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Global plant trait relationships extend to the
climatic extremes of the tundra biome
H.J.D. Thomas et al.#

The majority of variation in six traits critical to the growth, survival and reproduction of plant

species is thought to be organised along just two dimensions, corresponding to strategies of

plant size and resource acquisition. However, it is unknown whether global plant trait rela-

tionships extend to climatic extremes, and if these interspecific relationships are confounded

by trait variation within species. We test whether trait relationships extend to the cold

extremes of life on Earth using the largest database of tundra plant traits yet compiled. We

show that tundra plants demonstrate remarkably similar resource economic traits, but not

size traits, compared to global distributions, and exhibit the same two dimensions of trait

variation. Three quarters of trait variation occurs among species, mirroring global estimates

of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of

global trait-space, informing prediction of plant community change in a warming world.
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Despite the vast diversity of life on Earth, vascular plants
are limited by trade-offs in leaf1, wood2, seed3 and root4

traits, enabling the characteristics of global plant species
to be organised along a few general dimensions5–8. Two dimen-
sions, plant size (large and woody vs. small and non-woody) and
resource economics (acquisitive vs. conservative), have been
shown to describe the majority of variation in six widely-sampled
plant traits, which together represent key differences in plant
form and function8. Such trait relationships predict community
assembly9,10 and ecosystem functions11,12 across biogeographic
gradients13 and in response to environmental change12,14.
However, our current understanding of trait relationships has
largely been formulated using tropical and temperate data, which
comprise over 90% of global trait observations15 (Fig. 1).
Although some site-specific studies exist16,17, whole-plant trait
relationships have not been widely tested at the environmental
extremes of plant life such as the cold tundra biome, where plants
could exhibit rare or unique trait relationships resulting from
adaptation to extreme environmental conditions18,19.

Our current understanding of global trait relationships is also
based on the assumption that the majority of trait variation
occurs among species20. However, trait variation within com-
munities is ultimately driven by differences among individuals,
rather than species21. Large within-species trait variation could

thus obscure or alter interspecific trait relationships22–24,
restricting their potential for ecological prediction across scales
and among biomes. Within-species variation accounts for
approximately 25% of trait variation at the global scale21, but has
been hypothesised to be greater in extreme environments due to
environmental filtering of trait expression25, at local geographical
scales where species richness is low26,27, and for species that span
large biogeographical gradients21 due to wide niche breadth. The
tundra biome thus provides an optimal system to test our current
understanding of trait variation within plant communities due to
a small species pool28, large species ranges13, and extreme
environmental conditions29.

In this study, we test whether our existing understanding of
plant trait relationships extends to the tundra biome. We estab-
lish the largest database of Arctic and alpine tundra plant traits
ever compiled by combining 20,991 records from the TRY
database15 with 30,616 records from the Tundra Trait Team
(TTT)30, representing 89% of the tundra species pool. We select
six globally well-sampled plant traits: adult plant height, leaf area,
seed mass, leaf mass per area (LMA), leaf nitrogen, and leaf dry
matter content (LDMC) (Supplementary Table 1). These traits
underpin two important dimensions of global trait space8, and
link to ecosystem functions including primary productivity7,
carbon storage31, and nutrient cycling12. We test three
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Fig. 1 Tundra trait data within geographical and climate space. a Map of trait observation sites for six plant traits, indicating global trait observations in
TRY (grey points), tundra species observations in TRY (orange points) and TTT data (purple points). b Location of trait collection sites in climate space for
all available plant species (grey) and tundra species (blue). Major biomes are mapped onto climate space (T-Tundra; B-Boreal Forest; TG-Temperate
Grassland; TeF-Temperate Deciduous Forest; TeRF-Temperate Rain Forest; TrF-Tropical Deciduous Forest; TrRF-Tropical Rain Forest; Sa-Savanna;
D–Desert)146. c Number of trait observations (upper panel) and species (lower panel) for all available plant species (grey) and tundra species (blue), by
latitude. Dotted curves indicate global distributions with the inclusion of TTT collected data.
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hypotheses: (1) Trait expression among tundra species will be
constrained relative to global trait space due to extreme envir-
onmental conditions, yet will exhibit the same two dimensions of
plant form and function. (2) The contribution of within-species
trait variation to total trait variation in the tundra will be greater
than the global average of 25%21. (3) The contribution of within-
species trait variation to total trait variation will be greater at local
rather than at larger geographical scales. We show that tundra
plants exhibit constrained size traits, but not resource traits,
relative to global species. However, tundra plants exhibit the same
two dimensions of trait variation, indicating that plant trait
relationships are generalizable to cold extremes of life on Earth.
We also show that differences among species comprise the
majority of trait variation, but that trait variation within species
becomes increasingly important at small geographical scales.

Results and discussion
Trait expression is constrained in the tundra. We found that
tundra species occupied a constrained subset of global trait space
for size-related traits but not resource economic traits (Fig. 2a, c,

Supplementary Fig. 1). Many tundra species, such as the pros-
trate, small-leaved, and wind-dispersed evergreen shrub Cassiope
hypnoides, were located at the very edge of global trait space,
consistent with adaptation to extreme environmental conditions
in the tundra32. Given that tundra plant communities are found
above treeline, and therefore by definition exclude tree species, we
expected to see reduced plant height among tundra species
compared to global species. However, we found that lower plant
height corresponded with smaller leaf area and seed mass (Fig. 2a,
axis 1, Supplementary Fig. 1), as would be predicted from glo-
bal trait relationships5. In contrast, traits associated with resource
economics occupied almost the full global range (Fig. 2a, axis 2),
with both highly acquisitive species such as chickweed (Stellaria
media), and highly conservative species such as crowberry
(Empetrum nigrum) present at tundra sites. Species with
faster resource-related traits and larger size-related traits were
associated with warmer environments within the tundra (Fig. 2b,
Supplementary Fig. 1), potentially informing the adaptive capa-
city to climate warming within and among tundra plant
communities.
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Fig. 2 Global trait relationships are maintained in the tundra biome despite constrained size, but not resource economic, traits among tundra species.
a Global trait-space defined by six plant traits for 1,358 plant species in the global dataset (grey points) and 219 tundra species (blue points). b Distribution
of trait space for tundra species only. Note that PCA axes are reversed in tundra data relative to global data. Points are coloured by temperature category,
corresponding to the mean annual temperature of trait collection sites for each species (Cold <−1 °C, Mid >−1 °C but <1 °C, Warm >1 °C, Supplementary
Fig. 1). Arrows indicate the direction and weighting of trait vectors. We also tested the consistency of the patterns found (c) within global trait space
and for (d) tundra trait space using subset of “extreme” tundra species that included only those species found only north of the Arctic circle or at sites with
a MAT < 0 °C.
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Global trait relationships extend to the tundra biome. We
found that plant trait relationships among tundra species were
consistent with global patterns (Fig. 2b, d), despite a limited range
of trait values and lower species richness in the tundra biome. The
two dimensions of global trait space (plant size and resource
economics) aligned with trait relationships among tundra species
(Supplementary Fig. 2), and together explained 64.5% of trait
variation in the tundra. However, the relative importance of the
PCA axes was reversed relative to global data (Supplementary
Fig. 3), suggesting that tundra plant strategies are primarily dif-
ferentiated by resource economics. Leaf area was more strongly
associated with plant size among tundra species and with
resource economics among global species (Supplementary Fig. 4).
In contrast, leaf dry matter content (LDMC) was more strongly
associated with resource economics in the tundra. LDMC cor-
related closely with stem density, which was associated with plant
size and structure among global plant species8, especially among
tree species2. Nevertheless, trait co-variation was maintained in
the tundra despite the absence of trees, which comprise half of
global trait space8 and have been a focus of many previous studies
of plant trait relationships1,2,5,6.

The majority of trait variation occurs among species. We found
that differences among species explained the majority of trait
variation in the tundra biome, accounting for an average of 76.8%
of variation across the six traits examined (Fig. 3a, Fig. 4) and
reinforcing one of the key assumptions of trait-based ecology20.
Functional group categorisation alone explained an average of
25.6% of trait variation across all six traits, but varied sub-
stantially by trait;33 differences among species still accounted for
the majority of trait variation even if functional group classifi-
cations were removed. The contribution of within-species varia-
tion to total trait variation (23.2%) was surprisingly close to the
global mean (25%21), despite harsh environmental conditions and
large species ranges in the tundra. However, within-species var-
iation differed substantially by trait, accounting for as much as
55% of trait variation for leaf nitrogen, in line with previous
studies15,21. Size-related traits demonstrated greater overall var-
iation than resource economic traits, even though variation
relative to global trait space was constrained along the size-related
axis (Fig. 2a). Overall, our findings support the hypothesis that
species-level variation comprises the majority of the global
spectrum of plant form and function8,20, underlining the

importance of species richness and turnover in determining plant
community characteristics, trait diversity, and linkages to eco-
system function.

Trait variation across geographic scales. We found that the
contribution of within-species trait variation was largely con-
sistent across geographic scales (Fig. 4a-d), but comprised a
greater proportion of total variation at local scales (<10 km2),
approximately the size of current high-resolution cells in gridded
climate datasets. Sites with low sampled species richness also
exhibited high within-species variation (<10 species; Fig. 4e-h),
suggesting that spatial patterns were at least in part driven by
a small species pool at local scales. Although both theoretical
models27 and empirical studies21 have suggested that the con-
tribution of within-species trait variation should increase at local
scales, we demonstrate this relationship from the plot to the
biome scale.

Our findings indicate that the relationships between plant traits
found at the global scale are generalizable even at the climatic
edge of global trait-space. Our results suggest that plants are
subjected to globally consistent trade-offs in trait expression7,8,16

despite dramatically different environmental constraints17,
growth forms29 and evolutionary history6 across biomes. Our
findings reinforce claims that relationships between these widely
measured plant traits are indicative of fundamental trade-offs in
plant life strategy8,9, including resource acquisition (LMA, LA,
LN, LDMC)7, competition (PH, SM, LA, LDMC)34, and
reproduction (PH, SM)5. However, plant size and resource
economics have yet to be integrated with other key facets of plant
life strategy such as phenological35,36, chemical and below-
ground traits4,18. These less frequently measured traits need to be
incorporated into analyses to more comprehensively capture how
extreme biomes such as the tundra occupy global trait space.

Tundra plant species showed remarkable variation in resource
economic traits within the tundra biome relative to global trait
space8. Given the low vascular plant diversity associated with
many tundra environments, this variation in plant leaf resource
economics is notably high and suggests that tundra species have
developed a wide range of ecological strategies to cope with
extreme conditions and limiting resources. In contrast, tundra
plant species occupied half the global range of size-related traits,
potentially indicating that two of the major axes of global trait
variation may be differentially selected by environmental
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conditions, and could thus respond differently to environmental
change. If the spatial patterns observed in our study are indicative
of temporal responses13,37, climate change will likely shift trait
distributions towards increased plant height, leaf area and seed
mass, as has already been observed at some sites38,39, and for
plant height at the tundra biome scale13.

Contrary to our expectations, the contribution of within-
species trait variation in the tundra was lower than global

estimates21. Our findings support previous studies indicating that
the relative importance of within-species variation decreases with
increasing environmental stress25, leading to wide functional
divergence between species, as found for resource economic
traits33,40. Lower within-species variation may further indicate
that plasticity is lower among tundra species, which are typically
slow growing and nutrient limited41. However, rapid and
sustained plastic responses to environmental change have been
documented at some tundra sites38,39. Indeed, large differences in
both trait expression, as demonstrated here, and plasticity have
been found to promote coexistence in other resource-limited
comminities36. If the majority of trait variation occurs among
species, and if phenotypic plasticity is comparatively low, shifts in
community-level traits following environmental change may
occur more slowly than would be predicted from biogeographic
gradients13,37. More substantial trait change would thus require
the immigration of new species from warmer sites.

We found that within-species trait variation comprised a large
component of trait variation at local scales—the scale at which
many critical ecological processes occur11. Despite the importance
of trait differences among species in the tundra, we nevertheless
found that that within-species variation accounted for approxi-
mately one quarter of total trait variation, and thus should not be
ignored in trait-based analyses42. High within-species trait
variation at local scales has previously been predicted from
ecological theory21,27, and may result from low local-scale species
richness27 or reveal the influence of local-scale environmental
variability (i.e., topography, snow, drainage, etc.)24,43–45. Account-
ing for multiple sources of trait variation has been shown to
constrain trait-based vegetation models7,12 and subsequently to
improve prediction of the response of key ecosystem processes to
environmental change11,13,46. However, such trait-based model-
ling approaches are rare, and require precisely geo-referenced trait
databases that link trait records to environmental variables. We
therefore support calls to collect additional trait data in changing
and novel climate conditions13,30, to improve the techniques and
technologies used to remotely sense plant trait information28, and
to incorporate trait variation into Earth system modelling47.

Overall, our findings demonstrate that relationships and trade-
offs among six fundamental plant traits are generalisable across
lineages and among biomes to the cold extremes of the planet. It
remains to be tested whether such relationships are consistent in
other environmental extremes, such as desert ecosystems.
Understanding the differences in trait expression across global
trait-space offers fundamental insights into the rules that
underpin evolution, community assembly, and ecosystem
response to environmental change. Quantifying trait expression
and variation thus offers a clearer picture of how plant
communities and ecosystem functions will respond as climate
change alters environmental conditions around the world.

Methods
Tundra biome definition. In line with previous biome-scale assessments of tundra
vegetation community change48–50, we defined the tundra biome as the vegetated
regions above treeline at high latitude and high altitude. Tundra species were
identified as those present in sampling plots from two biome-scale experiments, the
International Tundra Experiment (ITEX)51 and associated sites49, and the sUM-
MITDiv network52, or those present at trait collection sites with a mean annual
temperature below 0oC. Tundra plant communities include many widely-
distributed and locally common species that are found across large geographical
gradients and a variety of environments51. We included trait records of tundra
species collected outside of tundra environments in this study because i) we were
specifically interested in the maximum potential within-species variation among
tundra species, ii) defining tundra environments on a purely climatic basis
(excluding biotic community in the definition) is very difficult and would require
arbitrary decisions regarding biome boundaries, and iii) many trait records in the
TRY database do not contain georeferenced collection coordinates and thus would
be impossible to classify based on environment (Fig. 1b).
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Trait selection. We selected six plant traits: plant height (PH, maximum measured
height), seed mass (SM, dry mass), leaf area per leaf (LA, fresh leaf area), leaf mass
per area (LMA, ratio of leaf dry mass to fresh leaf area), leaf dry matter content
(LDMC, ratio of leaf dry mass to fresh leaf mass), and leaf nitrogen (LN, nitrogen
per unit leaf dry mass). These six traits are considered to represent fundamental
dimensions of ecological strategy8,53 and are commonly measured in the tundra30,
thus maximising trait coverage.

Trait data collection. We extracted trait data from the TRY15 3.0 database
(available at www.try-db.org) for tundra species1,2,17,54–142. We extracted traits of
all tundra species from the TRY database regardless of location to maximise the
capture of trait variation per species. We supplemented TRY data with additional
trait data from the “Tundra Trait Team” (TTT) database30. All species names from
ITEX, TRY and TTT were matched to accepted names in The Plant List using the
R package Taxonstand (v. 1.8) before merging the datasets143. We assigned species
to four traditional functional groups—evergreen shrubs, deciduous shrubs, gra-
minoids, and forbs—based on previous classification of ITEX species49. We
excluded stem-specific density (SSD) from all analyses, except for comparisons
with Diaz et al.8 (Supplementary Figs. 9–11) since SSD had low collection coverage
in the tundra and was available for too few species (n= 52). We also extracted trait
data and collection site coordinates from TRY 3.0 for all global species to provide
global context in geographical-climate-space and trait-space analyses following
previously published approaches in Kattge et al.15 and Diaz et al.8.

Data cleaning-TRY. TRY trait data were subjected to a multi-step cleaning pro-
cess. Firstly, all values that did not represent individual measurements or species
means were excluded. Secondly, we identified overlapping datasets within TRY and
removed duplicate observations whenever possible. The following datasets were
identified as having partially overlapping observations: GLOPNET–Global Plant
Trait Network Database, The LEDA Traitbase, Abisko and Sheffield Database,
Tundra Plant Traits Database, and KEW Seed Information Database (SID).

Thirdly, we removed duplicates within each TRY dataset (e.g., if a value is listed
once as “mean” and once as “best estimate”) by first calculating the ratio of
duplicated values within each dataset, and then removing duplicates from datasets
with more than 30% duplicated values. This cut-off was determined by manual
evaluation of datasets at a range of thresholds. Datasets with fewer than 30%
duplicated values were not cleaned in this way as any internally duplicate values
were assumed to be true duplicates (i.e., two different individuals were measured
and happened to have the same measurement value).

Finally, we removed all species mean observations from the “Niwot Alpine
Plant Traits” database and replaced them with the original individual observations
as provided by the trait collector (Marko J. Spasojevic) in order to ensure all trait
measurements were for individuals.

Data cleaning–TRY and TTT combined. Both datasets were checked for
improbable values, with the goal of excluding likely errors or measurements with
incorrect units, but without excluding true extreme values. It was particularly
important to avoid artificial reduction in the range of trait values in this study,
since we were explicitly interested in trait variation. We followed a series of data-
cleaning steps, in each case estimating an error risk for a given observation (x) by
calculating the difference between x and the mean (excluding x) of the group in
question and then dividing by the standard deviation of the group. We employed a
hierarchical data cleaning method, because the standard deviation of a trait value is
related to the mean and sample size. First, we checked individual records against
the entire distribution of observations of that trait and removed any records with
an error risk greater than 8.0 (i.e., a value more than eight standard deviations away
from the trait mean). For species that occurred in four or more unique datasets
within TRY or TTT (i.e., different data contributors), we estimated a species mean
per dataset and removed observations for which the species mean error risk was
greater than 3.0 (i.e., the species mean of that dataset was more than three SD’s
away from the species mean across all datasets). For species that occurred in fewer
than four unique datasets, we estimated a genus mean per dataset and removed
observations in datasets for which the error risk based on the genus mean was
greater than 3.5. Finally, we compared individual records directly to the distribu-
tion of values for that species. For species with fewer than four records, we did not
remove any values. For species with more than four records, we excluded values
above an error risk y, where y was dependent on the number of records of that
species and ranged from an error risk of 2.25 for species with fewer than 10 records
to an error risk of 4.0 for species with more than 30 records. This procedure was
performed on the complete tundra trait database – including species and traits not
presented here. In total 3515 observations (2.8%) were removed. In all cases, we
visually checked the excluded values against the distribution of all observations for
each species to ensure that our trait cleaning protocol was reasonable.

All trait observations with latitude/longitude information were mapped using
the R package ‘mapproj’144 and checked for illogical values (e.g., falling in the
ocean). These values were corrected from the original publications or by contacting
the data contributor whenever possible. Where locations could not be verified, geo-
referenced coordinates were removed and the trait data not included in
geographic analyses.

Final trait database. After cleaning out duplicates and suspected mistakes,
we retained 51,657 unique trait observations (of which 20,991 were already in
TRY and 30,616 were newly contributed by the Tundra Trait Team) across
the six traits of interest. Of the 447 identified species in the ITEX dataset, 397
(89%) had trait data available from TRY or TTT for at least one trait (range
60–100% per site). Those species without trait data generally represent rare or
uncommon species unique to each site. On average, trait data were available for
97% of total plant cover across all sites (range 39–100% per site; Supplementary
Table 1).

Data compiled through the Tundra Trait Team are available in Bjorkman
et al.30. The total TTT database submitted to TRY includes traits not considered
in this study, as well as tundra species that do not occur in our vegetation survey
plots, for a total of 54,210 trait observations on 530 species. For more information
on trait data and trait cleaning methods see Bjorkman et al.13 and Bjorkman
et al.30.

Climate data. To plot the distribution of tundra trait data within climate space, we
used the coordinates of all unique collection sites for both tundra (TRY and TTT)
and global (TRY) datasets.

CHELSA climate variables (mean annual temperature–BIO10_1 and mean
annual precipitation–BIO10_12, http://chelsa-climate.org/) were extracted for all
trait observations with latitude/longitude values recorded (39,573 records in total,
12,434 of which were from TRY and 27,139 from TTT). Because most observations
did not include information about elevation, temperature estimates for individual
trait observations were not corrected for elevation.

We calculated the ‘temperature class’ of tundra species based on the mean
summer temperature of trait collection sites for each species. Mean summer
temperature was considered to be the most ecologically meaningful climatic
variable since it captures conditions during the growing season for each plant
species. We extracted summer temperatures from the CHELSA dataset based on
BioClim variable BIO10_1. We assigned species to three temperature classes: Cold
tundra=mean summer temperature less than −1 °C, Mid tundra =mean summer
temperature greater than −1 °C but less than 1 °C, Warm tundra = summer
temperature of coldest site greater than 1 °C.

Analysis of trait relationships. All analyses were conducted in R (v. 3.3.3). Code
is available at github.com/hjdthomas/Tundra_trait_variation.

We performed principal component analysis (PCA) on plant traits for all global
species, and for tundra species only using the R package ‘prcomp’. As far as
possible, we replicated the methods outlined in Diaz et al. (2016)8, though this was
not always possible due to the use of gap-filled traits and additional data not
included in TRY in Diaz et al. (2016)8. We log transformed trait values to account
for log-normal distributions, which is considered appropriate for data with
different measurement scales8. To test whether the inclusion of SSD altered results,
and for comparison with Diaz et al. (2016)8, we performed supplementary analysis
using a conversion from SSD to LDMC based on the correlation between these two
traits8,145, since LDMC and SSD individually have fewer trait observations than
other traits at the global scale. Although only an approximate conversion, this
greatly increases the number of species available for the analyses and does not
affect the distribution of trait-space or direction of trait loadings (Supplementary
Figs. 8–10). We did not use converted values in the main analysis to avoid
introducing additional sources of variation.

To visualise trait-space, we plotted the first two PCA axes and direction and
weighting of trait loadings. We performed PCA on the full global dataset (including
tundra data) and highlighted tundra species within the overall distribution to
identify the location of tundra species within global trait-space. We repeated PCA
using tundra species only to compare global trait relationships with tundra trait
relationships. We compared all pairwise trait correlations for both global and
tundra species (Supplementary Fig. 2) to investigate consistency in trait-trait
relationships, and investigated the strength and direction of trait loadings for global
and tundra analyses to compare the location and relative importance of PCA axes
(Supplementary Fig. 3). Finally, we calculated the contribution of traits loadings to
each PCA axis using the ‘fviz_contrib’ function in the R package ‘factoextra’
(Supplementary Fig. 4).

To investigate whether the location of species within tundra trait-space or along
the two major axes of variation was influenced by climate, we categorised species
according to temperature class (point colour). We plotted the distribution of
species along PCA axes for each temperature class to test whether trait variation
within multivariate trait-space was influenced by the species’ thermal range
(Supplementary Fig. 1).

Variance partitioning. To investigate the sources of trait variation in the tundra,
we conducted variance partitioning by fitting a generalised linear mixed-effects
model to the variance across nested classification hierarchy (functional group/
species) using the R package ‘nlme’. We then conducted a variance component
analysis on this model using the ‘varcomp’ function in the R package ‘ape’.
Partitioning was performed on a trait-by-trait basis, so does not account for
co-variation between traits. We used unexplained variance to represent the
within-species variation (including within-individual variation), though some
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unexplained variation could also arise from measurement error. Variance par-
titioning was conducted for each site with greater than three observations per
trait per species, and at least three sampled species, and summarised using
the mean of all sites. To complement variance partitioning, we also calculated
the coefficient of variation (CV; the ratio of the standard deviation to the mean)
to compare variation among traits. CV was calculated for each trait for all
species.

Variance partitioning across geographic scale. To assess how variance explained
by differences within-species and between-species varied with geographic scale, we
iteratively grouped sites based on geographic proximity. We calculated the geo-
graphic distance between all trait sampling sites using the R package ‘geosphere’.
We excluded sampling sites with fewer than three species per site, or fewer than
two trait observations per species. To test the sensitivity of findings to trait or
species availability, we also conducted a sensitivity analysis excluding sites with
fewer than five species per site or trait observations per species (Supplementary
Figs. 12, 13). For a given trait sampling site, we conducted variance partitioning
analysis at the site scale (scale= 0). We then added data from the nearest site
(shortest geographical distance) and conducted variance partitioning analysis on
this expanded dataset (geographic scale= distance from starting site to most dis-
tant site). We added sites iteratively until all sites were included i.e., the biome-scale
was reached. We repeated this analysis across all trait sampling sites. To examine
whether sources of trait variance were affected by differences in species richness at
different geographical scales, we also calculated the species richness (number of
unique species for which we have trait measurements, i.e., size of the measured
species pool) of the dataset at each sampling step.

To summarise the relationship between variance explained, geographic scale
and species richness, we performed a breakpoint analysis using the R package
‘segmented’ with one break point. To calculate errors, we grouped trait observation
sites into 5 km or 1 species bins and calculated the 95% intervals of the spread of
values. These were plotted as error bounds using a second-order polynomial
smooth. We visualised all analyses with geographic scale and species richness
presented on a log10 scale to highlight change at local scales. For non-logged figures
see Supplementary Figs. 6, 7. To investigate if differences in the contribution of
within-species and among-species variation to total trait variation were significant,
we additionally grouped data into 10 equal bins, and tested the significance of
source of variance using linear models, with a significance threshold of 0.05. We
highlighted insignificant bins on figures as grey shaded areas, which indicate scales
at which the amount of within-species variation is not significantly different from
among-species variation. We examined (1) the mean contribution of within-species
and among-species variation to overall trait variation, and (2) proportion of
sampling combinations for which within-species variation accounted for at least
one third and one half of overall trait variation above and below each break point
(Supplementary Fig. 5). Finally, we tested the sensitivity of all analysis to species
selection by repeating analyses for only trait sampling sites north of the Arctic
Circle (66.5 °N) or from collection locations with a mean annual temperature
below 0 °C (Supplementary Figs. 14–20).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All trait data compiled through the Tundra Trait Team are available at http://github.
com/TundraTraitTeam/TraitHub, see Bjorkman et al.30. Additional global trait data are
available through the TRY database (www.try-db.org)15.

Code availability
Code is available at http://github.com/hjdthomas/Tundra_trait_variation.
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