 690 

Dormann, C.F., 2017. Cross-validation strategies for data with temporal, spatial, 691 

hierarchical, or phylogenetic structure. Ecography (Cop.). 1–17. 692 

https://doi.org/10.1111/ecog.02881 693 

Shi, Y., Wang, T., Skidmore, A.K., Heurich, M., 2018. Important LiDAR metrics for 694 

discriminating forest tree species in Central Europe. ISPRS J. Photogramm. Remote 695 

Sens. 137, 163–174. https://doi.org/10.1016/j.isprsjprs.2018.02.002 696 

Simonson, W.D., Allen, H.D., Coomes, D.A., 2014. Applications of airborne lidar for the 697 

assessment of animal species diversity. Methods Ecol. Evol. 5, 719–729. 698 

https://doi.org/10.1111/2041-210X.12219 699 



Swisstopo, 2010a. Height Models. Swiss Federal Office of Topography Swisstopo [WWW 700 

Document]. URL https://shop.swisstopo.admin.ch/en/products/height_models/dhm25 701 

Swisstopo, 2010b. Height Models. Swiss Federal Office of Topography Swisstopo [WWW 702 

Document]. URL https://shop.swisstopo.admin.ch/en/products/height_models/alti3D 703 

Taki, H., Inoue, T., Tanaka, H., Makihara, H., Sueyoshi, M., Isono, M., Okabe, K., 2010. 704 

Responses of community structure, diversity, and abundance of understory plants and 705 

insect assemblages to thinning in plantations. For. Ecol. Manage. 259, 607–613. 706 

https://doi.org/10.1016/j.foreco.2009.11.019 707 

Thers, H., Brunbjerg, A.K., Læssøe, T., Ejrnæs, R., Bøcher, P.K., Svenning, J.-C., 2017. Lidar-708 

derived variables as a proxy for fungal species richness and composition in temperate 709 

Northern Europe. Remote Sens. Environ. 200, 102–113. 710 

https://doi.org/10.1016/j.rse.2017.08.011 711 

Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S, Fourth. ed. Springer, 712 

New York. 713 

Vierling, L.A., Vierling, K.T., Adam, P., Hudak, A.T., 2013. Using satellite and airborne LiDAR 714 

to model woodpecker habitat occupancy at the landscape scale. PLoS One 8. 715 

https://doi.org/10.1371/journal.pone.0080988 716 

Wilkes, P., Jones, S.D., Suarez, L., Haywood, A., Woodgate, W., Soto-Berelov, M., Mellor, A., 717 

Skidmore, A.K., 2015. Understanding the Effects of ALS Pulse Density for Metric 718 

Retrieval across Diverse Forest Types. Photogramm. Eng. Remote Sens. 81, 625–635. 719 

https://doi.org/10.14358/PERS.81.8.625 720 

Wood, S.N., 2006. Generalized additive models : an introduction with R. Chapman & Hall; 721 



CRC, Boca Raton. 722 

Zellweger, F., Baltensweiler, A., Ginzler, C., Roth, T., Braunisch, V., Bugmann, H., Bollmann, 723 

K., 2016. Environmental predictors of species richness in forest landscapes: Abiotic 724 

factors versus vegetation structure. J. Biogeogr. 43, 1080–1090. 725 

https://doi.org/10.1111/jbi.12696 726 

Zellweger, F., Braunisch, V., Baltensweiler, A., Bollmann, K., 2013. Remotely sensed forest 727 

structural complexity predicts multi species occurrence at the landscape scale. For. 728 

Ecol. Manage. 307, 303–312. https://doi.org/10.1016/j.foreco.2013.07.023 729 

Zellweger, F., Frenne, P. De, Lenoir, J., Rocchini, D., Coomes, D., 2018. Advances in 730 

microclimate ecology arising from remote sensing. Trends Ecol. Evol. xx, 1–15. 731 

https://doi.org/10.1016/j.tree.2018.12.012 732 

Zellweger, F., Roth, T., Bugmann, H., Bollmann, K., 2017. Beta diversity of plants, birds and 733 

butterflies is closely associated with climate and habitat structure. Glob. Ecol. Biogeogr. 734 

898–906. https://doi.org/10.1111/geb.12598 735 

Zimmermann, N.E., Kienast, F., 1999. Predictive mapping of alpine grasslands in 736 

Switzerland : Species versus community approach. J. Veg. Sci. 10, 469–482. 737 

Zurell, D., Zimmermann, N.E., Gross, H., Baltensweiler, A., Sattler, T., Wüest, R.O., 2019. 738 

esting species assemblage predictions from stacked and joint species distribution 739 

models. J. Biogeogr. 740 

 741 

  742 



Appendix A: Supplementary Material 743 

 744 

Table A1 Full list of candidate species, with the selected species in bold. Note that we generally selected the 745 

most frequent species (number of occurrences), and give reasons when not following this rule in the “comment” 746 

column. 747 

li
g
h
t 

re
q
u
ir

em
en

t 

li
fe

 f
o
rm

 

sp
ec

ie
s 

n
u
m

b
er

 o
f 

o
cc

u
rr

en
ce

s 

co
m

m
en

t 

light-demanding shrub Juniperus communis 184  

  Prunus spinosa 177  

  Pinus mugo subsp mugo 142  

  Cotoneaster tomentosus 61  

 tree Larix decidua 1216 economically not 

important 

  Betula pendula 669 difficult to distinguish 

from B. pubescens 

  Pinus sylvestris 514  

  Populus tremula 181  

  Pinus mugo subsp. uncinata 129  

shade-tolerant shrub Lonicera nigra 669  

  Vaccinium myrtillus 484 often missed because of 

40 cm height threshold 

  Lonicera alpigena 286 already one Lonicera 

species selected 

  Daphne mezereum 168  

  Daphne laureola 62  

 tree Picea abies 4603  

  Fagus sylvatica 3270  

  Acer pseudoplatanus 2550  

  Abies alba 2392  

  Ulmus glabra 503  

  Carpinus betulus 296  

  Tilia cordata 246  

  Tilia platyphyllos 178  

  Taxus baccata 98  

  Pseudotsuga menziesii 85  



Table A2 A description of the topographic, soil, and climatic predictors that were used by at least one model. 748 

Predictor  Description 

topography c_slope Average slope of the above catchment based on the multiple 

flow direction (MFD) algorithm 

 slope Slope (gradient) for each cell based on 3x3 window 

 convexity_3 Convexity is calculated as the ratio of the number of cells 

having positive curvature (= convex cells) to the number of 

cells within a radius of 3 cells. 

 convexity_12 Convexity is calculated as the ratio of the number of cells 

having positive curvature (= convex cells) to the number of 

cells within a radius of 12 cells. 

 melton_rug Melton ruggedness index. Ratio of the upslope catchment 

height and catchment area based on the single flow direction. 

 stream_power A measure of the erosive power of flowing water. SPI is 

calculated based upon slope and contributing area.1 

Wilson, J.P., 2012. Digital terrain modeling. Geomorphology 

137(1), 107-121. 

 twi_mfd Topographic Wetness Index based on the multiple flow 

direction (MFD) algorithm2. 

 terhet_sd terrain heterogeneity: standard deviation of a digital elevation 

model with 5 m resolution 

soil soil_pH The topsoil pH map was calculated based on 1944 forest soil 

profiles using the random forest model implementation of the 

caret R package (v 6.0-68)3. 

We used 80% of the soil profiles as training set, 20% as 

independent validation set. A total of 126 predictors were used 

to describe topography, climate and geology. The R2 of the 

validation set was 0.37, the root mean squared error was 1.08. 

climate bio_4 Temperature Seasonality4 

 bio_13 Precipitation of Wettest Month4 

 bio_14 Precipitation of Driest Month4 

 gdd growing degree days4 

 etpt potential evapotranspiration4 

 mind moisture index: difference between precipitation and potential 

evapotranspiration4 

 pdsum number of days with rainfall >1 mm5 

 prec_suwirat ratio of summer (April to September) to winter (October to 

March) precipitation sums4 

 prec_su summer precipitation sum (April to September)4 

 swb site water balance5 



 tave_suwirat ratio of average summer (April to September) to average winter 

(October to March) temperature4 

 tave_wi average winter (October to March) temperature4 

 tave_su average summer (April to September) temperature4 

1 Colgan, A., & Ludwig, R. (2016). Digital Terrain Model. In Regional Assessment of Global 749 

Change Impacts (Vol. 137, pp. 69–74). Cham: Springer International Publishing. 750 

https://doi.org/10.1007/978-3-319-16751-0_7 751 

2 Böhner, J., & Selige, T. (2006). Spatial prediction of soil attributes using terrain analysis 752 

and climate regionalisation. In J. Böhner, K. R. McCloy, & J. Strobl (Eds.), SAGA - 753 

Analysis and Modelling Applications (Vol. 115, pp. 13-27.). 754 

3 Kuhn, M. (2008). Caret package. Journal of Statistical Software, 28(5) 755 

4 Zimmermann, N. E., & Kienast, F. (1999). Predictive mapping of alpine grasslands in 756 

Switzerland : Species versus community approach. Journal of Vegetation Science, 10, 757 

469–482. 758 

5 Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, a. T. 759 

(2007). WHAT MATTERS FOR PREDICTING THE OCCURRENCES OF TREES: 760 

TECHNIQUES, DATA, OR SPECIES’ CHARACTERISTICS? Ecological 761 

Monographs, 77(4), 615–630. https://doi.org/10.1890/06-1060.1 762 
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Table A3 Results from testing equivalence between subsampled and original point clouds in a test area 765 

(2700km2) with varying point densities. The test area was situated in Central Switzerland (xmin: 700012.5; 766 

xmax: 760012.5; ymin: 200012.5; ymax: 245012.5) and consisted of 4.32 million cells (25 m x 25 m). Each 767 

sample (in rows) was constructed by randomly subsampling the LiDAR point densities from as high as 15 768 

points/m2 to the 0.5 points/m2 minimal density using the “lasthin” routine from the LAStools software (Isenburg, 769 

2015). Using two one sided t-tests (TOST), we checked if the subsampled values were equivalent with the 770 

values obtained from the original, mixed-density LiDAR dataset. We considered the results to be equivalent if 771 

samples deviated no more than 5% in vegetation cover, 1m in average height, 0.5m in the 5th percentile (p05), 772 

2m in the 95th percentile (p95), and 0.05 in vertical variation (the coefficient of variation). All tests revealed that 773 

values from subsampled rasters are equivalent to the values obtained from using the mixed-density LiDAR 774 

dataset. 775 

 vegetation 

cover 

average 

height 

p05 p95 vertical 

variation 

sample 1 equivalent equivalent equivalent equivalent equivalent 

sample 2 equivalent equivalent equivalent equivalent equivalent 

sample 3 equivalent equivalent equivalent equivalent equivalent 

sample 4 equivalent equivalent equivalent equivalent equivalent 

sample 5 equivalent equivalent equivalent equivalent equivalent 

sample 6 equivalent equivalent equivalent equivalent equivalent 

sample 7 equivalent equivalent equivalent equivalent equivalent 

sample 8 equivalent equivalent equivalent equivalent equivalent 

sample 9 equivalent equivalent equivalent equivalent equivalent 

sample 10 equivalent equivalent equivalent equivalent equivalent 

 776 

  777 



Table A4 The table lists which predictors (in rows) were included for each of the species (in columns). A 778 

value of −1 indicates that the variable was included only in the model without LiDAR predictors, a value of 1 779 

indicates it was only included in the model with LiDAR predictors. Zero indicates the variables was included in 780 

both models. 781 
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climate bio_13 0 −1 
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 bio_14 
 

0 −1 0 −1 
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 bio_4 
   

−1 −1 0 
  

 gdd 
  

0 
   

−1 0 

 etpt −1 
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 mind 
     

0 
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 pdsum 0 −1 
 

0 −1 −1 0 −1 

 prec_suwirat 
  

−1 
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 prec_su 
    

0 
   

 swb 
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−1 
  

−1 
 

 tave_suwirat 
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 tave_wi 
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 tave_wi 
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soil soil_pH 0 −1 
     

0 

topography c_slope 
  

0 
    

−1 

 convexity_12 −1 
       

 convexity_3 −1 
       

 melton_rug 
       

−1 

 slope 
    

0 
   

 stream_power 
  

−1 
     

 twi_mfd 
     

−1 
  

 terhet_sd 
     

−1 
  

LiDAR average height 1  1 1 1 1 1 1 

 vegetation cover 1 1 1 1 1  1 1 

 height variation 1 1 1   1   

 foliage height diversity  1  1 1 1 1 1 
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Table A5 Table that reports on changes in model performance (TSSCV) for each species. The statistics given 783 

in each column (min, 25th, 50th, 75th percentile, and max) summarize the results over five models and 20 cross-784 

validation repeats. 785 

light requirement life form species min 25% 50% 75% max 

shade-tolerant shrubs Daphne 

mezereum 
−48.515 −4.732 6.095 21.678 275.735 

  Lonicera 

nigra 
−32.152 −12.377 −7.972 −4.396 8.381 

 trees Fagus 

sylvatica 
−15.734 −11.045 −9.074 −7.394 −1.790 

  Picea 

abies 
−22.260 −3.679 −0.908 2.872 12.690 

light-demanding shrubs Juniperus 

communis 
−9.830 2.847 13.754 23.367 56.564 

  Prunus 

spinosa 
−16.845 −0.830 4.413 9.494 33.682 

 trees Populus 

tremula 
−43.708 4.639 23.256 51.580 501.942 

  Pinus 

sylvestris −10.100 0.082 2.815 7.263 17.674 
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 788 

Figure A1 Partial response curves for shade-tolerant species (one per row, see legend), with the ensemble 789 

probability as black solid line, and the single model predictions with line shapes and colors according to the 790 

legend.  791 

 792 



 793 

Figure A2 Partial response curves for light-demanding species (one per row, see legend), with the ensemble 794 

probability as black solid line, and the single model predictions with line shapes and colors according to the 795 

legend. 796 
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