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Editor’s Summary 82	

As tundra ecosystems respond to rapid Arctic warming, satellites records suggest a 83	

widespread greening. This Perspective highlights the challenges of interpreting complex 84	

Arctic greening trends and provides direction for future research by combining ecological 85	

and remote sensing approaches. 86	

 87	

Abstract 88	

As the Arctic warms, vegetation is responding and satellite measures indicate widespread 89	

greening at high latitudes. This ‘greening of the Arctic’ is among the world’s most significant 90	

large-scale ecological responses to global climate change. However, a consensus is 91	

emerging that the underlying causes and future dynamics of so-called Arctic greening and 92	

browning trends are more complex, variable, and inherently scale dependent than previously 93	

thought. Here, we summarize the complexities of observing and interpreting high-latitude 94	

greening to identify key priorities for future research. Incorporating satellite and proximal 95	

remote sensing with in-situ data, while accounting for uncertainties and scale issues will 96	

advance the study of past, present, and future Arctic vegetation change. 97	

 98	

Main text 99	

The Arctic has warmed at more than twice the rate of the rest of the planet in recent 100	

decades1,2. Over the past forty years, satellite-derived vegetation indices have indicated 101	

widespread change at high latitudes3–16. Satellite records allow for the quantification of 102	

change in places that are otherwise unevenly sampled by in-situ ecological observations17. 103	

Positive trends in satellite-derived vegetation indices (often termed Arctic greening)15 are 104	

generally interpreted as signs of in-situ increases in vegetation height, biomass, cover and 105	

abundance5,18,19 associated with warming5,14. In the most recent Intergovernmental Panel on 106	

Climate Change report, tundra vegetation change including greening trends derived from 107	

satellite records20 was identified as one of the clearest examples of the terrestrial impacts of 108	

climate change. Large-scale vegetation-climate feedbacks at high latitudes associated with 109	
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greening could alter global soil carbon storage and the surface energy budget21,22. In recent 110	

years, slowing or reversal of apparent greening from satellite studies have been reported in 111	

some regions (sometimes termed Arctic browning)3,4,12,13,15,23,24. This slowdown is seemingly 112	

at odds with earlier responses to long-term warming trends3,25. Research now indicates 113	

substantial heterogeneity in vegetation responses to climate change in the Arctic18,19,26,27. 114	

However, the mechanistic links between satellite records and in-situ observations3,6,24 remain 115	

unclear due to conceptual and technical barriers in their analysis and combined 116	

interpretation. 117	

 118	

A review of Arctic greening 119	

The terms Arctic ‘greening’ and ‘browning’ can have different meanings in the remote 120	

sensing and ecology literatures. From a remote sensing perspective, ‘greening’ (hereafter 121	

spectral greening) generally refers to a positive trend4,5,7,8,10,13–15, and ‘browning’ (hereafter 122	

spectral browning) generally refers to negative trend in satellite-derived vegetation 123	

indices3,4,12,13,15,23,24. Less frequently, greening is also used to describe advances in the 124	

seasonal timing of these vegetation proxies4,28. From a field-ecology perspective, greening 125	

(hereafter vegetation greening) and browning (hereafter vegetation browning) refer to field-126	

observed changes in vegetation4,12,13,24. Historically, the general terms greening and 127	

browning were thus used to describe both a proxy of vegetation change and/or vegetation 128	

change itself depending on context. This lack of precise usage causes conceptual 129	

misunderstandings about Arctic greening and attribution to the drivers of change. Here, we 130	

present the current understanding of Arctic spectral and vegetation greening and browning 131	

to lay the foundations for a consensus between the remote sensing and field ecology 132	

perspectives.  133	

 134	

Vegetation indices as proxies of vegetation productivity 135	

Long-term trends in global vegetation dynamics are most commonly quantified from time 136	

series of spectral vegetation indices derived from optical satellite imagery (Figure 1). These 137	
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indices are designed to isolate signals of leaf area and green vegetation cover from 138	

background variation by emphasizing reflectance signatures in discrete regions of the 139	

radiometric spectrum6,29–32. Common vegetation indices include the Normalized Difference 140	

Vegetation Index (NDVI, Figure 2), Enhanced Vegetation Index (EVI) and Soil Adjusted 141	

Vegetation Index (SAVI), among others33–35. NDVI correlates with biophysical vegetation 142	

properties like Leaf Area Index (LAI) and the fraction of Absorbed Photosynthetically Active 143	

Radiation (fAPAR)14,36–39. However, these vegetation indices were not developed in polar 144	

contexts40 and are only proxies of photosynthetic activity rather than direct measurements of 145	

biological productivity33,39,41. NDVI is the most commonly used vegetation index because it is 146	

simple to calculate with spectral bands monitored since the launch of early-generation Earth-147	

observing satellites in the 1970s (Figure 2) and is perhaps best defined as a measure of 148	

above-ground vegetation greenness.  149	

 150	

The longest-term openly-available NDVI datasets have been produced from satellite-based 151	

sensors with broad spatial coverages and different sampling frequencies. The most common 152	

datasets include: 1) the Advanced Very-High-Resolution Radiometer (AVHRR – 1982 to 153	

present) on board NOAA satellites, 2) the Moderate-resolution Imaging Spectroradiometer 154	

(MODIS – 2000 to present) on board NASA satellites, and 3) NASA-USGS Landsat sensors 155	

(1972 to present). Most studies of long-term trends calculate annual measures of maximum 156	

NDVI to derive change over space and time, though time-integrated approaches are also 157	

used30,42–44. However, trends in NDVI data produced from different satellite datasets or using 158	

different methods do not always correspond at a given location6,45,46 (Figure 1a,c). Thus, it 159	

can be challenging to distinguish ecological change from differences due to methods and 160	

sensor/platform-related issues when interpreting localised spectral greening or browning 161	

signals (Table 1, Figure 2).  162	

  163	
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Ecological factors influencing greening and browning trends 164	

The ecological processes underlying spectral greening or browning measured by satellites 165	

are diverse and may unfold across overlapping scales, extents and timeframes. In tundra 166	

ecosystems, vegetation changes linked to spectral greening could include: encroachment of 167	

vegetation on previously non-vegetated land surfaces18,47, changes in community 168	

composition – such as tundra shrub expansion5,19,27, and/or changes in plant traits such as 169	

height48,49, leaf area, or phenology50–52. Tall shrub tundra typically has a higher NDVI than 170	

other tundra plant types49,53,54, and bare ground29 has a much lower NDVI than vegetated 171	

tundra (Figure 2). Spectral browning could be related to a variety of factors including for 172	

example loss of photosynthetic foliage12 or increases in bare ground cover due to permafrost 173	

thaw55 (Figure 1). Thus, changes in the species composition, growth form and traits of plant 174	

communities can influence greening and browning trends. 175	

 176	

Physical factors influencing greening and browning trends 177	

Widespread non-biological changes in high-latitude ecosystems could confound and 178	

decouple spectral greening or browning trends from changes in plant productivity (Table 1). 179	

Land cover, topography, and associated soil moisture, surface water, land-surface 180	

disturbances and snow-melt dynamics can all influence the measured spectral greenness of 181	

landscapes56–63 and likely influence greening trends. For example, changes in the extent of 182	

summer snow patches63, surface water60 or surface soil moisture59 that are often associated 183	

with landscape-scale topographic variation could influence the measured NDVI of the land 184	

surface. At high latitudes, optical satellite sensors are only effective for a short annual 185	

window due to the prolonged polar night, while low sun angles and persistent cloud cover 186	

reduce data quality in the summer season (Table 1). The unique physical properties of high-187	

latitude ecosystems in addition to the constraints of polar remote sensing are often 188	

underemphasized in remote sensing studies of Arctic vegetation change. 189	

  190	
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Arctic browning and heterogeneity of spectral greening trends 191	

Not all areas of the Arctic are spectrally greening (Figure 1), and in recent years spectral 192	

browning and heterogeneity of spectral greening trends have been highlighted3,4,12,13,23. 193	

Ecological explanations for vegetation browning include for example the sudden loss of 194	

photosynthetically active foliage due to extreme climatic events64–67, biological interactions 195	

(e.g., disease or herbivore outbreaks)68–70, permafrost degradation23,55 (Figure 1), increases 196	

in standing dead biomass71, coastal erosion72, salt inundation73, altered surface water 197	

hydrology74,75 or fire9,76,77
. Spectral browning, however, could be attributed to reduced 198	

productivity caused by adverse changes in growing conditions such as lower water 199	

availability, shorter growing seasons3 or nutrient limitation27. Nonetheless, long-term spectral 200	

greening trends remain far more pervasive than spectral browning in tundra ecosystems. 201	

Figures vary from 42% greening and 2.5% browning from 1982 to 2014 in the GIMMS3g 202	

AVHRR dataset78, 20% greening and 4% browning from 2000 to 2016 in Landsat data15 and 203	

estimates of 13% greening and 1% browning for the MODIS trends calculated for 1000 204	

random points in the tundra polygon in Figure 1 from 2000 to 2018. At circumarctic scales, 205	

the magnitude, spatial variability, and proximal drivers of patterns and trends of spectral 206	

greening versus browning are not well understood. 207	

 208	

Correspondence between satellite and ground-based observations 209	

Evidence for correspondence among in-situ vegetation change and trends in satellite-210	

derived vegetation indices is mixed47,79–81. NDVI trends across satellite datasets do not 211	

necessarily directly correspond with one another6,9, nor does any one sensor or vegetation 212	

index combination correspond directly with in-situ vegetation change47. For example, NDVI 213	

has been related to interannual variation in radial shrub growth5,10,82, yet how radial growth 214	

links to change in leaf area, aboveground biomass, or landscape measures of productivity is 215	

not always clear83–85 (Figure 3). AVHRR NDVI greening trends did not correspond with the 216	

lack of change observed with Landsat NDVI data and in-situ plant composition between 217	

1984 and 2009 in North Eastern Alaska47. Direct comparisons of productivity changes from 218	
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vegetation cover estimates18,86, biomass harvests53 or shrub growth87 are complicated by the 219	

lack of annual-resolution in-situ data and low sampling replication across the landscape. We 220	

attribute the mixed evidence for correspondence between in-situ and satellite-derived 221	

measures of tundra vegetation change and greening to the complexities of existing 222	

terminology, challenges of interpretation of spectral vegetation indices at high latitudes, and 223	

the scaling issues as outlined below.  224	

 225	

In addition to productivity analyses, changes in growing season length and advances in plant 226	

phenology have been documented using both satellite43,78,88–91 and ground-based datasets, 227	

and here also paired comparisons do not always correspond (Figure 4). Measures of longer 228	

growing seasons have been attributed to earlier snowmelt and/or earlier leaf emergence in 229	

spring92, and longer periods of photosynthetic activity or later snowfall in autumn93. However, 230	

few studies have monitored both leaf emergence and senescence of tundra plants in situ 231	

and so far provide no evidence for an increasing growing period at specific sites94,95. In 232	

addition, community-level analyses indicate shorter flowering season lengths around the 233	

tundra biome50. Shifts in plant phenology with warming50 could also be linked to changing 234	

species composition or diversity18,48,86, thus influencing the phenological diversity across the 235	

landscape96,97. Satellite records may not capture the ecological dynamics of vegetation 236	

phenology at high latitudes, as snow cover can obscure the plant seasonal signal and 237	

deciduous plants only make up a portion of the vegetated land cover. Thus, uncertainty 238	

remains whether satellite-derived changes in circumarctic phenology represent a longer 239	

snow-free period uncoupled from the vegetation response or an actual realized longer 240	

growing season of plants94,98–100.  241	

 242	

Clarifying the terminology 243	

To distinguish spectral greening and browning events from longer-term trends, we propose 244	

clarified definitions of events and trends. For an individual pixel, we define the spectral trend 245	

as an increase or decrease in NDVI (or other spectral vegetation index) over decadal time 246	
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scales and a spectral event as a temporal outlier in the vegetation index relative to the long-247	

term trend. Trends should be determined using a Theil-Sen estimator or similar robust 248	

statistical test for analyses of satellite data30,101. We define a spectral greening trend as an 249	

increase of the vegetation index over decadal time scales. In situ, we interpret a vegetation 250	

greening trend as improved conditions for photosynthesis, reduced resource limitation and/or 251	

positive responses to disturbance in plant communities, resulting in greater aboveground 252	

biomass, leaf area, productivity or changes in plant community composition. We define a 253	

spectral browning trend as a decrease in the vegetation index over decadal time scales. A 254	

vegetation browning trend may correspond with an in-situ change in vegetation productivity 255	

due to plant dieback or loss of vegetation cover through biotic or abiotic disturbances. We 256	

define spectral greening events as short-term increases in vegetation index greenness that 257	

can be attributed to an ecological process such as revegetation of ground cover after fire 258	

and spectral browning events as short-term decreases in the vegetation index that can be 259	

attributed to a disturbance such as permafrost thaw or plant dieback. The definitions we 260	

propose here distinguish between slower acting climatic or biotic drivers of greening or 261	

browning trends versus event-driven changes caused by weather, biotic pulses, or other 262	

regional events such as fire.  263	

 264	

Differentiating events and trends 265	

In any measure of remotely sensed or field-based greening separate consideration of trends 266	

and events will increase ecological interpretability (Figure 5). Spectral greening and 267	

browning trends operate at any spatial scale, from localised patches to landscapes or even 268	

biome extents over decades. In contrast, spectral greening and browning events, such as 269	

those caused by vegetation dieback or rapid vegetation increase after disturbance, are often 270	

restricted to patch and regional scales over shorter durations. Events often have more 271	

limited extents relative to trends due to their proximal causes, like changes in herbivory or 272	

precipitation. Broader scale events are also possible (e.g. globally synchronized reductions 273	

in vegetation productivity caused by changes in insolation related to an intense volcanic 274	
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eruption102). Therefore, greening or browning events might be embedded within overall 275	

spectral greening or browning trends, both temporally and/or spatially, without necessarily 276	

driving them (Figure 5). Examining the trend direction, magnitude and variance around the fit 277	

over time can shape more detailed investigations into the ecological interpretation of Arctic 278	

spectral greening trends.  279	

 280	

The influence of baselines and temporal sampling 281	

The baseline to which we compare productivity change will influence our interpretation of 282	

trends103. Spectral greening or browning trends and events may result in threshold changes 283	

where on-the-ground productivity does not return to the longer-term baseline (Figure 5; e.g., 284	

pulse in recruitment at treeline104 or shrubline105 or a large fire77). In both satellite datasets 285	

and field observations, the baseline conditions are often constrained by the limitations of 286	

data availability rather than any deliberately selected starting point6. The low temporal 287	

sampling frequency of a few days to a few weeks of many legacy remote-sensing datasets 288	

(e.g., AVHRR, MODIS, Landsat, etc.) also introduces temporal scale-dependent effects that 289	

may be magnified in Arctic systems (Table 1). For example, comparisons of phenology 290	

across latitudes can be less reliable at higher versus lower latitudes due to shorter growing 291	

seasons and therefore fewer satellite data collection points for use in change detection 292	

analyses42,88,89. Metrics based on the annual maximum NDVI of a given pixel are more likely 293	

to be influenced by temporal sampling artefacts at high latitudes than those that integrate 294	

productivity estimates through time, such as the growing season integrated NDVI 295	

(GSINDVI)42, time-integrated NDVI (TiNDVI)43 or early growing season integrated NDVI 296	

indices44. Trends in either instance could be observed or not observed due to statistical 297	

reasons related to sample size and/or the strength or linearity of the trend. Thus, simple 298	

linear analyses of annual greenness metrics derived from satellite data may not always 299	

capture real-world ecological change (Figure 5).  300	

  301	
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Challenges in the interpretation of vegetation indices 302	

In addition to the need for more clearly defined terms, challenges remain in the ecologically 303	

meaningful interpretation of long-term trends in optical satellite data, especially at high 304	

latitudes. The statistical relationship between a vegetation index and biomass, leaf area, 305	

phenology, or any other measures of productivity can vary due to a suite of intrinsic (e.g., 306	

sensor design, quality flagging algorithms), extrinsic (e.g., atmospheric conditions, sun angle, 307	

snow cover)6,106 and biological factors107 (Table 1). For example, the centre wavelength and 308	

width of spectral bands (e.g., in the red or near-infrared) used to generate vegetation indices 309	

were designed for different purposes in different sensors (Figure 2). While the NDVI formula 310	

may be the same, the covered spectral wavelength ranges differ between different 311	

datasets108 (Figure 2b). Thus, the datasets may be more or less sensitive to specific non-312	

vegetative influences, such as atmospheric scattering or the magnitude of spectral mixing 313	

associated with non-vegetated surfaces57. Spectral unmixing is the process of decomposing 314	

the spectral signature of a mixed pixel into the abundances of a set of endmember 315	

categories109. Longer-term vegetation change is difficult to resolve from cross-sensor 316	

comparisons among different satellite datasets or even among intercalibrations of the same 317	

sensor type (Figure 1). For these reasons, caution is warranted when comparing vegetation 318	

indices derived from different satellite products or even versions of the same product with 319	

different atmospheric corrections, quality assessments, and spatial/temporal compositing 320	

approaches6,108. Differences in NDVI signal processing are actively studied by the remote-321	

sensing community (Table 1), but could be better accounted for or quantified in Arctic 322	

greening studies.  323	

 324	

Nonlinearities in NDVI as a vegetation proxy 325	

Direct interpretations of vegetation changes from spectral data are contingent on the local 326	

relationship between NDVI and in-situ vegetation. The statistical relationships between 327	

vegetation indices and measures of Arctic vegetation biomass are nonlinear29,110 (Figure 2). 328	

This nonlinearity presents challenges for trend interpretation that are illustrated in Figure 2a. 329	
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Here, an absolute increase in biomass for a ‘low biomass’ community towards a ‘moderate 330	

biomass’ community would result in a positive NDVI trend, but that same absolute biomass 331	

increase from moderate to high biomass would show virtually no trend in NDVI due to 332	

saturation (Figure 2). Thus, the relationship to common ecological variables like changes in 333	

biomass or shrub ring widths (Figure 4) can be obscured by nonlinearities. Because the 334	

greening and browning terms are tied to changes in vegetation proxies, rather than direct 335	

biological measures, a lack of correspondence could occur between remotely-sensed 336	

vegetation proxies and in-situ vegetation change (Figure 2, 4 and 5). Such potential 337	

discrepancies exemplify why caution should be used when interpreting linear trends in 338	

proxies like NDVI (Figure 1) that are nonlinearly related to vegetation productivity without the 339	

use of in-situ data to corroborate conclusions.  340	

 341	

Scaling issues in Arctic greening analyses 342	

Scale and hierarchies present a longstanding challenge in the interpretation of remotely-343	

sensed vegetation proxies111–113 (Figure 5). All long-term vegetation proxy time series 344	

(Landsat, MODIS, AVHRR) spatially aggregate spectral data to pixels (i.e., grains) that span 345	

hundreds of square metres to tens of square kilometres. The spectral signatures of plants 346	

and non-vegetative features in a landscape are reduced to a single value. The loss of 347	

variability within pixels masks information useful for the attribution of greening signals to 348	

processes across ecological hierarchies from populations and communities to ecosystems 349	

(Table 1, Figure 3 and 5). For example, within a single AVHRR GIMMS3g pixel, a 350	

subselection of 1 x 1 km pixels are upscaled to 8 x 8 km32. Within this aggregated pixel, 351	

ecological contributions to spectral greening signals such as increased shrub cover on 352	

south-facing slopes or revegetation of drained lake beds may be mixed with browning 353	

signals from for example disturbances such as retrogressive thaw slumps or vegetation 354	

trampling by herbivores (Figure 1). High-latitude pixels may also contain shadows caused by 355	

low-sun angle, patchy snow- and/or cloud-cover (Table 1). Thus, the emergent time series 356	

from such a pixel describes no single vegetation dynamic or environmental factor, but rather 357	
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their integrated spectral responses. Broad-scale patterns of spatial variability in greening and 358	

browning across pixels are also influenced by grain size113 (Figure 1, 2, 5). Finer resolution 359	

satellites such as Landsat can reduce, but not necessarily eliminate such spectral mixing15. 360	

However, the extent to which the sometimes-contradictory greening and browning signals 361	

found across different spectral datasets can be attributed to the influence of the scale of 362	

measurement is poorly understood.  363	

 364	

Complexities of capturing phenology 365	

Measuring landscape phenology with satellite data presents additional challenges to 366	

ecological interpretation of Arctic greening (Table 1). The variability of timing of satellite 367	

imagery from year to year particularly at high latitudes91 can confound measures of 368	

phenology (known as phenometrics). Cloud or fog cover is highly variable and sensitive to 369	

changing sea ice conditions in coastal Arctic sites44. Seasonal variation in cloud and fog 370	

cover influences both data availability and image compositing approaches in many 371	

phenology products91. In addition, vegetation metrics from early spring are much more likely 372	

to be influenced by snow, standing water or low sun angle than those closer to peak 373	

biomass in mid- to late-summer8,54,59. However, early spring is a critical period for 374	

establishing a baseline for curve fitting or thresholding used to derive phenometrics. 375	

Ultimately no phenometric is best suited to all Arctic environments or time periods114. Snow 376	

regimes and land cover variability differ annually and regionally and thus phenometrics using 377	

coarse-grain imagery integrate different abiotic and biotic signals at different points in space 378	

and time114. Phenological differences of days to weeks or even months can result from 379	

analyses using different methods and metrics for the same datasets at the same location115. 380	

These relative differences are of substantial ecological importance given the short growing 381	

seasons of the Arctic78,114 (Figure 4). Circumarctic analyses of vegetation indices generally 382	

indicate that phenological shifts in the spectral greenness of the land surface are 383	

widespread78,88–90. However, the magnitude and extent of spatial and temporal scaling issues 384	
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in high-latitude remotely-sensed phenology trends warrant further consideration and 385	

research112.  386	

 387	

Towards a consensus perspective on Arctic greening 388	

The fields of remote sensing and field-based ecology will benefit from jointly addressing the 389	

complexities of interpreting spectral and vegetation greening and browning trends. Analyses 390	

from one satellite platform or one specific ecological context is not sufficient to disentangle 391	

Arctic greening complexity. The required next steps will be an integration of perspectives 392	

and approaches through existing and new international research efforts to address the 393	

following critical research gaps: 394	

 395	

1. Addressing scale issues by integrating proximal remote sensing and in-situ 396	

observations into circumarctic greening analyses 397	

Analyses of observations across scales will allow us to bridge the gap and improve our 398	

mechanistic understanding of the links between in-situ vegetation dynamics and broader 399	

remotely-sensed patterns and trends. New instruments for carrying out in-situ and proximal 400	

remote-sensing observations for comparison with satellite data are developing rapidly. 401	

However, we must urgently develop standardized field data collection protocols. In order to 402	

facilitate future synthesis, we need to incorporate data from long-term ecological 403	

monitoring12,18,86,94, historical imagery116, phenocam networks117, flux towers118, high-404	

resolution imagery such as from aircraft, towers, and drones119 and satellites.  405	

 406	

2. Incorporation of heterogeneity and uncertainty into analyses to improve confidence in 407	

detection of Arctic greening trends 408	

New finer spatial or temporal resolution data will inform analyses of historic greening trends. 409	

Current circumarctic Landsat analyses are shedding light on greening trends by exploiting 410	

finer spatial resolution data while accounting for the lower temporal resolution of observation 411	

records15. Recent and ongoing release of finer-resolution satellite datasets (e.g., EU-funded 412	
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Sentinel missions, Digital Globe, Planet constellations) and data products (e.g., the Arctic 413	

Digital Elevation Model) will provide finer spatial (2-10 m) and/or temporal resolution (1-5 414	

days) data across the Arctic120. We can gain a better understanding of past spectral greening 415	

signals from legacy satellite datasets by conducting standardized reprocessing with for 416	

example statistical methods incorporating uncertainty in observations such as image quality 417	

information, improved atmospheric corrections and snow detection.  418	

 419	

3. Inclusion of new observational tools beyond optical vegetation indices to clarify the 420	

mechanistic links between spectral greening and vegetation change 421	

In addition to incorporating finer resolution datasets, new types of data collection can inform 422	

our understanding of what greening patterns and trends represent. Emerging remote 423	

sensing campaigns using hyperspectral sensors or those that can measure Solar-Induced 424	

Fluorescence (SIF)121 will provide new insights into vegetation dynamics. However, future 425	

sensor development across satellite, aircraft and near-surface platforms should be designed 426	

to maximize comparability. In addition to new data collection, novel data integration 427	

approaches, for example those employing machine learning, will provide greater insights into 428	

biome-scale analyses linking remote sensing observations with ecological change in high-429	

latitude ecosystems21,122. 430	

 431	

Conclusions 432	

Recent research has highlighted the complexity in observed Arctic greening and browning 433	

trends. Although satellite data have been used to detect and attribute global change impacts 434	

and resulting climate feedbacks in Arctic ecosystems20,22, numerous questions and 435	

uncertainties remain. The three major challenges in resolving these uncertainties are: 1) 436	

improving the clarity of the definitions of widely used terminology associated with greening 437	

and browning phenomena, 2) promoting the understanding of the strengths and limitations of 438	

vegetation indices when making ecological interpretations and, 3) better incorporating and 439	

accounting for different scales of observation and uncertainty in analyses of changing tundra 440	
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productivity and phenology. New sensors and better access to legacy data are improving our 441	

ability to remotely sense vegetation change. However, new data alone will not provide 442	

solutions to many of the longstanding conceptual and technical challenges. The complexity 443	

of Arctic greening will only be fully understood through multidisciplinary efforts spanning the 444	

fields of ecology, remote sensing, earth system science and computer science. As a field, 445	

we need to look forwards to quantify contemporary and future change, but also backwards 446	

by conducting reanalyses of historical data. Ultimately, we urgently need a deeper 447	

understanding of the relationships between patterns and processes in greening and 448	

browning dynamics to improve estimates of the globally-significant climate change 449	

feedbacks in high-latitude ecosystems20.  450	
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Table 1. A variety of geophysical13,106,123, environmental44,60,61 and ecological12,47,49,54,57,110 451	

factors can influence the magnitude and direction of change in vegetation indices and are 452	

particularly problematic at high latitudes6. The effects include: 1) Radiometric effects: 453	

differences among satellite datasets including band widths, atmospheric effects, cloud-454	

screening algorithms, sensor degradation, orbital shift and bidirectional reflectance 455	

distribution functions originating from differences in field of view and sun geometries. 2) 456	

Spectral mixing: the blending of sub-pixel spatial heterogeneity that can influence the overall 457	

pixel signal (Figure 2). 3) Adjacency effects: the reflectance of surrounding pixels that can 458	

influence the signal of a given pixel (Figure 2). And, 4) a variety of environmental and 459	

ecological factors from snow melt and soil moisture dynamics to composition of evergreen 460	

versus deciduous or vascular versus non-vascular plants. 461	

Factors 
influencing 
vegetation 
indices 

Specific effects Influence on apparent greening patterns and trends 

Low sun angle Radiometric effects At high latitudes, low sun angles and cloud shadows can have a greater 
influence on vegetation indices relative to lower latitudes62. NDVI varies 
with sun angle, an effect magnified in spring and autumn62. Shadows 
also reduce NDVI and may be difficult to detect in coarse grained 
imagery44. 

Cloud cover Radiometric effects, 
Spectral mixing, 
Adjacency effects 

Thin cloud, fog and smoke can influence imagery, reducing NDVI. 
Cloud and fog are particularly problematic in coastal regions and can 
vary greatly between image acquisitions44. Cloud-screening algorithms 
differ among satellite datasets (in part as a function of available spectral 
bands), and partly cloudy or hazy conditions are particularly difficult for 
screening algorithms to detect consistently. In addition, the fogginess of 
Arctic locations can vary over time due to changing temperatures44 
and/or sea ice conditions124.  

Standing water Spectral mixing, 
Adjacency effects 

Standing water60 can influence comparisons of vegetation indices 
across space and may not be detectable in coarse-grained imagery, 
despite influencing spectral signatures. NDVI values of water are 
generally low, however shallow water or standing water intermixed with 
vegetation or algal growth may not be identified as water by quality 
filters and may have higher NDVI. Water within a pixel may lead to 
artificially low NDVI values and can influence estimates of NDVI change 
over time. This is especially relevant to the Arctic during the spring and 
summer as snow melts and turns into ephemeral ponds and lakes 
whose spectral signatures will be mixed with nearby vegetation125. 
NDVI signals could be driven by changes in standing water over time 
associated with changing precipitation, permafrost conditions, and/or 
warming rather than by changes in vegetation56,57,60,125,126.  

Snow patches Spectral mixing, 
adjacency effects 

Sub-pixel sized snow patches will decrease the NDVI for a given tundra 
area57. NDVI values of snow are strongly negative. Earlier snow loss or 
later snow return may drive a strong positive trend in NDVI. Longer 
persistence of snow on the landscape in patches may not be filtered by 
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quality algorithms, yet could still lead to lower NDVI values.  

 Snow versus 
phenology dynamics 

Surface reflectance just after snow off is commonly used as the 
baseline when fitting phenology models. This approach masks the 
effects of sub-nivean phenological progression and/or may 
overemphasise the role of snow-off or snow-on dates as a driver of 
plant phenology57,63.  

Soil moisture Spectral mixing Soil moisture can influence the reflectance of vegetated tundra 
surfaces58,59. NDVI values are sensitive to soil moisture, which may or 
may not covary with vegetation change125. Furthermore, NDVI is 
relatively insensitive to changes in very sparsely vegetated (e.g., the 
High Arctic127) and very densely vegetated (e.g., forest or shrubland128) 
environments.  

 Plant water content Mosses can absorb water and thus influence surface reflectance of 
landscapes independent of vascular plant phenology and 
productivity126. 

Short growing 
season 

Timing of image 
acquisition 

Trends in NDVI metrics and growing season length can be influenced 
by the timing of data acquisition. To compare spatial patterns in 
vegetation indices among sites, images are required from the same 
time within the growing season and the same time points within the 
day126. However, the short growing seasons at high latitudes make 
image acquisition particularly challenging. Satellites have different 
temporal frequencies for overpasses thus influencing comparisons. 
Growing season length decreases at higher latitudes, thus the impact of 
missing data is of a greater magnitude as latitude increases. 

Rapid plant 
phenology 

Chosen phenometric The specific metrics used to quantify phenology will influence the 
resulting patterns observed91. Combining datasets with different spatial 
and temporal resolutions can limit comparisons (Figure 2). Variation in 
phenology metrics due to curve-fitting methods can exceed variation in 
measured phenology signals. Thus, using the same phenological 
functions across large geographic and ecological gradients, such as 
across the high latitudes, may introduce biases and/or errors. 

Phenological 
diversity 

Changes in phenology of individual species or plants growing in 
particular microclimates can lead to shifts in landscape phenology50. 

Plant traits and 
functional 
groups or types 

Isolating changes in 
plant productivity and 
canopy structure 
versus composition 

Vegetation indices are related to radiation absorbed by green foliage 
(APAR), canopy structure, species composition, leaf-level traits and 
biomass37,39 (Figure 2). However, how vegetation indices and 
ecological properties covary across diverse Arctic ecosystems is not 
well established. Other factors including bare ground cover, canopy 
structure, etc. that influence vegetation indices must be accounted for 
to isolate productivity change from other land surface changes. 

Vascular and 
deciduous versus 
non-vascular and 
evergreen plants 

Non-vascular or evergreen plants can obscure the deciduous vascular 
plant seasonal signal49,81. Tundra without vascular plants can 
additionally have a substantial cover of biological soil crust communities 
consisting of lichens, cyanobacteria, mosses and green algae that may 
also influence NDVI107,126. 

  462	
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 463	

Figure 1. Arctic greening, which varies across space and time and among satellite 464	

datasets, is driven by both actual in-situ change and, in part, by the challenges of 465	

satellite data interpretation and integration. Trends in maximum NDVI vary 466	

spatiotemporally and the magnitude of changes is different depending on what satellite 467	

imagery is analysed (a and c, data subsetted to temporally overlapping years; b and d, 468	

GIMMS3gv1 1982 to 2015 and MODIS MOD13A1v6 2000 to 2018). Regional trends may 469	

summarise localised greening, for example shrub encroachment (e) and browning such as 470	

permafrost thaw (g) occurring at the pixel scale on Qikiqtaruk - Herschel Island in the 471	

Canadian Arctic (f). NDVI trends (a and c) were calculated using robust regression (Theil-472	

Sen estimator) in the Google Earth Engine129. Dashed line indicates the Arctic Circle and the 473	

black outlined polygon (a and c) and green ‘Tundra’ line (b and d) indicates the Arctic tundra 474	

region from the Circumpolar Arctic Vegetation Map (www.geobotany.uaf.edu/cavm/). The 475	

inset map in d indicates the regions for the mean trends for yellow ‘Eurasia’ and blue ‘North 476	

America’ polygons.  477	
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 478	

Figure 2. Ecological interpretation of trends in the Normalized Difference Vegetation 479	

Index (NDVI) requires a consideration of non-ecological factors. NDVI, calculated as the 480	

difference between red and near infrared bands (NIR), has a non-linear relationship with 481	

several common metrics of plant productivity, like biomass and LAI (a). Satellite platforms 482	

have different spectral band widths which can influence calculations of NDVI despite shared 483	

centre wavelengths (b). NDVI values from commonly available satellite data products and 484	

drone datasets (c) differed substantially across products and across plots of three different 485	

vegetation types (e) during the period of peak biomass in 2017 on Qikiqtaruk – Herschel 486	

Island, Yukon. Here, factors such as a lack of atmospheric correction (f), cloud or fog 487	

contamination (g), sub-pixel mixing (h), different plot grain sizes of data in more or less 488	

heterogeneous vegetation cover and timing of data acquisition could have all influenced 489	

NDVI values. Data were analysed and extracted for 30 x 30 m plots from 13th July to 4th 490	

August in 2017 using the Google Earth Engine129 for the MODIS MYD13A1v6 (pixel size = 491	

500 m x 500 m) and Landsat 8 (pixel size = 30 m x 30 m) NDVI product, and the top-of-492	

atmosphere Sentinel-2 NDVI product without atmospheric corrections (pixel size = 10 m x 10 493	

m) NDVI, and Pix4D-processed drone data collected using a radiometrically calibrated four-494	

band multispectral sensor (Sequoia, pixel size = 12 cm x 12 cm) on an FX-61 fixed-wing 495	

platform with the High-latitude Drone Ecology Network protocols (https://arcticdrones.org/). 496	

We purposefully present data with quality and processing issues above to highlight the 497	
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challenges in quantifying NDVI in regional-to-global studies where data quality issues may 498	

be spatially or temporally variable among locations.   499	
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 500	

Figure 3. Sub-pixel spatial heterogeneity in vegetative greening and browning cannot 501	

be accurately captured at coarser grains. Landscape patterns (a, e), trends (b, f), and 502	

variability (d, h) in NDVI may not represent in-situ observations of vegetation change. NDVI 503	

trends and interannual variability had mixed correspondence with increases in shrub 504	

abundance (c, g) and interannual variability in shrub growth on Qikiqtaruk – Herschel Island, 505	

Yukon94 (c, point framing in twelve 1-m2 plots; d, Salix pulchra = 21, 506	

https://github.com/ShrubHub/QikiqtarukHub) and Kangerlussuaq, Greenland84,130 (g, 13 507	

0.25-m2 plots; H, Betula nana = 42, Salix glauca = 32, 508	

https://arcticdata.io/catalog/view/doi:10.18739/A24X0Q, 509	

https://arcticdata.io/catalog/view/doi:10.18739/A28Q18, 510	

https://arcticdata.io/catalog/view/doi:10.5065/D6542KRH). Errors are standard error bars 511	

around mean values (c, g) and 95% credible intervals for a Bayesian hierarchical model of 512	

the relationship between detrended annual growth rings and NDVI with shrub individual and 513	

year as random effects (d, h). Detrending was done using a spline fit from the dplR package 514	

in R. Credible intervals for model slopes overlapped with zero (d, h). Marginal R2 values 515	

indicate the variance in detrended ring widths explained by detrended NDVI (d, h). 516	

Landscape NDVI patterns (a and e) were measured using a Parrot Sequoia and FX-61 fixed 517	
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wing platform according to High-latitude Drone Ecology Network protocols in the summer of 518	

2017 (https://arcticdrones.org/) and analysed using the Pix4D software. Coarser-grain NDVI 519	

time series (MODIS MOD13A1v6, 500m pixels) were calculated using Google Earth 520	

Engine129 and the Phenex package in R.   521	
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 522	

Figure 4. Satellite-derived phenology estimates do not always match with in-situ plant 523	

phenology observations. Satellite-observed snow-free season length of the land surface 524	

(here defined as the period with NDVI greater than 50% of the max NDVI, b and c) might not 525	

directly correspond to the growing season of vascular plants in tundra ecosystems, 526	

particularly in autumn (a). Snow-melt dynamics can obscure the plant phenology signal and 527	

non-vascular or evergreen plants can obscure the deciduous vascular plant seasonal signal. 528	

Plant phenology data were collected at 20 monitoring plots on Qikiqtaruk-Herschel Island for 529	

the species Salix arctica, which makes up approximately 30% of the cover in the grass- and 530	

forb-dominated vegetation type. Analyses indicate that both leaf emergence and senescence 531	

have become earlier, resulting in no change in realized growing season length despite 532	

substantial increases in the snow-free period of the land surface94 (a – c, 533	

https://github.com/ShrubHub/QikiqtarukHub). Satellite data are MODIS MOD13A1v6 534	

extracted for the pixel containing the phenology transects using Google Earth Engine129 and 535	

the Phenex package in R (b and c).  536	
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 537	

Figure 5. Arctic greening is influenced by both issues of measurement scale and 538	

inference across ecological hierarchies. Spectral resolution (Figure 2), extent (Figure 1), 539	

spatial resolution (Figure 2), landscape-level heterogeneity (Figure 3), temporal resolution 540	

(Figure 4), and ecological factors all influence the interpretation of greening trends (a). 541	

Within-pixel changes in land surface greening and browning events and trends can translate 542	

into different greening and browning patterns as their effects are scaled up (b). Ecological 543	

processes that comprise greening and browning trends include a combination of events, 544	

such as a pulse of plant recruitment or growth, a dieback of plants due to an extreme winter 545	
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climate event, herbivore or disease outbreak or other disturbance and subsequent recovery. 546	

Longer-term change such as increasing shrub cover or progression of permafrost 547	

disturbances can also influence real-world NDVI time series. These different factors add 548	

complexity to the interpretation of Arctic greening trends. The scale and hierarchy of 549	

observations need to be incorporated into and/or accounted for in future analyses of Arctic 550	

greening.   551	
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