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Abstract 26 

Aim 27 

Statistical species distribution models (SDMs) are the most common tool to predict 28 

the impact of climate change on biodiversity. They can be tuned to fit relationships at various 29 

levels of complexity (defined here as parameterization complexity, number of predictors, and 30 

multicollinearity) that may co-determine whether projections to novel climatic conditions are 31 

useful or misleading. Here, we assessed how model complexity affects the performance of 32 

model extrapolations and influences projections of species ranges under future climate 33 

change. 34 

Location 35 

Europe 36 

Taxon 37 

34 European tree species 38 

Methods 39 

We sampled three replicates of predictor sets for all combinations of ten levels (n=3-40 

12) of environmental variables (climate, terrain, soil) and ten levels of multicollinearity. We 41 

used these sets for each species to fit four SDM algorithms at three levels of parameterization 42 

complexity. The >100’000 resulting SDM fits were then evaluated under environmental 43 

block cross-validation and projected to environmental conditions for 2061-2080 considering 44 

four climate models and two emission scenarios. Finally, we investigated the relationships of 45 

model design with model performance and projected distributional changes. 46 

Results  47 

Model complexity affected both model performance and projections of species 48 

distributional change. Fits of intermediate parameterization complexity performed best, and 49 

more complex parameterizations were associated with higher projected loss of current ranges. 50 

Model performance peaked at 10-11 variables but adding variables had no consistent effect 51 

on distributional change projections. Multicollinearity had a low impact on model 52 

performance but distinctly increased projected loss of current ranges. 53 

Main conclusions 54 

SDM-based climate change impact assessments should be based on ensembles of 55 

projections, varying SDM algorithms as well as parameterization complexity, besides 56 

emission scenarios and climate models. The number of predictor variables should be kept 57 

reasonably small and the classical threshold of maximum absolute Pearson correlation of 0.7 58 

restricts collinearity-driven effects in projections of species ranges.  59 

Key words 60 
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Introduction 65 

Efficient mitigation of biodiversity loss from global changes requires a thorough 66 

understanding of how species’ ranges are organized in space, and how they will shift in the 67 

future. Two approaches are commonly employed to establish such understanding: statistical 68 

species distribution models (SDMs, Guisan and Zimmermann 2000) and mechanistic models 69 

(e.g., Zurell et al. 2016). Projections of species range shifts using mechanistic models are 70 

based on explicitly formulated processes that are presumably relevant to the ecology of the 71 

target species, while SDM projections extrapolate relationships identified from statistical 72 

structures between occurrences and their environment. In principle, projections from 73 

mechanistic models may seem preferable as their careful application may harbor a lower risk 74 

that relevant processes are insufficiently captured or corrupted by erroneously identified 75 

associations (Merow et al., 2014). However, limited understanding of relevant processes and 76 

of the ecology of most species, and/or lack of relevant data to describe it sufficiently well 77 

prevent their use in many cases (Guisan & Zimmermann, 2000; Thuiller et al., 2008). Despite 78 

their limitations, statistical SDMs are therefore likely to remain commonly used to project 79 

species responses to global change. For this reason, it is imperative to comprehend the 80 

implications of the various conceptual decisions taken at the different steps of the 81 

development of SDM projections. 82 

Implications of decisions in projection design can be quantified by comparing the 83 

outcomes of alternative setups when projected under climate change (aka projection 84 

ensembles). Projection ensembles consist of multiple projections generated by systematically 85 

varying the settings at the different steps of their development, such as initial conditions, i.e., 86 

presences and (pseudo)absences used for model training, predictor variables, SDM 87 

algorithms, parameterization complexity, climate models, or emission scenarios. Projection 88 

ensembles are particularly useful to quantify uncertainty and to obtain consensus projections, 89 

which are arguably superior to single model projections (Araújo and New 2007, but see 90 

Dormann et al. 2018). Furthermore, if combined with rigorous model validation, projection 91 

ensembles can help identifying model designs of relatively high quality. Compared to other 92 

fields, such as economics and climate science, projection ensembles were introduced to 93 

species distribution modeling relatively recently (Thuiller, 2004; Araújo & New, 2007), but 94 

gained popularity since specialized modeling platforms became available – such as the R-95 

package ‘biomod2’ (Thuiller et al., 2009). However, not all steps in the development of 96 

projection ensembles have received the same level of attention. A literature study of 125 97 

recent papers employing SDM projections revealed that the most frequently varied step was 98 

the emission scenario (63% of cases), followed by the climate models used to estimate future 99 

climatic conditions (48% of cases) (Fig. 1a, for further information see Appendix S1 in 100 

Supporting Information). SDM algorithms and initial conditions were also frequently varied 101 

(35% and 32% of cases, respectively). Implications of decisions revolving around model 102 

complexity, on the other hand, were typically not explored, and either left to the defaults of 103 

the method applied or taken based on more or less well-grounded heuristics. Yet, the 104 

importance of also varying model complexity in projection ensembles has recently been 105 

emphasized by several authors (Boria et al., 2014; Merow et al., 2014; Werkowska et al., 106 

2017). 107 

Most SDM algorithms can be tuned to fit models across a substantial range of 108 

complexity, from ‘under fit’ models that are not flexible enough to capture the detailed 109 
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species response to the environment to ‘over fit’ models that ascribe signal to noise, which is 110 

particularly risky when projecting (Merow et al., 2014; Moreno-Amat et al., 2015). Even 111 

when differences in model performance are minor, projections from complex models can 112 

strongly differ from those of simple models (Merow et al., 2014; Beaumont et al., 2016; 113 

Gregr et al., 2018). However, systematically varying model complexity across different SDM 114 

algorithms is not straightforward, as their different setups do not allow for analogous tuning, 115 

and universal measures to directly compare complexity are lacking (García-Callejas & 116 

Araújo, 2016). Various proxies for model complexity have therefore been suggested, 117 

including the shapes of response curves, predictor and parameter numbers, and the 118 

computation time required for model fitting (Merow et al., 2014; Bell & Schlaepfer, 2016; 119 

García-Callejas & Araújo, 2016). We investigate the roles of three aspects related to model 120 

complexity: parameterization complexity, number of variables used, and multicollinearity 121 

among variables. Parameterization complexity involves modifications of a set of parameters, 122 

adjusting the level of complexity within SDM algorithms. These variations can be based on 123 

the flexibility of response curves or the inclusion of interaction terms in regression techniques 124 

and tree complexity in tree-based methods (Merow et al., 2014). Varying parameterization 125 

complexity has not been employed routinely in the recent literature. Among the 125 papers 126 

that we investigated, it was varied only twice (Fig. 1a). Instead, algorithms were mostly run 127 

with default parameterizations or else with simplifications of the default flexibility (see also 128 

Hao et al. 2019). 129 

Model complexity is also affected by the number of predictor variables considered as 130 

well as their multicollinearity. Adding more predictors to a model increases the amount of 131 

signal and noise available to SDM algorithms and typically leads to larger numbers of 132 

parameters estimated, and thus more complex models (Merow et al., 2014; Werkowska et al., 133 

2017). However, many algorithms include strategies to eliminate parameters that 134 

insufficiently improve model fits, which leads to a saturating relationship between number of 135 

variables and model complexity. Particularly many parameters may be eliminated for 136 

predictor sets with high levels of multicollinearity, and thus a limited amount of independent 137 

information. Multicollinearity may therefore lead to somewhat simpler models. But 138 

investigating the effects of multicollinearity is also of interest because it can compromise 139 

parameter estimates which is especially problematic when models are transferred to situations 140 

with different multicollinearity regimes (Dormann et al., 2013). Since ecologically important 141 

predictors often show significant levels of collinearity, knowing the maximum level of 142 

tolerable collinearity is critical. Among the 125 papers we investigated, the median number 143 

of variables included was seven, ranging from two to 37 (Fig. 1b). Yet, within the same 144 

analysis the numbers were typically not varied (only in 6% of cases), and if they were, then 145 

mainly as a consequence of recombining variable groups (e.g., climate vs. climate and soil 146 

variables) and not to study the impact of numbers of variables. Also, multicollinearity levels 147 

were only exceptionally varied (2% of cases), and the heuristics used to limit 148 

multicollinearity varied greatly (Fig. 1c). 149 

In this study, we analyzed a comprehensive ensemble of SDM projections and 150 

compared uncertainty associated with the commonly varied decision steps in ensembles 151 

(SDM algorithm, emission scenario, and climate models) with uncertainty originating from 152 

parameterization complexity, number of variables, and multicollinearity. Furthermore, we 153 

investigated the patterns of model performance, projections of distributional change, and 154 

disagreement of projections of distributional change (i.e. variation from replicated predictor 155 

sets) along model complexity gradients. Using survey data for 34 tree species across Europe, 156 
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we fitted and evaluated more than 100’000 SDMs with two performance metrics, and 157 

generated over 800’000 projections of species ranges that we summarized with two metrics 158 

of distributional change. Based on the results of these primary analyses, we addressed the 159 

following questions: 160 

a) Which are the most important factors affecting the performance of model 161 

extrapolations to ‘novel’ (non-analogous) conditions, and projections of species 162 

distributional change?  163 

b) Are the effects of model complexity on model performance and species distributional 164 

change in line with the expectations formulated in Table 1? 165 

  166 
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Methods 167 

Overview 168 

Our analyses consisted of three steps. First, we prepared a comprehensive set of 169 

environmental variable combinations. We established a pool of 24 climate variables for both, 170 

current and future conditions, and a pool of 16 soil/terrain variables which we assumed to 171 

remain constant until 2080. Based on pairwise Pearson correlation coefficients, we defined 172 

100 combinations of numbers of variables and multicollinearity levels, and screened the 173 

realm of possible predictor sets with roughly equal numbers of climatic and soil/terrain 174 

variables for three replicates per combination. Second, we evaluated and projected a large 175 

number of SDM fits (Fig. 2). For each combination of predictor set and species, we fitted 176 

four SDM algorithms at three levels of parameterization complexity and evaluated their 177 

performance. Then, we projected the fitted models to the conditions in 2061-2080 as 178 

projected by four climate models for two emission scenarios and assessed projected species 179 

distributional changes. Third, we investigated how model complexity affects model 180 

performance, projected distributional change, and disagreement between projections of 181 

distributional change. 182 

Data 183 

Species distribution data 184 

Our distribution data originated from the international cooperative program on the 185 

assessment and monitoring of air pollution effects on forests (ICP Forests Level 1). The ICP 186 

Forests surveys forest conditions in Europe on a grid of roughly 16 km horizontal resolution 187 

(Lorenz, 1995). From this program, we used presence/absence data collected in the years 188 

2005-2007 containing observations at 6146 locations in total. We constrained the study area 189 

to the European continent and the British Isles, extending to the eastern boundary of the 190 

European Union, and removed 563 observations, mostly originating from Belarus and remote 191 

islands south of 36°N (Cyprus, Crete, Canaries, see Fig. S2.1 for a map). Furthermore, we 192 

focused on 34 tree species with 50 or more presence observations and distinguished the seven 193 

species with more than 300 observations (or presence in a representative area of at least 194 

76’800 km
2
) as the subgroup ‘common’ species. Species names and observation are listed in 195 

Table S3.2. 196 

Environmental data 197 

All 24 climate and 16 soil/terrain variables described below were projected to the 198 

standard projection for Europe (EPSG 3035), and aggregated to 4 km horizontal resolution. 199 

Climate variables 200 

The climate variables for present and future conditions were taken from the CHELSA 201 

initiative with an original resolution of 30 arc-sec (Karger et al., 2017, http://chelsa-202 

climate.org/, accessed Sep 2018). We included annual mean temperature, isothermality, 203 

temperature seasonality, maximum temperature of the warmest month, minimum temperature 204 

of the coldest month, the annual range of temperature, annual precipitation, and precipitation 205 

http://chelsa-climate.org/
http://chelsa-climate.org/
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seasonality. Furthermore, for each quarter we estimated mean, maximum, and minimum 206 

temperature and precipitation. For future conditions, we considered projections to 2061-2080 207 

from the four available IPCC climate models that scored highest in skill and complementarity 208 

(Sanderson et al., 2015): CESM1-BGC, CMCC-CM, MIROC5, and MPI-ESM-MR, as well 209 

as two emission scenarios, i.e., the representative concentration pathways 45 and 85 (RCP45 210 

and RCP85, IPCC 2013). 211 

Soil/terrain variables 212 

We considered five terrain variables and eleven soil variables. From the European 213 

Environment Agency digital elevation model (EU-DEM, accessed Nov 2017) with 25 m 214 

horizontal resolution, we derived terrain ruggedness (maximum elevation difference in each 215 

4×4 km cell), mean slope, maximum difference of slope in each cell, and aspect. In addition, 216 

we used the topographic index, i.e., the tendency of the soil to become saturated with water as 217 

a result of the topography of the surrounding area, with an original resolution of 15 arc-sec 218 

(Marthews et al., 2015). Soil variables were taken from the European Soil Data Centre 219 

(ESDAC). We used water content at saturation, water content at field capacity, water content 220 

at wilting point, and soil hydraulic conductivity from the maps of indicators of soil hydraulic 221 

properties for Europe with 1 km original horizontal resolution (Tóth et al., 2015 , accessed 222 

Nov 2017). Estimates of topsoil organic carbon were taken from (Jones et al., 2005, accessed 223 

Nov 2017) with 1 km original horizontal resolution. Finally, from the European Soil 224 

Database we used the fractions of gravel, sand, silt, and clay, as well as rooting depth and 225 

bulk density with 1 km original horizontal resolution (Hiederer, 2013, accessed Sep 2018). 226 

Where information was available for topsoil and subsoil, we calculated profile averages 227 

before spatially aggregating by average. In order to have roughly normally distributed 228 

predictors, we log-transformed terrain ruggedness, maximum difference of slope, and soil 229 

organic carbon estimates. 230 

Analyses 231 

Generation of predictor sets 232 

We used two criteria to define ten levels of multicollinearity (Table 2) in order to 233 

cover a range of multicollinearity levels, and to include current best practice 234 

recommendations. We distinguished 10 bins of increasing third quartiles of absolute Pearson 235 

correlation coefficients (|r|). Varying third quartiles of |r| allows for modifying the 236 

multicollinearity structure of the whole predictor set, rather than just constraining its 237 

extremes. Furthermore, we linked these bins to a fixed fraction of pairwise combinations that 238 

have an |r| above 0.7 (Dormann et al. 2013), which facilitates the interpretation of 239 

multicollinearity levels. Then, we screened our variable pool for three replicates of all 240 

possible combinations between three to twelve variables (i.e. 10 sets of differing variable 241 

numbers) and the ten multicollinearity levels (Table 2) under the constraint that climate and 242 

soil/terrain variables had to be represented in similar fractions (Appendix S2). The resulting 243 

300 potential predictor set combinations allow a sound assessment of the major patterns of 244 

model performance and projected distributional change in number of variables × 245 

multicollinearity space.  246 

Species distribution modeling 247 



10 

 

Algorithms 248 

For each combination of species and predictor set we fitted four SDM algorithms with 249 

a simple, an intermediate, and a complex parameterization, each. The algorithms included 250 

two regression techniques, generalized linear models (GLMs, McCullagh & Nelder, 1983) 251 

and generalized additive models (GAMs, Hastie & Tibshirani, 1990), and two tree-based 252 

techniques, random forest (RF, Breiman 2001) and gradient boosting machines (GBM, 253 

Friedman 2001). General settings independent of parameterization complexity included the 254 

following: for the regression techniques we assumed a binomial error distribution, used the 255 

logit link function, and up-weighted presence observations to obtain a balanced prevalence of 256 

0.5. Random forest fits were based on 500 trees, and in GBM we fitted trees with a 257 

complexity of five and a learning rate of 0.005 and also up-weighted presences to obtain a 258 

prevalence of 0.5. SDMs were fitted in the R environment (version 3.5.1) using the packages 259 

‘gam’ (version 1.16), ‘randomForest’ (version 4.6-14), and ‘gbm’ (version 2.1.5) (Liaw & 260 

Wiener, 2002; R Development Core Team, 2008; Greenwell et al., 2018; Hastie, 2018). 261 

Parameterization complexity 262 

Parameterization complexity mainly involved adjusting the flexibility of the response 263 

curves in regression techniques, the terminal node size in random forest, and the number of 264 

trees in GBMs. Simple GLMs were fitted considering intercept and linear terms; for 265 

intermediate GLMs we added second order polynomials; and for complex GLMs we also 266 

included third and fourth order polynomials and first order interactions. For GAMs we set the 267 

degree of freedom in the smooth terms to 1.5, three, and ten for simple, intermediate, and 268 

complex parameterizations, respectively. Simple, intermediate, and complex GBMs were 269 

distinguished by training 100, 300, and 10’000 trees, respectively. In a preliminary analysis 270 

10’000 trees were identified to have a predictive deviance near the minimum for the chosen 271 

learning rate and the data at hand. Finally, complexity of random forests was varied by 272 

setting the minimum number of observations in the terminal nodes to 40, 20 and one in 273 

simple, intermediate, and complex random forests, respectively. 274 

Model performance 275 

We assessed model performance based on two metrics, True Skill Statistic (TSS, 276 

Allouche et al. 2006), and area under the curve (AUC, Swets 1988) These metrics were 277 

derived from model projections to ‘novel’ conditions using block cross-validation (Roberts et 278 

al., 2017, Appendix S2.1). Block cross-validation is a comparably tough test enforcing 279 

projections to conditions that are somewhat more different than our future environmental 280 

conditions were from present conditions, both in terms of the covered ranges and correlation 281 

structure (Appendix S2.2). 282 

Estimating distributional change 283 

We estimated two metrics of distributional change, range loss and range change. 284 

Species range loss is defined as the percentage of currently suitable habitats that are expected 285 

to be lost under future conditions. Species range change is defined as the percentage of 286 

change in the entire range, assuming dispersal to all newly suitable habitats. Both measures 287 

were assessed from binary presence/absence projections that were converted from the 288 

continuous model outputs using the threshold maximizing TSS. For both measures we 289 
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estimated the disagreement, i.e., the variation imposed by replicated predictor sets, with 290 

interquartile ranges. 291 

Meta-analyses on model performance and distributional change 292 

Our meta-analyses on model performance and distributional change consisted of two 293 

parts: (1) We investigated the patterns of model performance, distributional change, and 294 

distributional change disagreement along the gradients of number of variables, 295 

multicollinearity and parameterization complexity. (2) We used ANOVAs to assess the 296 

relative contributions of the steps in projection development to uncertainty in model 297 

performance and projections of distributional change. These analyses were based on the 298 

outputs of the primary analyses plus missing value imputations for number of variables × 299 

multicollinearity combinations for which no predictor sets were available. 300 

Analysis of patterns and missing value imputation 301 

We summarized model performance and distributional change in the number of 302 

variables × multicollinearity space to investigate their patterns and to generate estimates for 303 

missing values. For estimating missing values, we represented the combinations of number of 304 

variables and multicollinearity bins in a 10×10 pixel space separately for each combination of 305 

species, SDM algorithm, and parameterization complexity (plus emission scenario and 306 

climate model in the case of distributional change). Then, we pixel-wise summarized model 307 

performance and projected distributional change estimates from the three replicates by 308 

median and approximated pixels with missing values with bilinear interpolations from 309 

neighboring pixels. To investigate patterns, we combined original data and imputed missing 310 

values, and similarly summarized pixels by median and interquartile range (IQR) but for 311 

pooled estimates from all species. 312 

Analysis of variance 313 

We used ANOVA to quantify the relative contributions of the different sources of 314 

uncertainty in projection ensembles. We ran ANOVAs with model performance metrics (TSS 315 

and AUC) and with distributional change estimates (range loss, range change) as response. 316 

For model performance ANOVAs, we compared the contributions of number of variables, 317 

multicollinearity, parameterization complexity, and SDM algorithm. For distributional 318 

change ANOVAs, we additionally considered the effects of climate models and emission 319 

scenarios. In order to have comparable level numbers for the different factors, we aggregated 320 

number of variables and multicollinearity to two levels: low and high levels of 321 

multicollinearity were distinguished by a third quartile of |r| of 0.5 while the group of low 322 

numbers of variables included 3-7 and the group of high numbers 8-12. This aggregation 323 

resulted in 75 potential predictor sets for each of the four combinations of aggregated nvar and 324 

multicollinearity levels. To account for non-independence resulting from the nestedness of 325 

SDM algorithm and parameterization complexity, we additionally considered their linear 326 

interaction. We accounted for species identity through a random intercept. ANOVAs were 327 

based on Bayesian generalized linear mixed models, fitted with the Integrated Nested Laplace 328 

Approximations (INLA) approach (Rue et al., 2009). Instead of p-values, which are not 329 

helpful for large sample sizes, we used parameter uncertainty in the posterior distributions to 330 

assess how distinct mean sums of squares of the different factors were. We estimated mean 331 

sums of squares 1000 times based on resampled parameter estimates from the posterior 332 
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distributions of the fitted INLA models, and report medians and 95%-confidence intervals. 333 

For response variables bounded by zero and one (AUC, range loss) we assumed errors to 334 

follow a beta distribution, otherwise normal error distribution was assumed.  335 

  336 
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Results 337 

Model performance 338 

Analysis of variance 339 

The number of variables was the most important factor explaining variations in TSS 340 

(Fig. 3). With 0.71, the fraction of total sum of squares (fracSST) was six times higher for 341 

number of variables than for any other factor. Second and third most important factors were 342 

parameterization complexity and SDM algorithm with similar fracSST of 0.13 and 0.12, 343 

respectively. Multicollinearity, on the other hand, was the least important factor 344 

(fracSST<0.01). For TSS of fits for ‘common’ species (>300 presence observations), the 345 

ranking was the same, but parameterization complexity (fracSST=0.19) was distinctly more 346 

important than SDM algorithm (fracSST=0.07, Fig. S5.3). The results of the AUC ANOVA 347 

were very similar to those of the TSS ANOVA (Fig. S5.4) 348 

Analysis of patterns 349 

Overall, TSS measured under environmentally extrapolating block cross-validation 350 

was highest for parameterizations of intermediate complexity, showed a unimodal 351 

relationship with number of variables, and no clear relationship with multicollinearity (Fig. 352 

4). TSS increase was steep for models built with three to five variables, started leveling-off 353 

for models built on >5 variables, and typically peaked at ten or eleven variables (Fig. 4b). Fits 354 

of intermediate and high complexity achieved notably higher TSS than those of low 355 

complexity. Their TSS was similar if no more than five variables were included, otherwise 356 

fits of intermediate parameterization complexity outperformed complex fits (Fig. 4b). 357 

Interquartile range of TSS tended to decrease with parameterization complexity, in particular 358 

for GLMs and GAMs (Fig. S5.5), indicating that under these conditions the type of predictor 359 

variable used had a comparably low impact on performance. TSS of fits of ‘common’ species 360 

was on average slightly lower than overall TSS, but the patterns were generally similar (Fig. 361 

S5.6). However, ‘common’ species fits showed a weak negative relationship with 362 

multicollinearity, and among those fits complex parameterizations achieved highest TSS.  363 

Model performance patterns remained similar when assessed by AUC, and when 364 

relative instead of absolute predictor numbers were considered. As TSS, AUC showed a 365 

unimodal relationship with number of variables with highest scores at ten or eleven variables, 366 

it peaked for parameterizations of intermediate complexity, and showed no clear relationship 367 

with multicollinearity (Fig. S5.7). Relationships with model performance were also mostly 368 

unimodal when the number of variables per presence observation rather than the absolute 369 

number of variables was considered (Fig. S5.8): TSS and AUC were typically highest if one 370 

predictor was used for about 10 presence observations. 371 

Species distributional change 372 

Analysis of variance 373 

Emission scenario was the most important factor explaining variations in projected 374 

range loss, but parameterization complexity was almost as important (Fig. 5). In the range 375 
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loss ANOVA, the proportion of total sum of squares of emission scenario and 376 

parameterization complexity were about one third each (0.34 and 0.32, respectively). Third 377 

most important factor was multicollinearity (fracSST=0.12). The contributions of SDM 378 

algorithm, climate model and the interaction between parameterization complexity and SDM 379 

algorithm similarly were relatively less important (fracSST between 0.06 and 0.08), and 380 

number of variables made no notable contribution. Range loss projections of ‘common’-381 

species models, on the other hand, were mainly affected by emission scenario (fracSST=0.49), 382 

and parameterization complexity was comparably less important: with a fracSST of 0.10, it 383 

contributed less than multicollinearity (fracSST=0.11, Fig. S6.9). In contrast, variations in 384 

projections of range change were largely driven by SDM algorithm (fracSST=0.75, Fig. 385 

S6.10). 386 

Analysis of patterns 387 

Higher fractions of ranges were projected to be lost by fits with more complex 388 

parameterizations and predictor sets with elevated levels of multicollinearity (Fig. 6). On 389 

average parameterizations of intermediate complexity projected a median range loss that was 390 

16% higher than that of parameterizations of low complexity; fits with parameterizations of 391 

high complexity projected another 5% increase (Figs. 6b,c). These differences were driven by 392 

projections of GLMs and GAMs which were particularly affected by parameterization 393 

complexity (Fig. S6.11). Median projected range loss also increased by 10% for predictor sets 394 

with a third quartile of |r| larger than 0.5 (Fig. 6b). For ‘common’ species, range loss 395 

projections were on average slightly higher, with similar but weaker patterns (Figs. S6.12, 396 

S6.13). As for range loss, patterns of range change responded to parameterization complexity, 397 

with models fitted with parameterizations of low complexity projecting net range gains, and 398 

those fitted with other complexity levels projecting net range losses (Figs. S6.14, S6.15). 399 

However, SDM algorithms caused even larger differences in projected range change: random 400 

forest projections estimated notable net range gains (33% on average), whereas all other 401 

algorithms overall projected little change or net range losses (3%, -5% and -8% on average 402 

for GLM, GAM and GBM, respectively). Responses of projected distributional change were 403 

much more pronounced when relative rather than absolute numbers of variables were 404 

considered (Figs. S6.16). Range loss showed a concave relationship with number of variables 405 

per presence observation with minima at between 10 to 25 presences per variable; range 406 

change projections, in contrast, peaked at these numbers.  407 

The interquartile range of range loss projections varied considerably for different 408 

combinations of SDM algorithm and parameterization complexity, and showed a weakly 409 

positive relationship with both number of variables and multicollinearity (Fig. 6). The IQR of 410 

range loss projections was higher for GLMs and GAMs than for GBMs and random forest 411 

(Figs. 6, S6.11). Relationships with multicollinearity and number of variables were both 412 

increasing but rather weak, while range loss IQR was slightly higher for parameterizations of 413 

intermediate complexity than for those of high or low complexity. Patterns were similar 414 

among ‘common’-species models, although among them simple fits were associated with 415 

highest range loss IQR (Figs. S6.12, S6.13). IQR of projected range change also tended to 416 

increase with number of variables and multicollinearity, and decreased with parameterization 417 

complexity (Figs. S6.14, S6.15). Range change IQR was furthermore especially high for 418 

random forest projections.  419 
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Discussion 420 

The findings of our analyses suggest that varying model complexity is crucial in the 421 

development of SDM projections, to optimize model performance and to capture uncertainty 422 

in range loss projections. All assessed model performance metrics responded by far most 423 

strongly to the number of variables considered, typically showing a unimodal relationship 424 

with optimal performance at ten to eleven variables (although performance declines at high 425 

numbers of variables were modest). Furthermore, parameterization complexity contributed 426 

nearly one third to uncertainty in range loss projections, almost as much as that from the 427 

contrasting scenarios of future emissions. Multicollinearity was also important in this context: 428 

predictor sets with a third quartile of |r| above 0.5 were associated with 10% higher range loss 429 

projections.  430 

Parameterization complexity has varying implications on model performance, and 431 

increases range loss but not range change projections. As expected, we found 432 

parameterizations of intermediate complexity to yield highest TSS and AUC. These findings 433 

are in agreement with reported loss in extrapolation performance (i.e. transferability) of 434 

models fitted from comparably complex parameterizations (e.g.,Chala et al. 2016, Gregr et al. 435 

2018) and of comparably complex SDM algorithms (e.g., Randin et al. 2006). Interestingly, 436 

this relationship was not consistent across all assessments: TSS of complex parameterizations 437 

was highest when considering ‘common’ species (>300 presence observations). Fits with 438 

complex shapes may be more appropriate for prevalent species when rich and well-designed 439 

data are available, as was the case in this study. Furthermore, in line with our expectations 440 

fits with more complex parameterizations projected higher levels of species range loss. 441 

Tighter niche fits indeed appear to increase expected loss of suitable habitat (Warren et al., 442 

2014), although ‘common’ species seem relatively robust to this artifact (Fig. S6.9). For real-443 

world applications we would have excluded model fits with simple parameterizations from 444 

the projection ensemble as they performed clearly worst. But the performance of model fits 445 

of intermediate and high complexity was similar and thus both of these complexity levels 446 

contribute relevant information and should be considered. 447 

A minimum number of variables is necessary to allow for well-performing models, 448 

but at a certain point adding variables no longer improves and even starts deteriorating model 449 

performance, and it increases the disagreement among projections of distributional change. 450 

Performance of model extrapolations typically was highest for models trained on ten or 451 

eleven predictors. This relationship corresponds to the expected unimodal shape, and it is 452 

similar to findings of SDM transfers in space, which, however, often showed performance 453 

maxima for less than five predictors (Duque-Lazo et al., 2016; Petitpierre et al., 2017). 454 

Likely, these lower maxima are the consequence of greater changes of environmental 455 

conditions in spatial transfers as compared to projections under climate change, in particular 456 

when some predictors, such as soil variables, are assumed to remain constant over the time 457 

scales considered (Appendix S2.2). Furthermore, the optimal number of variables is dataset-458 

specific. For sampling designs similar to the one we worked with, one predictor per ten 459 

presence observations may be ideal (Harrell et al., 1998). However, for less well-designed 460 

survey data such as presence-only data, finer grains or steeper environmental gradients, more 461 

presence observations per predictor may be necessary. For very large datasets the ratios may 462 

be even lower, as information contained in predictor variables tends to get increasingly 463 
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redundant when more predictors are added, in particular if only climate variables are 464 

considered. 465 

Multicollinearity has surprisingly little effect on model performance, but can lead to a 466 

distinct increase in range loss projections. This lack of clear negative effects on the 467 

performance of model extrapolations is different from our expectation (Table 1) and 468 

somewhat surprising, but it corresponds with results from previous studies (e.g., Petitpierre et 469 

al. 2017, Wauchope et al. 2017). Multicollinearity inflates the variance of regression 470 

parameters and potentially leads to the misidentification of relevant predictors (Dormann et 471 

al. 2013). But its impact on model performance appears to be modest even for well-sampled, 472 

prevalent species, which was the most susceptible group in this study (Fig. S5.6). Perhaps, 473 

the multicollinearity gradient within typical environmental predictors is too narrow to cause 474 

substantial errors in model projections. Nevertheless, the impact of multicollinearity is large 475 

enough to markedly affect range loss estimates. Across all species, range loss projections 476 

increased steeply for predictor sets with a third quartile of |r| larger than 0.5, i.e., predictor 477 

sets including variable pairs with absolute Pearson correlation coefficients above the 478 

commonly used threshold of 0.7 (Dormann et al. 2013). The different levels of 479 

multicollinearity tested were not hypotheses of equivalent relevance but represent 480 

increasingly severe violations of a central model assumption: independence among 481 

predictors. Although differences in model performance are low, the increased range loss for 482 

predictor sets with maximum |r|>0.7 therefore indicates that multicollinearity starts having 483 

notable consequences on projections above this threshold which should be avoided. 484 

The architecture of SDM algorithms may be more important than parameterization 485 

complexity when it comes to model extrapolations to novel conditions. In our analyses, 486 

emission scenarios contributed most to uncertainty in projections of species range loss while 487 

SDM algorithms dominated uncertainty in range change projections. SDM algorithms have 488 

also been found to be the major drivers of uncertainty in range change projections of 489 

mammals, birds, amphibians and freshwater fish (Buisson et al., 2010; Garcia et al., 2012; 490 

Thuiller et al., 2019), while emission scenarios have been shown to contribute most to 491 

uncertainty in range loss projections (Thuiller et al., 2019). Thuiller et al. (2019) argue that 492 

these differences may arise from the different extrapolation behaviors of SDM algorithms, 493 

which is particularly relevant in newly suitable habitats which are considered in range change 494 

but not in range loss projections. Random forest models appear to particularly promote this 495 

uncertainty by projecting range change estimates that strongly deviate from those by other 496 

algorithms (Figs S6.14-S6.16, Beaumont et al., 2016). Our results indicate that differences in 497 

extrapolation behavior may be mainly determined by the SDM algorithm and less by the 498 

selected parameterization complexity. With the increasing availability of long-term 499 

observational and environmental data it may become possible to constrain the group of SDM 500 

algorithms with relevant extrapolation behavior based on empirical evidence, leaving 501 

decisions on model complexity also among the key factors affecting range change 502 

projections. 503 

Based on our results and the considerations discussed above, we formulate three 504 

recommendations for including model complexity in ensemble simulations of climate change 505 

impact on biodiversity using SDMs: 506 

1. SDM algorithms and parameterization complexity: SDM algorithms as well as 507 

parameterization complexity have important consequences on projected 508 
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distributional change and thus both factors should be varied in ensembles. 509 

Appropriate levels of parameterization complexity depend on the dataset at hand, 510 

and can be constrained based on model performance. We suggest to run SDM 511 

algorithms at least at two levels of parameterization complexity. Under 512 

computational constraints, this may go at the cost of using many SDM algorithms. 513 

2. Predictor numbers in ensembles: The number of predictors strongly impacts 514 

model performance and can affect disagreement among range loss projections. 515 

Our results suggest that optimal performance may be achieved with around ten 516 

predictors, or one predictor per ten presences, if well-designed survey data and 517 

diverse predictors are available. For studies using presence-only data and/or 518 

exclusively climate predictors, this number may well be lower. The strong 519 

dependence of model performance on number of variables makes it straight-520 

forward to optimize this factor for the dataset at hand using block cross-validation. 521 

3. Multicollinearity: In this study, multicollinearity did not strongly affect the 522 

performance of model extrapolations, but it distinctly increased projected range 523 

loss and the disagreement among range change projections. We recommend 524 

keeping absolute Pearson correlation coefficients below 0.7, a boundary 525 

recommended elsewhere (Dormann et al. 2013), and one above which 526 

consequences in projections became clearly visible. 527 

  528 
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Tables 529 

Table 1: Expected and found relationships of model performance and projected species distributional 530 
change with parameterization (para.) complexity, number of variables (nvar), and multicollinearity. Distributional 531 
change represents expectations for both species range loss (RL) and species range change (RC, see methods). 532 
Distributional change disagreement refers variation from replicated predictor sets. Grey indicates weak 533 
relationships. 534 

 
Factor 

Expec-

tation 
Reason 

Find-

ing 

M
o

d
el

 p
er

fo
rm

a
n

ce
 

Para. 

complexity ◠ 

Models with too simple parameterizations are not flexible enough to capture 

the detailed species response to the environment whereas models with too 

complex parameterizations ascribe signal to noise, deteriorating the skill of 

model extrapolations. We expect optimal model performance at intermediate 

parameterization complexity. 

◠ 

nvar ◠ 

Too few predictors yield insufficiently informed occurrence-environment 

relationships. Adding predictors remediates this deficit but also adds noise to 

the data and thus increases the risk of ascribing signal to noise. We expect 

model performance to peak at moderate numbers of variables and to decline if 

predictor numbers become too high. 

◠ 

Muliticol-

linearity 
╲ 

Multicollinearity inflates the variance of regression parameters and 

potentially leads to the misidentification of relevant predictors (Dormann et 

al. 2013). We expect the performance of model extrapolations to decrease 

with increasing multicollinearity. 

― 

D
is

tr
ib

u
ti

o
n

a
l 

ch
a

n
g

e 

Para. 

complexity 
╱ 

We expect models with more complex parameterizations to fit a tighter niche 

shape around conditions of occurrence than models with simpler 

parameterizations, due to their increased flexibility (Warren et al., 2014). 

From these tighter fits we expect greater changes in projected distributions. 

RL ╱ 

RC ― 

nvar ╱ 

Adding predictor variables provides additional criteria to constrain fits of 

ecological niches, and thus, by tendency, more constrained niche fits. From 

these more constrained fits we expect greater changes in projected 

distributions. 

RL ― 

RC ― 

Muliticol-

linearity 
╱ 

Model fits are optimized conditional to the linear associations between 

predictors (multicollinearity). Such associations are likely to be different in 

training and projection data. Model fits trained on data with high levels of 

multicollinearity therefore respond to both changing future conditions and 

changing future associations and thus we expect them to show greater 

changes in projected distributions. 

RL ╱ 

RC ― 

D
is

tr
ib

u
ti

o
n

a
l 

ch
a
n

g
e 

d
is

a
g
re

em
en

t 

Para. 

complexity 
╱ 

The more complex parameterizations are, the more likely they ascribe signal 

to noise. Consequently, we expect higher disagreement between projections 

to different (replicated) predictor sets of same size when modeled with more 

complex parameterizations. 

RL ◠ 

RC ╲ 

nvar ╱ 

The more predictor variables are supplied to an algorithm, the more 

possibilities exist to constrain a niche. Consequently, we expect higher 

disagreement between projections to different (replicated) predictor sets of 

same size when modeled with more predictors. 

RL ╱ 

RC ╱ 

Muliticol-

linearity 
╱ 

Changing linear associations between predictors represents an additional 

source of uncertainty in future projections. Consequently, we expect higher 

disagreement between projections to different (replicated) predictor sets of 

same size when modeled with increasing levels of multicollinearity. 

RL ╱ 

RC ╱ 

  535 
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Table 2: Definition of correlation bins used in this study 536 

3rd quartile of 

|r| 
Fraction of |r| > 0.7 

Common 

interpretation 

[0-0.1) 0 OK 

[0.1-0.2) 0 OK 

[0.2-0.3) 0 OK 

[0.3-0.4) 0 OK 

[0.4-0.5) 0 OK 

[0.5-0.6) 0-0.33 Critical 

[0.6-0.7) 0-0.33 Critical 

[0.7-0.8) >0.33 Bad 

[0.8-0.9) >0.33 Bad 

[0.9-1] >0.33 Bad 

|r|: vector of absolute pairwise Pearson correlation coefficients; ‘common interpretation’ refers to the frequent 537 
employment of |r| ≤ 0.7 as an upper boundary for multicollinearity (see Fig. 1). 538 

 539 

  540 
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Figures 541 

 542 

Figure 1: Replications and decisions for different steps in projection development in 125 recent studies 543 
using SDMs to project future distributional changes. Number of replicates for key steps in the development of 544 
SDM projections are shown in panel (a). Central lines represent medians, boxes represent interquartile ranges, 545 
and whiskers indicate 95% confidence intervals For the labels nvar represents number of variables; ‘Para. 546 
Complexity’refers to parameterization complexity; and ‘initial conditions’ include resampling of presence 547 
observations and pseudo-absences. In panel (b) a histogram of the number of variables used in SDMs for 548 
projecting are shown. Panel (c) illustrates the most common criteria used to limit multicollinearity in predictor 549 
sets. |r| represents the Pearson correlation coefficient, PCA stands for principal component analysis, and VIF 550 
abbreviates variance inflation factor; ‘not explicit’ summarizes studies which indicate that they reduced 551 
multicollinearity without explicitly stating the criteria that were employed. See Appendix S1 for details. 552 
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 553 

Figure 2: Set-up of primary analyses. Above the grey, dashed line are factors (steps in projection 554 
development), whose effects on model performance were evaluated; below the line are additional factors 555 
included for investigating drivers of range change. “nvar” are numbers of variables. 556 

  557 
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 558 

Figure 3: Effects of SDM modelling decisions on TSS as assessed by ANOVA. Bars represent fractions 559 
of total sums of squares between levels (fracSST); error bars indicate 95% confidence intervals. Steps affecting 560 
model complexity are highlighted in dark red. The light red bar labeled ‘Para. C.:Algo.’ represents the 561 
interaction between parameterization complexity and SDM algorithm. 562 

  563 
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 564 

Figure 4: TSS patterns along gradients of number of variables, multicollinearity and parameterization 565 
complexity. Panel (a) represents TSS of model fits in the number of variables × multicollinearity space. Rows 566 
separate SDM algorithms; columns distinguish levels of parameterization complexity. Dark red lines illustrate 567 
correlation thresholds as defined in Table 2; hashed areas represent level combinations for which no predictor 568 
sets were available. In panels (b) and (c), TSS scores are summarized along multicollinearity  (b) and number of 569 
variables (c) gradients. Relationships for models with low, intermediate, and high parameterization complexity 570 
are shown in green, blue, and purple, respectively. Lines represent medians; polygons represent interquartile 571 
ranges. 572 

  573 
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 574 

Figure 5: Effects of SDM modelling decisions on range loss as assessed by ANOVA. Bars represent 575 
fractions of total sums of squares between levels (fracSST); error bars indicate 95% confidence intervals. Steps 576 
affecting model complexity are highlighted in dark red. The light red bar labeled ‘Para. C.:Algo.’ represents the 577 
interaction between parameterization complexity and SDM algorithm. 578 

  579 



25 

 

 580 

Figure 6: Range loss patterns along gradients of number of variables and multicollinearity. Panel (a) 581 
represents percent range loss of SDMs with parameterizations of intermediate complexity in the number of 582 
variables × multicollinearity space. Rows separate SDM algorithms; the left column represents the median range 583 
loss, the right column represents the range loss interquartile range. Dark red lines illustrate correlation 584 
thresholds as defined in Table 2; hashed areas represent level combinations for which no predictor sets were 585 
available. Panels (b-e) illustrate median range loss and its interquartile range along gradients of multicollinearity 586 
(b,d) and number of variables (c,e) for models fitted with parameterizations of low (green), intermediate (blue), 587 
and high (purple) complexity . Lines represent medians; polygons represent interquartile ranges. Range loss 588 
patterns in the number of variables × multicollinearity space for parameterizations of low and high complexity 589 
are shown in Fig. S6.12. 590 

  591 
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Data availability 592 

The data compiled for the literature analysis is available in Appendix S7. The 593 

environmental data used in the main analysis are publicly available with access information 594 

provided in the ‘Data’ subsection of the Methods. Observational data from ICP Forests can 595 

be directly requested online (http://icp-forests.net/page/data-requests, accessed Sep 2019).  596 

  597 
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