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Abstract 21 

Managing forests for ecosystem services and biodiversity requires accurate and spatially 22 

explicit forest inventory data. A major objective of forest management inventories is to 23 

estimate the standing timber volume for certain forest areas. In order to improve the 24 

efficiency of an inventory, field based sample-plots can be statistically combined with 25 

remote sensing data. Such models usually incorporate auxiliary variables derived from 26 

canopy height models. The inclusion of forest type variables, which quantify broadleaf and 27 

conifer volume proportions, has been shown to further improve model performance. 28 

Currently, the most common way of quantifying broadleaf and conifer forest types is by 29 

calculating the proportions of the corresponding areas of the canopy cover. This practice 30 

works well for single-layer forests with only a few species, but we hypothesized that this is 31 

not best practice for heterogeneously structured and mixed forests, where the area 32 

proportion does not accurately reflect the timber volume proportion. To better represent 33 

the broadleaf and conifer volume proportions, we introduced two new auxiliary variables in 34 

which the area proportion is weighted by height information from a canopy height model. 35 

The main objectives of this study were: (1) to demonstrate the advantage of including forest 36 

type (broadleaf/conifer distinction) information in ordinary least squares regression models 37 

for timber volume prediction using widely available data sources, and (2) to investigate the 38 

hypothesis that including the broadleaf and conifer proportions, weighted by canopy height 39 

information, as additional auxiliary variables is favourable over including simple area 40 

proportions. The study was conducted in three areas in Switzerland, all of which have 41 

heterogeneously structured and mixed forests. Our main findings were that the best model 42 

performance can generally be achieved: (1) by deriving conifer and broadleaf proportions 43 

from a high-resolution broadleaf/conifer map derived from leaf-off airborne laser scanning 44 
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data, and (2) by using broadleaf/conifer proportions weighted by height information from a 45 

canopy height model. Incorporating the so-derived conifer and broadleaf proportions 46 

increased the model accuracy by up to 9 percentage points in root mean square error 47 

(RMSE) compared with models not using any forest type information, and by up to 2 48 

percentage points in RMSE compared with models using conifer and broadleaf proportions 49 

based solely on the corresponding area proportions, as done in current practice. Our findings 50 

are particularly relevant for mixed and heterogeneously structured forests, such as those 51 

managed to achieve multiple functions or to adapt effectively to climate change. 52 

 53 

Keywords: airborne laser scanning, best fit models, canopy height model, forest type map, 54 

high-precision forest inventory, image-based point clouds, mixed and heterogeneously 55 

structured forest, ordinary least squares regression models, merchantable timber volume 56 

  57 
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1 Introduction 58 

Forest ecosystems provide multiple benefits for humans and are particularly important for 59 

the conservation of biodiversity (Bäck et al., 2017; MEA, 2005). These manifold contributions 60 

of forests make their management a complex and challenging task requiring accurate and 61 

spatially explicit information. The aim of forest inventories in general is to obtain reliable 62 

information on the condition and development of the forest (Barrett et al., 2016). As the 63 

census of an entire forest area is usually impossible, because of the high costs involved, 64 

sampling concepts are used in practice. With these methods, the local hectare density of 65 

timber volume, basal area and many other forest attributes are derived from measurements 66 

of the trees in randomly or systematically distributed sample-plots in the forest area. This 67 

data is then used to estimate mean values and totals for the entire forest area, for example 68 

the mean or the total timber stock. 69 

More accurate information on an entire forested area or a small area (e.g. parts of a forest 70 

enterprise) can be obtained by complementing field based inventories with remote sensing 71 

data. Furthermore, this can be a cost-effective alternative to increasing the number of field 72 

based sample units. The principle of such two-phase inventories is to use statistical models 73 

to predict response variables, such as basal area or timber volume, for the population units 74 

where no field data is available. Many studies have already demonstrated the potential of 75 

these methods (e.g. Hill et al., 2018; Magnussen et al., 2014; Mandallaz et al., 2013; Næsset, 76 

2004, 2002; Steinmann et al., 2013). Usually, such statistical models are based on auxiliary 77 

variables derived from a canopy height model (CHM) (Xu et al., 2019). Other sources of 78 

information, such as tree species or forest type (we use the term ‘forest type’ for the 79 

distinction between either conifer and broadleaf trees or evergreen and deciduous trees, 80 
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see section 2.2) have been added in a few case studies to improve the performance of the 81 

models (Gabriel et al., 2018; Hill et al., 2018). 82 

For Switzerland, a freely available national forest type map (FTM) based on optical remote 83 

sensing data (Waser et al., 2017) exists in the framework of the Swiss National Forest 84 

Inventory (NFI). FTMs can also be derived using multi-temporal (i.e. leaf-on, leaf-off) laser 85 

scanning data. Such an approach entails collecting two Light Detecting and Ranging (LiDAR) 86 

datasets at the same site under leaf-off and leaf-on conditions (Liang et al., 2007). 87 

Alternatively, forest types can be derived based on return intensity and ranking distributions 88 

of laser scans from a single point in time, preferably under leaf-off conditions for the 89 

conifer/broadleaf differentiation (Liang et al., 2007; Ørka et al., 2009; Parkan, 2018). 90 

However, deciduous conifers (i.e. conifers which defoliate in autumn, such as larch) cannot 91 

be identified as conifers with any of these three approaches (Fassnacht et al., 2016). 92 

FTM information has been used in many studies to improve standing timber volume 93 

estimations. For example, Breidenbach et al. (2008) used a continuous variable ‘conifer 94 

proportion’ and its interaction term with the average canopy height to include FTM 95 

information derived from leaf-off LiDAR data. Latifi et al. (2012) formed a FTM based on 96 

colour infrared (CIR) orthoimages and included the forest type as a categorical variable in 97 

their model. The forest type of the sample-plots was assigned to either broadleaf or conifer 98 

if the proportion of the pixels of one particular type exceeded 70%, and it was assigned to 99 

the mixed category in all other cases. Straub et al. (2009) used CIR orthoimages to create a 100 

FTM. They derived the conifer and broadleaf proportions from the percentages of the 101 

corresponding pixels in each sample-plot, and this information was then included in the 102 

model to estimate the stem volume of forest stands. Hill et al. (2018) included information 103 

on five tree species as a categorical variable to improve timber volume predictions. Finally, in 104 
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Nordic countries such as in Finland, including tree species information as auxiliary data to 105 

predict timber volume is quite common, as described by Kukkonen et al.( 2019, 2018), 106 

Packalén and Maltamo (2006) and Räty et al. (2016). 107 

All of the approaches mentioned above have led to a significant improvement in the 108 

accuracy of standing timber volume predictions by including forest type or tree species 109 

information in the models. However, in all these studies forest type proportion information 110 

was derived based on the area covered by the canopy of the corresponding forest type. This 111 

current practice works well for even-aged and single-layer forests. However, we hypothesize 112 

that this approach is not best practice for heterogeneously structured and mixed forests, in 113 

which different age classes and tree species can occur across a small surface (e.g. within a 114 

sample-plot). In such forests the area proportion does not adequately reflect the timber 115 

volume proportion. There are two possible reasons for this discrepancy. First, the mean tree 116 

size might differ depending on the canopy height. To illustrate this possibility we consider a 117 

sample-plot on which conifer and broadleaf trees cover about the same amount of area and 118 

where the conifers are all mature whereas the broadleaf trees are much younger. In this 119 

case the volume on the half of the sample-plot with the young broadleaf trees is clearly 120 

smaller than that on the half with the mature coniferous trees. This point has been 121 

confirmed in studies about allometric relationships, such as the work by Reineke, (1933) in 122 

establishing the self-thinning rule. In this case, using the area proportion of conifers leads to 123 

an underestimation of the proportion of conifer timber volume. Second, stand density (the 124 

number of stems in a certain area) also differs for the different species. This point was 125 

shown by Pretzsch and Biber (2005) and by Rivoire and Le Moguedec (2012), who 126 

generalized the self-thinning relationship of Reineke (1933) for multi-species and mixed-size 127 

forests. 128 
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To better represent the volume proportion of different forest types, in this study we 129 

introduced two new forest type variables (FTVs), referred to as ‘weighted-canopy-height 130 

proportions’, in which the area proportions are weighted by height information from a 131 

canopy height model. We hypothesized that the ‘weighted-canopy-height-proportion’ FTVs 132 

are favourable over simple area proportion FTVs in mixed and heterogeneously structured 133 

forests. 134 

The overall objectives of the present study were: (1) to determine the advantage of including 135 

forest type information in regression models for timber volume prediction using existing and 136 

forthcoming data sources, and (2) to investigate the hypothesis that the ‘weighted-canopy-137 

height proportion’ FTVs are favourable over simple area proportion FTVs. Both aims are of 138 

high practical interest because the underlying data sources used to derive the FTVs, such as 139 

the national broadleaf/conifer map or the national leaf-off airborne laser scanning (ALS) 140 

data, are widely available and can be integrated with a small effort into current inventories. 141 

However, neither of these sources have been used operationally for inventory purposes. This 142 

work was embedded in the implementation of design-based regression estimators 143 

(Mandallaz, 2013) for predicting standing timber volume. As these design-based regression 144 

estimators rely on ordinary least squares (OLS) regression, we used OLS regression models in 145 

our study. 146 

We addressed the following specific research questions: 147 

(1) Is there a gain in model performance when the new ‘weighted-canopy-height proportion’ 148 

FTVs are incorporated into OLS regression models for predicting timber volume, compared 149 

with models including the simple area proportion FTVs and models with no forest type 150 

explanatory variables? 151 



Page 8 
 

(2) Is there a common best practice for integrating FTM information, such as the spatial 152 

resolution considered, that is independent of the individual LiDAR and FTM characteristics? 153 

2 Materials and Methods 154 

2.1 Study areas 155 

We studied the effect of incorporating different FTV alternatives in three independent study 156 

areas in Switzerland: Bremgarten (Brg), Glâne-Farzin (GF) and Sarine (SA) (Figure 1). All three 157 

study areas are heterogeneously structured and mixed temperate forests of conifer and 158 

broadleaf species, but they have different properties in terms of age-class structure. 159 

2.1.1 Bremgarten (Brg) 160 

In Brg, the latest forest inventory data from 2011/2012 was used as input. This data is based 161 

on permanent sample-plots on an 80 m x 150 m grid, as described by Schmid-Haas (2003). 162 

The location of the sample-plots is shown in Figure 1. A total of 363 sample-plots were 163 

measured, with an average timber volume of 274 m3 ha-1, 55% of which is conifer wood 164 

(Table 1). The distribution of the timber volumes of the sample-plots indicates that stands 165 

with large timber volumes are under-represented compared with a normal age-class 166 

structure (Salo and Tahvonen, 2002) (Figure 2). This unbalanced age-class structure of the 167 

forest was caused by the storm Lothar in December 1999, which primarily damaged mature 168 

stands. Figure 3 shows that sample-plots with a large timber volume are dominated by the 169 

conifer volume, whereas sample-plots with a small volume are dominated by the broadleaf 170 

volume. LiDAR data was acquired in November 2011, providing excellent temporal 171 

synchronization between the field based and the remote sensing data. The density of the 172 

LiDAR raw data is at least 8 points m-2 and is comparable with values in the other study areas 173 

(Table 1).  174 
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 175 

Figure 1: Investigated case study areas in Switzerland and the distribution of the permanent sample-plots 176 
(coordinate system: EPSG 21781, CH 1903 / LV 03 ). 177 

 178 
Figure 2: Local densities of the measured timber volume distributions on the field based sample-plots for 179 
Bremgarten (Brg), Glâne-Farzin (GF) and Sarine (SA). The scales for both axes differ among panels. 180 

  181 
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 182 

 Bremgarten (Brg) Glâne-Farzin (GF) Sarine (SA) 
Number of field based 
sample-plots 

363 137 202 

Number of sample-
plots after cleaning (see 
section 2.6) 

341 131 194 

Number of sample-
plots after cleaning and 
removing sample-plots 
containing larch 

304 125 184 

Theoretical grid size of 
sample-plots 

80 m x 150 m 400 m x 400 m 400 m x 400 m 

Exact measurement of 
the sample-plot centres 

Yes, DGPS 
measurement with 
precision of 1 m 
available 

No, only theoretical position known 

Recording method 400 m2 circle, min DBH 
threshold for recording: 
12 cm 
(Schmid-Haas et al., 
1993) 

3 concentric circles: 
[I] 200 m2 circle with DBH threshold of 12 cm 
[II] 300 m2 circle with DBH threshold of 16 cm 
[III] 500 m2 circle with DBH threshold of 36 cm 
(Keller, 2013) 

Date of measurements 
on the sample-plots  

Autumn – Winter 
2011/2012 

Autumn 2016 Autumn 2017 

Date of the LiDAR flight 9.11.2011 07.10.2016 until 12.02.2017, mostly leaf-off 
condition but leaf-on also partially available 

Point density of the 
LiDAR raw data 

≥ 8 points m-2 ≥ 5 points m-2 ≥ 5 points m-2 

GPS receiver and 
precision 

DGPS receiver, 1 m 
precision 

SXBlue II+ GNSS, 2.5 m 
horizontal precision 

SXBlue II+ GNSS, 2.5 m 
horizontal precision 

Table 1: Properties of the study areas Bremgarten, Glâne-Farzin and Sarine (DBH = diameter at breast height, 183 
1.3 m above the ground). 184 

2.1.2 Glâne-Farzin (GF) 185 

In GF, the inventory data from 2016 was used as input, which is based on 137 permanent 186 

sample-plots on a 400 m x 400 m grid (Figure 1). With a horizontal accuracy of 2.5 m, the 187 

sample-plot centres are less accurate than in Brg, as georeferencing with a differential GPS 188 

(DGPS) was not available. However, this precision was provided by the manufacturer of the 189 

GPS receiver, which might be too optimistic under a forest cover (Lamprecht et al., 2017). 190 

Even with DGPS an accuracy of 2.5 m is not feasible (Lamprecht et al., 2017). Further 191 

characteristics and properties of the study area are listed in Table 1. Compared with Brg, the 192 

forests in GF are more homogeneous and mainly dominated by conifers. The mean timber 193 

volume is 534 m3 ha-1, 70% of which is conifer wood. Sample-plots with a large timber 194 
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volume are overrepresented compared with a normal age-class structure (Figure 2), and, 195 

according to the volume ratio, conifers dominate these sample-plots (Figure 3). The LiDAR 196 

flight was carried out between November 2016 and February 2017, and it again provided 197 

excellent temporal synchronization between terrestrial and remote sensing data. In the 198 

majority of cases, data was collected under leaf-off conditions. The density of the LiDAR raw 199 

data is at least 5 points m-2. 200 

2.1.3 Sarine (SA) 201 

The inventory in SA consists of 202 sample-plots and was last conducted in 2017. SA is, like 202 

GF, located in the canton of Freiburg and thus has the same inventory design (Table 1). The 203 

average timber volume of the sample-plots is 335 m3 ha-1, 55% of which is conifer wood. 204 

Inventory sample-plots indicate that stands with a small timber volume are slightly 205 

overrepresented compared with a normal forest age-class structure (Figure 2). Overall, 206 

however, forests in this study area are well balanced in terms of age-class structure. 207 

Compared with GF, where most sample-plots are conifer dominated, most sample-plots in 208 

SA are mixtures of conifer and broadleaf trees (Figure 3). The LiDAR data originates from the 209 

same flight as used for GF and has the same characteristics. 210 
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 211 

Figure 3: Proportion of conifer timber volume on the terrestrial sample-plots in Bremgarten (Brg), Glâne-212 
Farzin (GF) and Sarine (SA) for different timber volume densities (< 250, 250–500, 500–750 and > 750 m3 ha-213 
1). The scale on the y-axis differs among panels. 214 



Page 13 
 

2.2 Forest type maps (FTM) 215 

We used five types of FTMs. Table 2 gives an overview of them and Figure 4 shows the 216 

information they contain and their resolution for a detail in the study area Brg. As some 217 

FTMs distinguish between trees that are foliated throughout the year and trees that are only 218 

foliated during the vegetation period (evergreen/deciduous) whereas others distinguish 219 

between conifers and broadleaf trees, Table 2 additionally indicates the forest type 220 

differentiation of each map. This differentiation is particularly relevant if larch (Larix decidua, 221 

a deciduous conifer) is present. However, to have a proper experimental design that 222 

differentiates between broadleaf and conifer trees for all FTMs, sample-plots that include 223 

larch were removed, as explained in detail in section 2.6. 224 

Description Resolution [m] Acquisition of raw data [year] Forest type distinction 

Orthoimage (OI) 2 m x 2 m 2014 (only Brg available) evergreen / deciduous 

Swiss NFI Orthoimage 
(NFI) 

3 m x 3 m 2010–2016 conifer / broadleaf  

Sentinel NFI (Sen) 10 m x 10 m 2016–2017 conifer / broadleaf 

Copernicus Dominant 
Leaf Type (DLT) 

20 m x 20 m 2012 (Brg) / 2015 (GF, SA) conifer / broadleaf 

LiDAR (based on return 
intensity leaf-off) (LI) 

0.5 m x 0.5 m 2014 (Brg) / 2016 (GF, SA) evergreen / deciduous 

Table 2: Overview of the forest type maps (FTMs) used in the study. Brg = Bremgarten, GF = Glâne-Farzin (GF) 225 
and SA = Sarine. 226 

2.2.1 Orthoimage (OI) 227 

The FTM orthoimage (OI) is based on leaf-off (winter 2014) and leaf-on (summer 2014) 228 

digital aerial stereo imagery (Table 2). A digital surface model was calculated using the 229 

stereo-images from summer 2014. It was normalized with the digital terrain model 230 

‘swissAlti3D’ to derive a canopy height model (CHM). This CHM was used to orthorectify the 231 

image datasets from both winter and summer 2014. For both orthoimages the normalized 232 

difference vegetation index (NDVI) was calculated. Thus, a winter dataset that represents 233 

evergreen vegetation taller than 3 m and a summer dataset that represents both evergreen 234 
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and broadleaf vegetation taller than 3 m were produced. The two datasets were combined 235 

to retrieve the FTM. Therefore, this FTM distinguishes between evergreen and deciduous 236 

trees (Figure 4a). 237 
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 238 
Figure 4: (a) – (e) Forest type maps (FTMs) and (f) canopy height model (CHM) for a sub-area around eight 239 
field based inventory sample-plots in the study area Bremgarten (coordinate system: EPSG 21781, CH 1903 / 240 
LV 03) (Li = LiDAR, Sen = Sentinel NFI, NFI = Swiss NFI Orthoimage, OI = Orthoimage, DLT = Copernicus 241 
Dominant Leaf Type). For (a) and (e) the FTM differentiates between evergreen and deciduous foliage; for 242 
(b), (c) and (d) the FTM differentiates between conifer and broadleaf trees.  243 
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2.2.2 Swiss NFI Orthoimage (NFI) 244 

This map distinguishes between broadleaf and conifer trees (Waser et al., 2017) and was 245 

produced for the Swiss National Forest Inventory (NFI). It covers all of Switzerland and has a 246 

spatial resolution of 3 m x 3 m. The methodology is based on the classification of more than 247 

1700 four-band aerial photo strips. Prior to applying it to all of Switzerland, different 248 

classification methods, i.e. Support Vector Machine, Logistic Regression and Random Forest 249 

(RF) were tested for selected areas in Switzerland regarding accuracy, computing time and 250 

minimum number of required training values. The tests revealed that RF performed best 251 

regarding accuracy and processing time (Waser et al., 2017; Figure 4b). 252 

2.2.3 Sentinel NFI (Sen) 253 

The FTM sentinel NFI is a national FTM that distinguishes between broadleaf and conifer 254 

trees at a spatial resolution of 10 m.  255 

This map is based on freely available spaceborne Sentinel-1 / -2 data from the European 256 

Space Agency’s Copernicus Programme (ESA, 2019). In order to get a cloud-free coverage of 257 

all of Switzerland, a total of 50 Sentinel-2 images from June, July and August of 2016–2018 258 

were used. The Sentinel-1 SAR data was acquired in summer 2016 and 2017 and processed, 259 

i.e. flattening terrain and increasing the spatial resolution, according to Small (2012). This 260 

map is a product of the Swiss NFI, and it is a follow-up and improved version of the 261 

preliminary dataset (referred to as FTM NFI) and is free from overestimations of conifers 262 

caused by topographic and illumination effects. This new approach incorporates a RF 263 

classifier. According to Breiman (2001), this is a widely used ensemble classifier that 264 

produces multiple decision trees using a randomly selected subset of training samples and 265 

variables (Figure 4c). 266 

2.2.4 Copernicus Dominant Leaf Type (DLT) 267 
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The FTM Dominant Leaf Type (DLT) is a product of the Copernicus Land Monitoring Service 268 

coordinated by the European Environment Agency. The DLT FTM provides information on 269 

the dominant leaf type (broadleaf or conifer) at a 20 m x 20 m resolution, and it was derived 270 

from multi-temporal satellite image data using Support Vector Machine (Langanke, 2017; 271 

Figure 4d). 272 

2.2.5 LiDAR (Li) 273 

The FTM LiDAR differentiates between deciduous and evergreen foliage and was computed 274 

by using the corrected return intensity of leaf-off airborne laser scanning (ALS) data, as 275 

proposed in the Digital Forestry Toolbox (Parkan, 2018). The FTM LiDAR has a spatial 276 

resolution of 0.5 m and was computed for GF and SA from the same leaf-off data as used for 277 

the CHM and for Brg from a leaf-off flight from March 2014 with a density of > 10 points m-2. 278 

This map has great potential for application because leaf-off ALS data is widely available and 279 

calculation with the Digital Forestry Toolbox is straightforward (Figure 4e). 280 

2.3 Canopy height model (CHM) 281 

We used the LiDAR raw point data (Table 1) to compute pit-free CHMs. This approach for 282 

CHM calculation avoids gaps (‘pits’), following the methods presented by Isenburg (2014) 283 

and Khosravipour et al. (2014). This algorithm was implemented in LAStools (Rapidlasso 284 

GmbH, Gilching, Germany), but also using the package ‘lidR’ (Roussel and Auty 2017) in R 285 

version 3.5 (R Core Team, 2018). An example of a pit-free CHM is given in Figure 4. The 286 

CHMs produced in this study have a spatial resolution of 0.33 m (Figure 4f). 287 

2.4 Response variable 288 

The response variable is the local density of the merchantable timber volume [m3 ha-1] 289 

(volume of the stem and branches with a diameter ≥ 7 cm) and is referred to as VOL in the 290 

model formulation. The field measurements were carried out according to the sampling 291 
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protocol of Keller (2013) for GF and SA and of Schmid-Haas et al. (1993) for Brg. In all study 292 

sites, only the DBH (diameter at breast height, measured at 130 cm above the level of the 293 

terrain) was recorded. For the calculation of the timber volume of a single tree (VOL_ST) in 294 

Brg, the following one-parameter volume function of Hoffmann (1982) was used: 295 

𝑉𝑉𝑉𝑉𝑉𝑉_𝑆𝑆𝑆𝑆(𝐷𝐷𝐷𝐷𝐷𝐷) = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑎𝑎1 + 𝑎𝑎2𝑙𝑙𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷) + 𝑎𝑎3�𝑙𝑙𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷)�
4
�, with the parameters a1, a2 and 296 

a3 and with DBH as the only input variable. In GF and SA a volume function based on volume 297 

tables was used (Schweizer, 2012), again with DBH as the only input variable. This volume 298 

function was chosen to ensure comparability with earlier inventories. While in SA and GF the 299 

same volume function was used for trees of both leaf types, in Brg separate volume 300 

functions were used for broadleaf and coniferous trees. However, a comparison of the 301 

functions showed that the differences in the predicted tree volumes between the volume 302 

functions differentiating by forest type (Brg) and the mixed volume functions (GF and SA) 303 

were marginal (Figure 5). Clear differences only emerged at ≥ 100 cm DBH. However, this has 304 

no relevance for the present study, as only four sample trees were above this DBH threshold. 305 

As volume functions are not valid for large areas, they have to be calibrated locally. The 306 

parametrization of the volume function in Brg was done during the inventory of 1986. For 307 

this purpose, the height (h), DBH and diameter at 7 m height (d7) was measured for all 308 

sample trees in one-eighth of each sample-plot area (for trees with a DBH < 20 cm), in one-309 

quarter of each sample-plot area (20 cm ≤ DBH < 50 cm) or in the entire sample-plot (DBH ≥ 310 

50 cm) (Schmid-Haas et al., 1993). With the help of three-parameter volume functions 311 

requiring h, DBH and d7 as input, a reference volume was then calculated for all sample trees 312 

that were measured in detail. Finally, a nonlinear curve fitting method was used to 313 

determine the locally adapted parameters a1, a2 and a3 (Hoffmann, 1982). 314 
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To ensure comparability with previous inventories, we therefore used the parameters 315 

derived in 1986. A validation of the volume functions used in Brg was done by Kaufmann 316 

(2001). He reported a coefficient of determination (R2) of 95% and a standard deviation of 317 

the residuals (Rs) of 20% (conifer) and 27% (broadleaf) of the mean. The local density of the 318 

total timber volume on each terrestrial sample-plot was based on the timber volume and 319 

inclusion probabilities of individual trees and was calculated using the Horvitz Thompson 320 

Estimator (Mandallaz, 2007).  321 

 322 
Figure 5: Volume functions for Glâne-Farzin and Sarine in canton Freiburg (Frbg) and for Bremgarten (Brg). 323 

2.5 Auxiliary variables 324 

2.5.1 Auxiliary variables based on canopy height models 325 

Auxiliary variables form the basis for model building and were used to derive a model for the 326 

response variable (VOL) from the sample data. Auxiliary variables can come from various 327 

sources, such as LiDAR raw data, CHMs and FTMs. An overview of auxiliary variables that are 328 

potentially interesting for forestry can be found in McCallum et al. (2014) and Saarela et al. 329 

(2015). Auxiliaries derived from the CHM, which were used in our models, are listed in Table 330 

3. 331 



Page 20 
 

Most of the auxiliary variables included in this study are well established for forest inventory 332 

purposes. However, to the best of our knowledge, the variable SSq has not previously been 333 

described in the literature. It is presented in detail in Figure 6a and represents the sum of 334 

the squares of the height values of the individual CHM-pixels within a sample-plot. The idea 335 

behind introducing this auxiliary variable was to make it possible to map the allometric 336 

relationships more appropriately, as the stand volume is usually not a linear function of the 337 

canopy height (Eichhorn, 2013; Pretzsch, 2001). 338 

 Description Abbreviation Unit 
Percentile – 
values 

Specifies the height percentiles of the 
pixels in the sample-plot. Example: 95th 
percentile: P95  

PXX 
XX = {99, 95, 90, 80, 75, 70, 
60, … , 30, 25, 20, 10, 05, 01} 

[m] (same unit as the 
CHM) 

Coverage – 
values 

Indicates the vegetation cover at a 
certain height. Example: 2 m coverage: 
C02 = 0.9 means that 90% of the pixels 
of the vegetation height model in the 
plot are higher than or equal to 2 m 
above the ground. 

CXX 
XX = {00, 02, 05, 10, 15, 20, 
… , 50} 

[0 – 1] 

Minimum Minimum pixel value within a plot MIN [m] 
Maximum Maximum pixel value within a plot MAX [m] 
Standard 
deviation 

Standard deviation of the individual 
pixels within a plot 

STD [m] 

Average Average value (height) of the individual 
pixels within a plot 

MEAN [m] 

Sum of squares Sum of the squares of the individual 
pixels within a plot  
 

SSq  

Average sum of 
squares 

Sum of squares divided by number of 
pixels in a plot 

MSSq  

Coefficient of 
variation 

MEAN / STD CV  

Table 3: Auxiliary variables derived from the canopy height model (CHM). 339 
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 340 

Figure 6: Principle of the combined evaluation of different grids. The two grids forest type map (FTM) 341 
(conifer/broadleaf) and canopy height model (CHM) are superimposed and evaluated for each attribute of 342 
the FTM. a) Illustration of the derivation of the auxiliary variable SSq (sum of squares), based on a combined 343 
evaluation of the CHM and the FTM. The circle represents the boundary of the sample-plot. b) Computation 344 
of the different forest type variable alternatives: 1) ratio of the number of pixels (area_prop), 2) ratio of the 345 
sums of canopy height (area_chm_prop), and 3) ratio of the sums of squares of the canopy heights 346 
(area_chm_sq_prop). Most pixels in (a) are empty to simplify the comprehensibility of the calculations. If the 347 
FTM and the CHM have different spatial resolutions, the analysis is performed on the basis of the grid with a 348 
higher spatial resolution.  349 

2.5.2 Forest type variables (FTV) 350 

In order to include FTM information in the statistical models, auxiliaries (referred to as forest 351 

type variables, FTV) were introduced that describe the proportion of conifer trees. There 352 

were five FTV alternatives: four continuous and one categorical. The continuous FTV 353 

alternatives were: (1) the ratio of the number of pixels of different forest types (area_prop), 354 

(2) the ratio of average heights of the forest types (area_chm_prop), (3) the ratio of the sum 355 

of squares of the canopy heights of the forest types (area_chm_sq_prop) (see Figure 6b), 356 
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and (4) the variable ground_proportion, which is introduced in section 2.5.3. area_prop is 357 

the classical formulation and represents the proportion of the area that is covered by the 358 

canopies of conifers. area_chm_prop and area_chm_sq_prop were our new ‘weighted-359 

canopy-height proportion’ FTVs, for which the area proportion was weighted by information 360 

from a CHM. Therefore, the two grids (CHM and FTM) were superimposed and a separate 361 

evaluation was performed for each forest type, as presented in Figure 6a and b. For the 362 

categorical variable, we chose a setup that assigns the sample-plot to a main forest type 363 

(broadleaf or conifer) if the proportion of the pixels of one particular type exceeds 70% and 364 

to the category ‘mixed’ otherwise, as done by Breidenbach et al. (2008) and Latifi et al. 365 

(2012). Other thresholds were not explored in this study, even though they may also have an 366 

impact on model performance (Hill et al. 2018). However, this study was not focused on the 367 

investigation of categorical variables, as categorical variables have the disadvantage of 368 

requiring an additional degree of freedom for each level. This effect is amplified when 369 

interaction terms between the FTV and other auxiliary variables are included in the model. 370 

This is particularly problematic when the number of sample-plots is small, as in this study. A 371 

rule of thumb says that 10–20 observations per auxiliary variable are required to be able to 372 

detect reasonable-sized effects with reasonable power (Harrell, 2017). 373 

2.5.3 Forest type variable ground_proportion and classification accuracy 374 

FTVs derived from FTMs (section 2.5.2) are usually not error free, as shown, for example, by 375 

Hill et al. (2018) and Straub et al. (2009). We evaluated classification accuracy to understand 376 

the precision and the errors of the different FTVs and FTMs. This was done by evaluating the 377 

correlation of the continuous FTVs area_prop, area_chm_prop and area_chm_sq_prop with 378 

ground_proportion (Figure 7). ground_proportion represented the conifer timber volume 379 

proportion for each sample-plot based on field measurements. This variable was derived 380 
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from the volumes of the individual trees, which were predicted by means of the volume 381 

functions with DBH as an input variable (see section 2.4). ground_proportion was not an 382 

error-free variable, since the underlying volume functions were not error free, but field 383 

measurements are usually more precise than variables derived from remote sensing data. 384 

The analyses showed that the LiDAR-derived FTVs had the strongest correlation with 385 

ground_proportion for all study areas. The FTVs area_chm_sq_prop and area_chm_prop 386 

were more reliable than area_prop, except for the FTMs Sen and DLT, which had low 387 

resolutions of 10 m and 20 m, respectively. The classification accuracy generally increased 388 

with average canopy height in the sample-plot. Therefore, including an interaction term 389 

between the FTVs and MEAN had the potential to further improve model accuracy, and it 390 

was considered in some model formulations. To explore the potential benefit of having a 391 

highly precise FTM (i.e. without classification error) based on field measurements, we 392 

considered ground_proportion as a FTV in our statistical models. Although classification 393 

errors of forest type are typically small when they are based on accurate field observations, 394 

the ground_proportion FTV used in our study was not error free because its derivation was 395 

based on volume estimations from volume functions. 396 
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 397 
Figure 7: Correlation of the proportion of conifer timber volume, derived using the different FTMs and FTV 398 
alternatives compared with the variable ground_proportion. The figure is separated into different average 399 
classes of the CHM that were considered. min_MEAN = 20 means that only sample-plots with a minimum 400 
average canopy height of 20 m were considered; a value of 0 means that all sample-plots were considered 401 
for the analysis of the correlation. Brg = Bremgarten, GF = Glâne-Farzin (GF) and SA = Sarine. 402 

2.6 Statistical methods 403 

For model building, we excluded sample-plots with a timber volume value of zero and 404 

sample-plots in which harvests had taken place in the period between the field 405 

measurements and the acquisition of the remote sensing data. This step is referred to as 406 

‘cleaning’ in Table 1. The FTMs derived from orthoimage (OI) and LiDAR (Li) differentiated 407 

between deciduous and evergreen foliage. To differentiate accurately between conifer and 408 

broadleaf trees for these FTMs, we removed sample-plots that include larch (Larix decidua). 409 

We labelled these cases with the suffix ‘wo_La’ (without larch). The number of remaining 410 
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sample-plots in each study area is listed in Table 1. Each FTM, except OI, was tested in all 411 

study areas. The abbreviations of all study area and FTM combinations are given in Table 4. 412 

 Orthoimage (OI) Swiss NFI 
Orthoimage 
(NFI) 

Sentinel 
NFI 
(Sen) 

LiDAR (return 
intensity) (Li) 

Copernicus 
Dominant 
Leaf Type 
(DLT) 

Glâne-Farzin - GF_NFI GF_Sen GF_Li / 
GF_Li_wo_La 

GF_DLT 

Sarine - SA_NFI SA_Sen SA_Li / 
SA_Li_wo_La 

SA_DLT 

Bremgarten Brg_OI / 
Brg_OI_wo_La 

Brg_NFI Brg_Sen Brg_Li / 
Brg_Li_wo_La 

Brg_DLT 

Table 4: Combinations of study areas and FTMs considered in the statistical analyses. 413 

Root mean square error (RMSE) from leave-one-out cross-validation (LOOCV) was used to 414 

denote model accuracy (Equation 1). Table 5 lists the multiple linear regression models used 415 

in this study, as basic formulations without FTVs. Each basic formulation was combined with 416 

each FTV alternative. To evaluate the gain in model performance when any forest type 417 

information was included, each basic formulation with no FTVs was analysed. The statistical 418 

software R (version 3.5) was used for model analyses (R Core Team, 2018). 419 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  �
∑ �𝒀𝒀�(𝒙𝒙)−𝒀𝒀(𝒙𝒙)�

𝟐𝟐
𝒙𝒙∈𝒔𝒔

𝒏𝒏
   (Equation 1) 420 

where 𝑌𝑌(𝑒𝑒) is the observed local density of the timber volume on the sample-plot level at 421 

location x 𝑒𝑒𝑥𝑥(𝑠𝑠) [m3 ha-1], 𝑌𝑌�(𝑒𝑒) is the predicted volume density on the sample-plot level at 422 

location x 𝑒𝑒𝑥𝑥(𝑠𝑠) [m3 ha-1], and s is the modelling dataset composed of n sample-plots.  423 

The results are discussed in terms of the relative RMSE, defined as the RMSE relative to the 424 

mean ymean of the observed values (Equation 2). 425 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅[%] = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∗ 100 , with 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑚𝑚
∑ 𝑌𝑌(𝑒𝑒)𝑥𝑥∈𝑠𝑠    (Equation 2) 426 

The OLS regression model formulation is defined in Equation 3 427 
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𝑌𝑌(𝑒𝑒) =  𝛽𝛽0 + 𝛽𝛽1𝑍𝑍1 + 𝛽𝛽2𝑍𝑍2+ . . +𝛽𝛽𝑝𝑝𝑍𝑍𝑝𝑝  + 𝜀𝜀(𝑍𝑍) (Equation 3) 428 

with error term 𝜀𝜀(𝑍𝑍) independent and identically distributed, 𝑅𝑅�𝜀𝜀(𝑍𝑍)� = 0, and 429 

𝑉𝑉𝑎𝑎𝑉𝑉�𝜀𝜀(𝑍𝑍)� = 𝜎𝜎2, 430 

where 𝑌𝑌(𝑒𝑒) is the response (see Equation 1), 𝛽𝛽0. .𝛽𝛽𝑝𝑝 are the regression coefficients, 𝑍𝑍1. .𝑍𝑍𝑝𝑝 431 

denote the auxiliary variables, and p is the number of auxiliary variables (explanatory or 432 

predictor variables). All models are displayed using the following R-style formatting: 433 

𝑌𝑌~ 𝑍𝑍1 + 𝑍𝑍2+ . . +𝑍𝑍𝑝𝑝 (see Table 5). 434 

Model # Basic formulation 
1 VOL ~ MEAN 

2 VOL ~ MEAN + STD 

3 VOL ~ MEAN + STD + C02 

4 VOL ~ MEAN + STD + P90 + C30 

5 VOL ~ MEAN + STD + C30 + C02 

6 VOL ~ MEAN + STD + C30 + C02 + MEAN:STD 

7 
The model variables were selected based on the Akaike Information Criterion (AIC; Akaike, 2011). All 
variables from Table 3, such as MEAN, STD, CXX and PXX, were available for selection. The selected variables 
are listed in Table A1 in the Appendix. 

8 

Same variables as Model #7, but with the following interaction terms:  
MEAN + MEAN:STD + (MEAN:foresttype) + (MEAN^2:foresttype) 
After adding the interaction terms, variable selection based on the AIC was again performed (for each forest 
type alternative) 

9 Same variables as #7, but with the following interaction terms:  
MEAN + MEAN:STD + (MEAN:foresttype) + (MEAN^2:foresttype) 

10 

VOL ~ MEAN + STD + MEAN:STD  
For the forest types with the following interaction terms:  
foresttype + (MEAN:foresttype)+(MEAN^2:foresttype)  
variable selection based on the AIC was performed (for each forest type alternative) 

11 

VOL ~ MEAN + STD + MEAN:STD  
For the forest types with the following interaction terms: foresttype + 
(MEAN:foresttype)+(MEAN^2:foresttype) 
(same variables as #10, but without AIC variable selection) 

Table 5: Basic model formulations for the multiple linear regression. The interaction terms are indicated 435 
by‘:’. ‘foresttype’ stands for the forest type variable and is either area_prop, area_chm_prop, 436 
area_chm_prop, categorical or ground_proportion. 437 

Models 1–5 were quite simply models without interaction terms (Table 5). Model 6 included 438 

the interaction between MEAN and STD. Model 7 was evaluated by performing variable 439 

selection based on the Akaike Information Criterion (AIC; Akaike, 2011). Models 8 and 9 440 

included further interaction terms. For Model 8, variable selection (based on AIC) was 441 

performed a second time after the interaction terms were added. Models 10 and 11 had 442 
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only three variables but included interaction terms. Variable selection (based on AIC) was 443 

performed to find a satisfactory relationship between the goodness of fit and the simplicity 444 

of the model in Model 10 but not in Model 11. The formulations for the best performing 445 

model (Model 10) are given in Table 7. 446 

We additionally computed the adjusted coefficient of determination (adjusted r-squared) to 447 

facilitate comparisons with other related publications. The adjusted r-squared values were of 448 

limited use for the evaluation of the models, as over-fitted models, such as Models 9 and 11, 449 

also had high adjusted r-squared values. Models with many variables are generally at risk of 450 

over-fitting. Therefore, cross-validation with RMSE % was considered better suited for the 451 

evaluation of our OLS regression models. We did not evaluate results based on the adjusted 452 

r-squared values, but these values can be found in the Appendix (Figures A1 and A2). 453 

3 Results 454 

3.1 Bremgarten (Brg) 455 

The results of the leave-one-out cross-validation (LOOCV) (RMSE %) are depicted in Figure 8, 456 

which shows the accuracies of the OLS regression models, defined in Table 5, achieved for 457 

models including all combinations of the four different FTV alternatives and without FTVs 458 

(‘None’). 459 

Including the FTM information substantially reduced the cross-validated RMSE for all 460 

models. The best model performance (lowest RMSE) for all FTMs was reached with Model 8 461 

(Figure 8), where a double stepwise selection procedure was applied that also allowed 462 

interaction terms to remain in the model. The best model performance was achieved by 463 

adding FTVs based on the LiDAR dataset (Brg_Li and Brg_Li_wo_La). The reduction in RMSE 464 

was up to 9 percentage points in comparison to models without any FTM information (Figure 465 

9). Further, the FTV alternative influenced the accuracy of the model. The FTV alternatives 466 
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area_chm_sq_prop and area_chm_prop showed similar results and performed better than 467 

area_prop, which in turn outperformed the categorical variable. It is quite remarkable that 468 

models including the FTV alternatives area_chm_sq_prop and area_chm_prop derived from 469 

LiDAR data outperformed the model with ground_proportion (conifer timber volume 470 

proportion, derived from field measurements). Model performance improved further when 471 

inventory sample-plots with larch were excluded (Brg_Li_wo_La; Figure 8). 472 

The FTVs derived from the orthoimages (Brg_NFI, Brg_OI and Brg_OI_wo_La) reduced the 473 

RMSE by 4–6 percentage points in comparison to models without any FTM information (e.g. 474 

from 45% to 39% for Model 1 in Brg_NFI). Whereas almost no difference could be observed 475 

among models including the different FTV alternatives for Brg_NFI, slight differences existed 476 

among the models depending on the FTV alternative included for Brg_OI and Brg_OI_wo_La, 477 

which were based on a 2 m x 2 m orthoimage. Models based on Sentinel data (Brg_Sen) 478 

showed slightly higher RMSE values compared with those derived from orthoimages. The 479 

lowest model accuracy was achieved by incorporating FTVs derived from the DLT FTM, with 480 

a model improvement of only of 1–2 percentage points. 481 
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 482 
Figure 8: Leave-one-out cross-validated RMSECV [%] for each regression model, FTM and combination of FTV 483 
alternatives in the case study area Bremgarten (Brg). 484 
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3.2 Glâne-Farzin and Sarine 485 

When interpreting the results of GF and SA, it should be kept in mind that the positional 486 

accuracy of the sample-plot centres is less precise (Table 1). Thus, we expected smaller 487 

improvements in model accuracy by adding FTVs. The RMSE values for GF and SA are 488 

presented in Figure 10. Like in Brg, Model 8 achieved the lowest RMSE overall, and for SA_Li 489 

Model 10 was equivalent to Model 8. The largest model improvement was reached by 490 

adding the LiDAR based FTVs (SA_Li and SA_Li_wo_La) to the regression models and by using 491 

the FTV alternatives area_chm_sq_prop and area_chm_prop. Including these variables led to 492 

better model performance than when ground_proportion was included. The gain in model 493 

accuracy was more than 2.5 percentage points (Model 10; Figure 9). Auxiliary variable 494 

combinations of the remaining FTMs (SA_NFI, SA_Sen and SA_DLT) showed similar patterns 495 

and reduced the RMSE by about 1–2 percentage points. Comparing the results of GF with 496 

the other study areas, the RMSE without FTVs was already lower (RMSE ≈ 32%, Figure 10) 497 

than the RMSE of the best models containing FTVs in Brg (RMSE ≈ 34%) or SA (RMSE ≈ 36%). 498 

Including forest type information in the regression models led to an improvement in model 499 

performance (Figure 10). FTVs derived from the LiDAR FTM showed again the lowest RMSE 500 

values. In comparison to the other study areas, including FTVs had a smaller effect on model 501 

accuracy for GF. In some cases the categorical variable performed best (GF_Li) by a very 502 

small margin. However, including FTM information in the model resulted in a decrease in 503 

RMSE in the best case (RMSECV ≈ 28% for Model 8 and GF_Li_wo_La; Figure 10). Contrary to 504 

results for SA and Brg, including ground_proportion as a predictor resulted in a slightly better 505 

model performance than using FTVs from maps. GF was the study area with the smallest 506 

number of sample-plots; for this reason, GF had the highest risk of model over-fitting among 507 

the three study areas, and over-fitting was also detected for the combination of Models 7–9, 508 



Page 31 
 

FTM Li_wo_La and without FTV. The adjusted r-squared values (Figure A2 in the Appendix) 509 

indicate an excellent model performance (high adjusted r-squared value), whereas the high 510 

RMSECV value in Figure 10 indicates the opposite. However, this was the only case of over-511 

fitting. A further comparison of adjusted r-squared values (Figure A2) demonstrates that the 512 

remaining models with the highest adjusted r-squared values (Model 9 and GF_Li_wo_La) 513 

had rather low RMSE values. 514 

Table 6 shows the model formulations for the best performing models. Although some 515 

models had many predictors, they were not over-fitted, as shown through the leave-one-out 516 

cross-validated RMSE (Figures 8 and 10). For Brg and SA, Model 10 provided the second best 517 

model performance according to RMSE, which was only slightly worse than that of Model 8 518 

(Table 7) but included far fewer variables. 519 
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 520 

Figure 9: Change in RMSECV [%] values under the different model types and forest type variables (FTV) 521 
alternatives compared with a model without FTVs in the three case study areas (Brg = Bremgarten, GF = 522 
Glâne-Farzin, SA = Sarine). Results are only displayed for variables derived from the LiDAR FTM. The peak in 523 
GF and Li_wo_La for Models 7–9 was caused by over-fitted models without FTVs. 524 
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 525 

Figure 10: Leave-one-out cross-validated RMSECV [%] for each regression model, forest type map and 526 
combination of forest type variable alternatives in the case study areas Glâne-Farzin (GF) and Sarine (SA). 527 

Study area Model Forest type variable Auxiliary variables used 

Brg_Li 8 area_chm_sq_prop P40 + P30 + P25 + P01 + C10 + C20 + foresttype + MEAN + 
foresttype:MEAN 

Brg_Li 8 area_chm_prop P40 + P30 + P25 + P01 + C10 + C20 + foresttype + MEAN + 
foresttype:MEAN 

Brg_Li_wo_La 8 area_chm_sq_prop P99 + P60 + P01 + C10 + C20 + CV + foresttype + MEAN + 
foresttype:MEAN 

Brg_Li_wo_La 8 area_chm_prop P99 + P60 + P50 + P30 + P01 + C10 + C20 + CV + foresttype + 
MEAN + foresttype:MEAN 

GF_Li 8 categorical P60 + P25 + C02 + C10 + C15 + C25 + C30 + foresttype + MEAN 

GF_Li_wo_La 8 categorical C02 + C10 + C15 + C25 + C30 + foresttype + MEAN + 
foresttype:MEAN 

SA_Li 8 area_chm_sq_prop P20 + C05 + C15 + C20 + C25 + C35 + C50 + foresttype + MEAN + 
foresttype:MEAN 
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SA_Li 8 area_chm_prop P20 + C05 + C15 + C20 + C25 + C35 + C50 + foresttype + MEAN + 
foresttype:MEAN 

SA_Li_wo_La 8 area_chm_sq_prop MSSq + P25 + P05 + C02 + C15 + C20 + C25 + C35 + C50 + 
chm_sq_average + foresttype + MEAN + foresttype:MEAN 

SA_Li_wo_La 8 area_chm_prop MSSq + P25 + P05 + C02 + C15 + C20 + C25 + C35 + C50 + 
chm_sq_average + foresttype + MEAN + foresttype:MEAN 

Table 6: Selected model formulations for the best performing forest type model combinations for Model 8. 528 
Interaction terms are indicated by ‘:’. ‘foresttype’ stands for the forest type variable and is either area_prop, 529 
area_chm_prop, area_chm_prop, categorical or ground_proportion. 530 

 531 

Study area Model  Forest type variable Auxiliary variables used 

Brg_Li 10 area_chm_sq_prop MEAN + STD + foresttype + MEAN:foresttype 

Brg_Li 10 area_chm_prop MEAN + STD + foresttype + MEAN:foresttype 

Brg_Li_wo_La 10 area_chm_sq_prop MEAN + STD + foresttype + MEAN:foresttype 

Brg_Li_wo_La 10 area_chm_prop MEAN + STD + foresttype + MEAN:foresttype 

GF_Li 10 categorical MEAN + STD + foresttype + MEAN:STD 

GF_Li_wo_La 10 categorical MEAN + foresttype 

SA_Li 10 area_chm_sq_prop MEAN + foresttype + MEAN:foresttype 

SA_Li 10 area_chm_prop MEAN + foresttype + MEAN:foresttype 

SA_Li_wo_La 10 area_chm_sq_prop MEAN + foresttype + MEAN:foresttype 

SA_Li_wo_La 10 area_chm_prop MEAN + foresttype + MEAN:foresttype 

Table 7: Selected model formulations for the best performing forest type model combinations for Model 10. 532 
Interaction terms are indicated by ‘:’. ’foresttype’ stands for the forest type variable and is either area_prop, 533 
area_chm_prop, area_chm_prop, categorical or ground_proportion. 534 

4 Discussion 535 

4.1 Influence of different forest type variables and forest type maps on model 536 

performance 537 

Our results confirm the findings of previous studies (Breidenbach et al., 2008; Latifi et al., 538 

2012) that incorporated FTM information to predict timber volume. Both earlier studies 539 

reported an increase in model accuracy (measured as the LOOCV RMSE) of the OLS 540 

regression models for their investigated study areas. In doing so, Latifi et al. (2012) found an 541 

improvement of 2–4 percentage points in RMSE when stratifying into broadleaf and conifer 542 
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forest types. We found similar improvements when the categorical FTV was included in 543 

models (Figure 9). In our study, the best performing FTM in all study areas was the one 544 

derived from leaf-off LiDAR data. This is not particularly surprising, as this map had both the 545 

highest resolution and the best correlation with the values derived from field measurements 546 

(ground_proportion), as visualized in Figure 7. The further order of the best suited FTMs was 547 

less clear and varied between the study areas. In general, a map with a higher resolution 548 

gave better results than one with a coarser resolution, even if both maps showed the same 549 

classification accuracy, as derived in section 2.5.3. This was observed in Brg (Figure 8), where 550 

we had the following order of accuracy according to the RMSE: Brg_OI (2 m x 2 m) ≈ Brg_NFI 551 

(3 m x 3 m) > Brg_Sen (10 m x 10 m) > Brg_DLT (20 m x 20 m). The NFI Orthoimage map 552 

(*_NFI) is biased due to topographic and illumination effects, i.e. shadows, of optical remote 553 

sensing data (Waser et al., 2017). 554 

We found that the selection of a FTV alternative strongly affected model accuracy, 555 

particularly when FTMs with a high resolution (≤ 2 m) were used, such as the LiDAR-derived 556 

map (0.5 m). The continuous variables thus outperformed the categorical variable. Among 557 

the continuous variables, area_chm_prop and area_chm_sq_prop performed about equal 558 

and were associated with higher model accuracies than area_prop. For area_chm_prop and 559 

area_chm_sq_prop, the forest type proportion was weighted by canopy height information 560 

of a CHM. This representation mapped the volume proportions of conifers and broadleaf 561 

trees better, in particular for mixed and heterogeneously structured forests. The difference 562 

in RMSE between all the different FTV alternatives was up to 2 percentage points. However, 563 

in GF there was no clear difference between the different FTV alternatives, possibly because 564 

exactly georeferenced sample-plot positions were not available and the model accuracy was 565 

already high without incorporating FTVs (Figure 9). The gain in model accuracy was up to 9 566 
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RMSE percentage points for Brg, and up to 3 percentage points for GF and SA. The 567 

improvement in model accuracy, measured as percentage points of the RMSE, was lower in 568 

GF and SA compared with Brg, as the results from GF and SA already showed a small RMSE 569 

before any forest type information was added to the OLS regression model. 570 

4.2 Best performing model formulation  571 

Our second research question was how to best include FTM information in a regression 572 

model. Model 8 performed best for all study areas and FTV combinations. This model was 573 

calibrated using a variable selection procedure based on AIC values, followed by the addition 574 

of interaction terms, and finally a second variable selection based on AIC values. Except for 575 

GF_Li, all of the best performing models included an interaction term between foresttype 576 

and MEAN (Table 6). Therefore, we highly recommend using interaction terms when 577 

including FTM information in OLS regression models. Interaction terms are particularly 578 

meaningful because, depending on the average vegetation height, the FTMs have a different 579 

classification accuracy (Figure 7). 580 

Although Model 8 included several variables, over-fitting was not an issue, as shown by the 581 

cross-validation results. However, if we were interested in making inferences about the 582 

predictors, Model 8 could have failed. In such cases, Model 10 would have been the 583 

preferred model formulation because it included remarkably fewer variables (Table 7). Due 584 

to its smaller number of variables, Model 10 was also less vulnerable to over-fitting. Further, 585 

variance inflation, which occurs as a consequence of including too many correlated variables 586 

and is quantified as the variance inflation factor (VIF), could affect the significance of single 587 

variables (Fox and Monette, 1992). This was not the case in our study, however, because 588 

Model 10 had the best AIC and highly correlated variables were eliminated. The only issue 589 

could be that main effects are difficult to interpret in models with interactions. 590 
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4.3 Potential of a high-precision forest type variable  591 

The idea behind introducing ground_proportion (conifer volume proportion based on field 592 

measurements) as a FTV in the models was to explore the potential benefit of having a high-593 

precision FTM without misclassifications. Results from the two study areas Brg and SA show 594 

that when the LiDAR-derived FTM is used in combination with the variables area_chm_prop 595 

and area_chm_sq_prop, regression model performance can be even better than when this 596 

FTM is used in combination with ground_proportion. This result is remarkable and deserves 597 

an in-depth discussion. The following issues are relevant for its understanding and 598 

interpretation. 599 

First of all, it must be emphasized that both the variable ground_proportion and the remote-600 

sensing-based FTV contained errors. In the case of ground_proportion, the errors were 601 

caused by the volume functions used, which were solely based on the DBH. For example, 602 

Kaufmann (2001) explored volume functions for the Swiss NFI. He stated that a tree in a later 603 

stage of development has a larger stem volume than a tree with the same DBH in an earlier 604 

developmental stage. This behaviour was ignored in the volume functions, but we think that 605 

this relationship was mapped in the LiDAR-based ‘weighted-canopy-height proportion’ FTV, 606 

as the canopy height is correlated with the developmental stage of a tree. In the case of the 607 

remote-sensing-based FTV, the most relevant sources of error were misclassification 608 

(confusion of conifer and broadleaf), inadequate temporal synchronization (a time 609 

difference between the field measurements and the recording of remote sensing data), and 610 

imperfect spatial matching of the sample-plot location with the detail of the remote sensing 611 

data.  612 

Second, the variables ground_proportion and area_chm_prop / area_chm_sq_prop can only 613 

be compared directly if they are derived identically. This would be the case if 614 



Page 38 
 

ground_proportion was also derived by weighting the broadleaf/conifer sample tree 615 

information by the respective tree heights – analogous to calculating area_chm_prop / 616 

area_chm_sq_prop. However, this was not the case because tree heights were not recorded. 617 

Third, the response variable, the volume per sample-plot, which was calculated by the same 618 

volume functions as used to derive the forest type proportion (ground_proportion), was also 619 

not error free and contains the same errors as the field observed FTV. The applied volume 620 

functions ignore some real-existing influences on the tree volume and they therefore return 621 

the same volume for different values of some influential factors. The evaluation and 622 

comparison of different models and auxiliary variables is therefore always limited by the 623 

accuracy of the reference values, which were in our case generated by one-parameter 624 

volume functions. In order to allow a more precise interpretation of the results, one would 625 

have to use more precise, e.g. three-parameter volume functions. Therefore, it is difficult to 626 

say whether there was actually a statistically significant difference between the results 627 

obtained by ground based forest type information and remote sensing based forest type 628 

information. 629 

Overall, the following conclusions can be drawn: (1) Although the FTM-based variables are 630 

error prone, they can generate a more powerful signal for modelling than the field based 631 

information ground_proportion. This supports the statement that the proposed weighting by 632 

canopy height information of the FTV generates a very useful signal.  633 

(2) Until now, it has always been assumed that field information is the reference in terms of 634 

accuracy. However, this concept is limited by the sampling protocol; in this case, no tree 635 

heights were measured during the field observation and therefore the corresponding 636 

calculation of ground reference including tree height information was not possible. If tree 637 
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height had been recorded, the ground reference would possibly have been as good or better 638 

than the FTM-based variables. 639 

Nevertheless, we recommend including ground_proportion as a FTV in regression models, 640 

particularly during model evaluation, because the variable might serve as a benchmark to 641 

assess the effect of including FTM information. Additionally, it might function as an indicator 642 

of whether it is worth investing resources into creating an advanced FTM. 643 

4.4 Generalization of the Results 644 

In order to address our second research question, we studied the effect of incorporating 645 

different FTV alternatives in three independent study areas. We considered the results in 646 

Brg, with its precisely measured forest inventory sample-plots, as the reference. The main 647 

findings were that the best results were generally achieved: (1) by deriving forest type 648 

variables from a FTM with a high resolution and (2) by concurrently using forest type 649 

variables, such as area_chm_prop and area_chm_sq_prop, derived by a superimposed 650 

evaluation of the FTM and the CHM. These findings apply to Brg and SA. For GF, point (2) 651 

could not be confirmed, on the one hand because the terrestrial inventory sample-plot 652 

centres were not positioned accurately and on the other hand because GF is less 653 

heterogeneously structured than the other forests because it is dominated by numerous 654 

pure mature conifer sample-plots (Figure 3). To summarize, precisely measured inventory 655 

sample-plots and the presence of mixed and heterogeneously structured forests are 656 

required for this approach to be beneficial for current inventories. Further, leaf-off LiDAR 657 

data is desirable. We worked with a LiDAR data density of 8 and 10 points m-2, which 658 

delivered excellent results. Such data is widely available; for example, by 2023 Switzerland 659 

will be covered completely with leaf-off LiDAR data with an average density of 15–20 points 660 

m-2. 661 
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4.5 Relevance for management 662 

Climate change is expected to considerably influence forest ecosystems and their 663 

management (Hanewinkel et al., 2013; Schelhaas et al., 2015). In combination with climate 664 

change, disturbances are expected to increase and affect forest ecosystems (Seidl et al., 665 

2017, 2014). To face these future challenges, Messier et al. (2019) recommended using 666 

forest management to increase the number of tree species and the structural diversity of 667 

forests at the landscape scale to improve the resilience of forests. Managing forests for 668 

higher resilience requires, however, more accurate and more spatially explicit information 669 

on the current situation of forests, which is usually assessed during forest inventories. Such 670 

information is used to guide forest practitioners in their management aims, which further 671 

include providing the demanded ecosystem services and the conservation of forest 672 

biodiversity in the best possible way (Bäck et al., 2017; MEA, 2005). Assessment of the 673 

standing timber volume therefore provides important information to practitioners because 674 

management activities are very often addressed primarily in forest stands with the largest 675 

timber volumes, as they contain the highest accumulated timber values and require cautious 676 

planning of harvesting activities and stand regeneration. Further, the standing timber 677 

volume is often used as an important indicator to quantify the provisioning of timber 678 

production (Blattert et al., 2017; Bugmann et al., 2017), which is still one of the most 679 

important ecosystem services in forestry. Improved inventory fundamentals have further 680 

implications. They lead to improved management solutions, such as more efficient 681 

harvesting or road network layouts (Bont et al., 2019, 2012), as timber volume is usually a 682 

major component used to form such solutions (Bont and Church, 2018). With our presented 683 

method for incorporating FTM information, predictions about the standing timber volume 684 
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can be provided for forest management with higher accuracy compared with classical 685 

approaches and on larger scales. 686 

5 Conclusions 687 

We draw the following three major conclusions from our study: (1) Incorporating FTM 688 

information into ordinary least squares (OLS) linear regression models for predicting timber 689 

volume on the sample-plot level increased model accuracy. An improvement in RMSE of up 690 

to 9 percentage points in comparison to models not using any forest type information was 691 

observed. The highest explanatory power of regression models was achieved by weighting 692 

high-resolution FTM information (leaf-off LiDAR) with superimposed canopy height model 693 

(CHM) information. This new approach of deriving FTVs improved the RMSE by up to 2 694 

percentage points compared with classical approaches. (2) The OLS regression models had 695 

the best fit when they included an interaction term between mean canopy height and forest 696 

type. (3) Considering ground_proportion (the value derived from field measurements on the 697 

inventory sample-plots) in the model evaluation could serve as an important benchmark 698 

and/or upper bound for assessing the improvement in model accuracy when FTM 699 

information is included in model definitions. 700 

Overall, our new method of deriving FTVs better reflects timber volume in heterogeneously 701 

structured and mixed forests. Detailed standing timber volume assessments are relevant for 702 

guiding practitioners in managing forests for multiple ecosystem services, particularly 703 

nowadays when resilient forests with a diverse structure and species mixture are needed to 704 

face the challenges of climate change. However, further research is required regarding 705 

different statistical model types. For example, it would be interesting to know if our findings 706 

can be transferred to other modelling approaches. In addition, a detailed differentiation into 707 
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single tree species or main tree species, beyond the conifer / broadleaf classification, could 708 

be a further development of this new approach. 709 
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Appendix 888 

 889 
Figure A1: Adjusted r-squared values for each regression model, forest type map source and combination of 890 
forest type variables in the case study area Bremgarten (Brg). 891 
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 893 

Figure A2: Adjusted r-squared values for each regression model, forest type map source and combination of 894 
forest type variables in the case study areas Glâne-Farzin (GF) and Sarine (SA). 895 
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 897 

Study area Variables 

Brg_OI MSSq + STD + MAX + P40 + P30 + P25 + P05 + P01 + C00 + C02 + C10 + C15 + C20 + MEAN2 

Brg_OI_wo_La STD + P99 + P60 + P50 + P30 + P25 + P05 + P01 + C00 + C10 + C20 + CV + STD:MEAN 

Brg_NFI MSSq + STD + MAX + P40 + P30 + P25 + P05 + P01 + C00 + C02 + C10 + C15 + C20 + MEAN2 

GF_NFI P95 + P80 + P60 + P40 + P25 + P10 + P01 + C00 + C02 + C05 + C10 + C15 + C20 + C25 + C30 + 
C35 + C45 + CV 

SA_NFI P99 + P95 + P20 + C02 + C05 + C15 + C20 + C25 + C35 + C50 + P60 

Brg_DLT MSSq + STD + MAX + P40 + P30 + P25 + P05 + P01 + C00 + C02 + C10 + C15 + C20 + MEAN2 

GF_DLT P95 + P80 + P60 + P40 + P25 + P10 + P01 + C00 + C02 + C05 + C10 + C15 + C20 + C25 + C30 + 
C35 + C45 + CV 

SA_DLT P99 + P95 + P20 + C02 + C05 + C15 + C20 + C25 + C35 + C50 + P60 

Brg_Li MSSq + STD + MAX + P40 + P30 + P25 + P05 + P01 + C00 + C02 + C10 + C15 + C20 + MEAN2 

Brg_Li_wo_La STD + P99 + P60 + P50 + P30 + P25 + P05 + P01 + C00 + C10 + C20 + CV + STD:MEAN 

GF_Li P95 + P80 + P60 + P40 + P25 + P10 + P01 + C00 + C02 + C05 + C10 + C15 + C20 + C25 + C30 + 
C35 + C45 + CV 

GF_Li_wo_La STD + P95 + P80 + P60 + P40 + P30 + P10 + P01 + C00 + C02 + C05 + C10 + C15 + C20 + C45 + 
MEAN2 

SA_Li P99 + P95 + P20 + C02 + C05 + C15 + C20 + C25 + C35 + C50 + P60 

SA_Li_wo_La MSSq + P25 + P05 + C02 + C05 + C15 + C20 + C25 + C35 + C50 + MEAN2 

Brg_Sen MSSq + STD + MAX + P40 + P30 + P25 + P05 + P01 + C00 + C02 + C10 + C15 + C20 + MEAN2 

GF_Sen P95 + P80 + P60 + P40 + P25 + P10 + P01 + C00 + C02 + C05 + C10 + C15 + C20 + C25 + C30 + 
C35 + C45 + CV 

SA_Sen P99 + P95 + P20 + C02 + C05 + C15 + C20 + C25 + C35 + C50 + P60 
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Table A1: Selected variables for Model 7. In addition to the listed variables, the FTV can be added 899 
(area_prop, area_chm_prop, area_chm_prop, categorical or ground_proportion). 900 

 901 
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