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Scientific knowledge in the field of ecology is increasingly enriched by data acquired by the general public 
participating in citizen science (CS) programs. Yet, doubts remain about the reliability of such data, in 
particular when acquired by schoolchildren. We built upon an ongoing CS program, Oak Bodyguards, to 
assess the ability of schoolchildren to accurately estimate the strength of biotic interactions in terres-
trial ecosystems. We used standardized protocols to estimate attack rates on artificial caterpillars and 
insect herbivory on oak leaves. We compared estimates made by schoolchildren with estimates made by 
professional scientists who had been trained in predation and herbivory assessments (henceforth, trained 
scientists), and trained scientists’ estimates with those made by professional scientists with or without 
expertise (untrained) in predation or herbivory assessment. Compared with trained scientists, both school-
children and untrained professional scientists overestimated attack rates, but assessments made by the 
latter were more consistent. Schoolchildren tended to overestimate insect herbivory, as did untrained pro-
fessional scientists. Raw data acquired by schoolchildren participating in CS programs therefore require 
several quality checks by trained professional scientists before being used. However, such data are of no 
less value than data collected by untrained professional scientists. CS with schoolchildren can be a valu-
able tool for carrying out ecological research, provided that the data itself is acquired by professional 
scientists from material collected by citizens.
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Introduction
Scientific knowledge is more accessible than ever before, 
particularly owing to an increase in open access publica-
tions and the outreach activities of scientists worldwide. 
Still, many topics in life and environmental sciences that 

are considered settled by scientists are misunderstood 
by the general public, even among individuals with sub-
stantial science literacy and education (Drummond and 
Fischhoff 2017; Fiske and Dupree 2014; Kahan et al. 2012). 
Citizen science (CS) programs rely on participation of the 
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general public in scientific research in collaboration with 
or under the direction of professional scientists (European 
Commission 2013; Haklay 2015). The rapid development 
of these programs, in addition to vastly increasing avail-
able data, offers an unprecedented opportunity to bridge 
gaps between science and society by engaging the general 
public with the process of science and increasing motiva-
tion for inquiry and interest in scientific topics.

CS programs in the field of ecology can benefit both 
science and society (Wals et al. 2014). For professional 
scientists, involving the general public enables the collec-
tion of data on broader spatial and temporal scales than 
would otherwise be possible (i.e., crowdsourcing). This 
practice has been recognized as a highly effective way 
to track various biological phenomena (Dickinson et al. 
2012; Schwartz, Betancourt, and Weltzin 2012). Typical 
CS studies in ecology address the effect of environmental 
factors on biodiversity (e.g., Lucky et al. 2014; Miczajka, 
Klein and Pufal 2015; Saunders et al. 2018) or climate 
change impact on plant or animal phenology (Ekholm et 
al. 2019; Hurlbert et al. 2019; Schwartz, Betancourt, and 
Weltzin 2012). In turn, volunteers engaged in CS programs 
can gain recognition for their skills and develop a deeper 
understanding of scientific concepts and the scientific 
process (Trumbull et al. 2000). This may positively contrib-
ute to both science and environmental education (Wals et 
al. 2014) and raise awareness of environmental issues. As 
a result, CS programs are now promoted by major fund-
ing agencies in Europe and North America (e.g., European 
Commission 2013; McLaughlin, Benforado, and Liu 2019).

Engaging schoolchildren and their teachers can enhance 
the long-term educational and social goals of CS programs 
for several reasons (Makuch and Aczel 2018). First, school 
pupils are guided by their instructors when learning about 
the scientific question raised by the CS program, and 
about the nature of science and its social aspects (Jenkins 
2011; Koomen et al. 2018). Second, exposure to outdoor 
nature during childhood provides a long-lasting positive 
relationship with the environment while increasing peo-
ple’s interest and knowledge about nature (Ganzevoort 
and van den Born 2019; Wells and Lekies 2012). Third, 
CS programs that involve self-selecting volunteers may 
underrepresent many social groups—although strategies 
exist to increase engagement (Pandya 2012)—whereas CS 
programs that target schoolchildren for CS projects have 

the potential to engage a wider cross-section of society in 
science (Jordan et al. 2011).

Nonetheless, the enthusiastic views of win-win inter-
actions through CS programs have been questioned by 
social scientists and ecologists (Jordan et al. 2011). The for-
mer point out that the educational and social impact may 
be overstated (Brossard, Lewenstein, and Bonney 2005; 
Kelemen-Finan, Scheuch, and Winter 2018; Riesch and 
Potter 2014; Scheuch et al. 2018; Trumbull et al. 2000), 
while the latter are concerned about the accuracy of 
data collected by the general public (Burgess et al. 2016), 
especially when schoolchildren are involved. The main 
reason for these concerns is that CS data are arguably of 
lower quality than those collected by professional scien-
tists (Burgess et al. 2016; Makuch and Aczel 2018; Riesch 
and Potter 2014). In response, it has been proposed that 
data collected by schoolchildren involved in CS programs 
can contribute to environmental research, provided that 
research methods are kept simple and require skills that 
the children already have or are able to gain when men-
tored by adults (Makuch and Aczel 2018; Miczajka, Klein, 
and Pufal 2015; Saunders et al. 2018), and the participants 
receive training, even remotely (Ratnieks et al. 2016). 
However, only a few studies have directly compared the 
quality of data acquired by professional scientists versus 
schoolchildren (Miczajka, Klein, and Pufal 2015; Pocock 
and Evans 2014; Saunders et al. 2018; Steinke et al. 2017). 
Evidence that CS programs can generate reliable scientific 
productions are needed to engage scientists with CS.

Here, we report on the preliminary results of the Oak 
Bodyguards CS program which has so far involved school-
children and professional scientists from 16 European 
countries. The project aims to assess the effects of climate 
on two key biotic interactions occurring widely in natu-
ral and anthropogenic ecosystems, i.e., the top-down and 
bottom-up forces controlling insect herbivory on leaves 
of the pedunculate oak, Quercus robur. This species is 
one of the most common and emblematic forest trees in 
Europe (Leroy, Plomion, and Kremer 2019), with a geo-
graphic range spanning more than 19 degrees of latitude. 
Furthermore, it is also widespread in natural, rural, subur-
ban, and urban environments. In this project, schoolchil-
dren and professional scientists placed dummy plasticine 
caterpillars in oak trees to estimate attack rates (Lövei and 
Ferrante 2017; Mäntylä et al. 2008; Roslin et al. 2017). We 
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assessed the accuracy of CS data by comparing attack rate 
and insect herbivory estimates by three types of observ-
ers: professional scientists with previous experience in 
the project methodology (henceforth called trained pro-
fessional scientists), professional scientists with no pre-
vious experience in the project methodology (untrained 
professional scientists), and schoolchildren. We first com-
pared caterpillar attack rate estimates by schoolchildren 
or untrained professional scientists with those of a single 
professional scientist (Elena Valdés Correcher, henceforth 
known as EVC) trained to identify predation marks on 
artificial larvae. Second, in a separate experiment, school-
children and trained and untrained professional scien-
tists estimated leaf insect herbivory from the percentage 
of leaf area removed or damaged by insect herbivores 
(Johnson, Bertrand, and Turcotte 2016), and we compared 
their herbivory estimatesto determine whether school-
children were able to conduct an ecological experiment 
and acquire scientific data of a quality comparable to that 
acquired by professional scientists. We use the results to 
discuss risks and opportunities for the future of CS pro-
grams with schoolchildren.

Materials and Methods
Oak selection 
We designed a simple protocol that was applied by both 
schoolchildren and trained and untrained professional 
scientists. The protocol was written by scientists in collab-
oration with science instructors and communication offic-
ers. It was available in French, English, German, Spanish, 
and Portuguese (Castagneyrol et al. 2019).

In early 2018, 58 teachers with their students and 27 
scientists from 16 European countries participated in the 
project. Each school and scientist selected a minimum 
of 1 and maximum of 18 mature pedunculate oak trees 
with lower branches accessible from the ground (school-
children: 1 to 8 oak trees, median = 2; scientists: 1 to 18 
oak trees, median = 6). We imposed no restrictions on oak 
tree location, age, or size, but professional scientists were 
asked to choose oaks in woods larger than 1 ha. All part-
ners measured oak tree circumference at 1.30 m from the 
ground and recorded oak coordinates with the GPS func-
tion of their smartphones.

All partners installed dummy caterpillars on lower 
branches of their selected oak trees to estimate attack 
rate, and haphazardly collected fresh leaves from the same 
trees to estimate insect herbivory. Although most of the 
schools estimated attack rates, none assessed herbivory. 
We also set up a complementary experiment to evaluate 
precision and accuracy of estimating insect herbivory by 
schoolchildren and professional scientists (see section 
entitled Insect herbivory below).

Attack rate 
To control for latitudinal variation in environmental 
conditions, we matched the start of the experiment to 
the local phenology of the oak trees. Six weeks after oak 
budburst, partners installed 20 dummy caterpillars per 
tree, i.e., five caterpillars on each of four branches (fac-
ing north, south, east, and west) with a minimum distance 

of 15 cm between caterpillars. Caterpillars were made 
of the same green plasticine (Staedler, Noris Club 8421, 
green[5]) provided to all partners by the project coordi-
nators (B. Castagneyrol, EVC). To standardize caterpillar 
size among partners, caterpillars were made from a ball 
of plasticine of 1 cm diameter, and gently pressed/rolled 
onto the middle of a 12 cm-long metallic wire until a 3 
cm-long caterpillar was obtained. Partners were instructed 
to attach the caterpillars to branches using wire, and leave 
the caterpillars on trees for 15 days prior to recording pre-
dation marks. Schoolchildren counted predation marks 
and attributed them to birds, mammals, arthropods, or 
reptiles. In 2018, they tagged and photographed every 
caterpillar with the suspected predation marks from any 
potential predator taxa. To minimise the probability of 
false negative results, we also advised the schoolchildren 
to send photographs of marks that were not clearly recog-
nized as predation marks. Photos were taken from three 
different angles to show the observed damage and were 
labeled in such a way that the file name indicated both 
tree and caterpillar ID. Professional scientists were asked 
to gently remove all caterpillars from the trees and send 
them back to the project coordinators. One school also 
returned caterpillars, although this was not requested. 
A second survey using the same procedure immediately 
followed the first one. In 2019, both schoolchildren and 
professional scientists were instructed to send caterpillars 
back to the project coordinators. Photos and actual cater-
pillars were used by EVC to double-check and to standard-
ize the predation assessment made by individual partners.

Every partner received a field bite guide containing a 
collection of photos illustrating predation marks left 
by different types of predators as well as false positive 
marks on plasticine surfaces that were made by leaves, 
buds, or finger nails. The different predator guilds that 
can be easily identified from their typical marks left on 
plasticine include passerine birds, rodents, snakes, liz-
ards, and insects—mainly beetles and bush-crickets (Lövei 
and Ferrante 2017). The bite guide was available online 
and accessible to all partners through a hyperlink from 
the protocol (Castagneyrol et al. 2019), and teachers were 
invited to contact the scientific coordinator or local scien-
tific partners in cases of uncertainty regarding the marks.

All partners were required to record their observa-
tions in the same standardized recording form. Partners 
indicated (a) the total number of caterpillars installed; 
(b) the number of caterpillars with any type of predation 
marks, (c) the number of caterpillars without predation 
marks; and (d) the number of caterpillars with predation 
marks left by birds (typically V-shaped beak marks and 
holes), arthropods (mandible marks), mammals (parallel 
teeth marks), or lizards (ellipse-shaped line of small teeth 
marks). Therefore, the same attacked caterpillar made a 
minimum of two entries in the recording form. We inten-
tionally asked for redundant information to limit the risk 
of error in data reporting.

Data and biological material were collected by both 
schoolchildren and professional scientists during the 
same time period (from May through July). Project part-
ners filled in the recording form and sent it to the project 
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coordinators with the photos or the caterpillars. A single 
observer (EVC) with expertise in identifying predation 
marks on model caterpillars (Valdés-Correcher et al. 2019) 
screened every photo or caterpillar to verify observations 
reported by partners. It must be noted that false positives 
were more likely to be identified from the photos than 
false negatives. False positives are caterpillars classified by 
project partners as having been attacked when they were 
not. Because of previous reports (Low et al. 2014) and our 
own experience with undergraduate students trained to 
identify predation marks on artificial prey, we anticipated 
that schoolchildren and their teachers would be overly 
enthusiastic, making false positives more likely than false 
negatives. Schoolchildren were instructed to take pho-
tos of caterpillars with suspected predation marks, even 
marks they could not attribute to any predator type. It is 
therefore possible that they did not notice real predation 
marks on caterpillars that were photographed because 
they had marks left by buds, leaves, or finger nails. Such 
cases would represent false negatives. The probability of 
detecting false negative was not an issue when project 
partners returned caterpillars to the project coordinators.

For each oak tree and survey period, we assessed attack 
rate as the proportion of dummy caterpillars with at 
least one predation mark. Although we asked partners to 
record predation marks left by different types of predators 
(in particular birds and arthropods), this level of precision 
could not be reached on photos because of low resolution. 
Therefore, we quantified overall attack rate, regardless of 
predator type.

We estimated the precision and accuracy of attack-rate 
assessments by schoolchildren and untrained professional 
scientists by running two separate linear mixed-effect 
models with attack rate estimated by schoolchildren or 
professional scientists as a dependent variable, attack rate 
estimated by a single trained professional scientist and 
year (as factor) as independent variables, and Partner ID 
and Tree ID nested within Partner ID as random factors 
(Johnson, Bertrand, and Turcotte 2016). From each regres-
sion, we quantified the bias (a deviation between attack 
rate estimated by partners and a single trained observer) as 
the intercept (β0). Positive deviation from β0 = 0 indicates 
an overestimation of attack rate by partners. We quanti-
fied accuracy as the regression slope (β1), where β1 = 1 
indicates high accuracy and β1 ≠ 1 indicates that accuracy 
in attack-rate assessment varied with actual attack rate. 
We used parametric bootstrapping with 1,000 simulations 
to compute 95% confidence interval (CI) around β0 and β1 
and estimate how they deviated from 0 and 1, respectively. 
The null hypotheses were that β0 = 0 and β1 = 1. We con-
sidered that the null hypothesis was rejected if the 95% CI 
did not bracket zero or one. The significance of the fixed 
effect of year was tested based on the F-distribution and 
estimating degrees of freedom with Kenward-Roger meth-
ods (Kuznetsova, Brockhoff, and Christensen 2017).

Insect herbivory 
To compare insect herbivory estimated by schoolchildren 
versus trained and untrained professional scientists, we 
set up a complementary survey (administered by AB). In 

April 2019, we prepared 12 sets of 5 oak leaves randomly 
drawn from a large sample of oak leaves collected in 
September 2018 on 162 oak trees around Bordeaux city 
(SW France) and stored in paper bags at –18°C. For each 
set of leaves, five trained professional scientists with 
previous experience in scoring insect herbivory on oak 
leaves (BC, EVC, AB, TD, and YK [see acknowledgements]) 
estimated insect herbivory as the percentage of leaf area 
removed or impacted by insect herbivores by giving each 
individual leaf a damage score: (0: 0%, A: 1–5%, B: 6–15%, 
C: 16–25%, D: 26–0%, E: 51–75%, F: > 75%; Castagneyrol 
et al. 2013). To reduce variability in estimates of herbivory 
due to observers, we created digital model leaves with 
given amounts of simulated herbivore damage that 
were used as examples for the seven damage classes 
(Castagneyrol et al. 2019). Leaf chewers were the main 
source of insect herbivory on oak leaves, but because 
leaves were drawn at random from a large pool of leaves, 
some were attacked by leaf miners, although none had 
galls. We asked participants to score total insect herbivory, 
regardless of damaging agents. As a result, the damage 
score incorporated leaf area removed by chewers as well 
as covered by leaf mines.

We invited schoolchildren 11 to16 years old (and their 
teachers) from six local secondary schools (equivalent US 
grades 6–10) to visit the first author’s research facilities 
(INRA research station of Pierroton, Bordeaux, France). 
Five groups of 10 to 12 students were introduced to the 
study of insect herbivory by the survey administrator, who 
challenged them to score insect herbivory as accurately 
as professional scientists would do. Students worked in 
groups of 2 or 3, with a total of 24 student groups. Each 
group was given 3 sets of 5 leaves, selected at random 
from the pool of 12 leaf sets. All students scored damage 
using the same digital model leaves as a template. In total, 
each of the 12 leaf sets was processed by six independent 
groups of students.

The same day (or the day after), we invited INRA per-
manent and non-permanent staff members to participate 
in the survey. The volunteers were researchers, engi-
neers, technicians, and Master of Science students. They 
were considered untrained professional scientists). They 
received the same information from the survey admin-
istrator as secondary school students and used the same 
templates to score herbivory. Each of the nine volunteers 
processed every set of five leaves.

We did not keep records of individual leaves and we 
therefore averaged herbivory estimates across leaves for 
each set. We first tested whether individuals with a dif-
ferent background differed in their estimation of insect 
herbivory by running Linear Mixed-effects Models (LMM) 
with (log-transformed) insect herbivory as a response vari-
able, observer type (Observer) as a fixed-effect factor, and 
leaf-set identity and observer identity as random effect 
factors. Because repeated handling of the same leaves may 
have caused some breakage, leading to a progressively 
increased estimation of herbivory, we added Time (number 
of hours since the first assessment) and Time × Observer 
interactions as additional fixed effects in the model. The 
model equation was



Castagneyrol et al: Can School Children Support Ecological Research? Lessons from the Oak 
Bodyguard Citizen Science Project

Art. 10, page 5 of 11

0 1 2

3 4

5

      

         

     

ijk Trained Untrained

Trained

Untrained j k ijk

Herbivory  Observer Observer

Time Time Observer

Time Observer

  

 
   

     

    
    

where β0 was the model intercept (i.e., Observerschoolchildren), 
β1 and β2 were the coefficients of the fixed effects of the 
treatment for trained (ObserverTrained) and untrained pro-
fessional scientists (ObserverUntrained), β3 was the effect of 
Time, β4 and β5 were the effects of the Time × Observer 
interaction, γj and δk were the random intercepts for the 
observer and leaf-set identities, and εijk were the residu-
als. For γj, δk and εijk, we assumed a normal distribution 
with zero mean and variance σ2

γ, σ2
δ, and σ2

ε, respectively. 
σ2

ε contained variation among observers in scoring differ-
ent leaf sets, i.e., the Observer × Leaf set interaction, but 
also all other noise. The significance of fixed effects was 
tested based on the F-distribution and estimating degrees 
of freedom with Kenward-Roger methods (Kuznetsova, 
Brockhoff, and Christensen 2017).

Second, we used σ2
δ to quantify consistency among 

observers in rating herbivory. To do so, we ran an intercept 
only LMM for each group separately (i.e., for students and 
for trained and untrained professional scientists) and cal-
culated intraclass correlation (ICC) for the Leaf set random 
factor (σ2

δ/(σ2
δ + σ2

γ + σ2
ε)). ICC represents the proportion 

of the total variance that is explained by Leaf set identity. 
It is a metric commonly used to estimate repeatability 
(Nakagawa and Schielzeth 2010). The greater the ICC, the 
greater rating consistency among observers scoring the 

same leaf set. We used parametric bootstrap with 1,000 
random draws to estimate ICC 95% CI.

All analyses were done in R (R Core Team 2018) using 
packages lmerTest and car (Fox et al. 2016; Kuznetsova, 
Brockhoff, and Christensen 2015).

Results
Attack rate  
In total, 7,338 dummy caterpillars were installed on 
195 oak trees by 58 schools and 27 scientists. Schools 
and scientists’ data came from from 8 and 14 coun-
tries throughout Europe, respectively (Figure 1). 
Schoolchildren installed and returned 3,289 dummy 
caterpillars. They counted 1,802 of them as attacked 
by predators (i.e., 55%), whereas EVC counted only 868 
caterpillars with predation marks (26%). Professional sci-
entists installed 4,045 caterpillars, 1,629 of which they 
identified as attacked by predators (40%); EVC counted 
1,338 of these caterpillars as attacked by predators 
(33%).

Attack-rate estimates by schoolchildren were 
more biased (intercept estimate ± 95% bootstrap CI: 
β0 = 40.63 ± [22.45, 59.27]) than those by professional 
scientists (β0 = 23.41 ± [13.11, 33.17]). Detailed examina-
tion of pairwise comparisons at the tree level reveals that 
81.5% of assessments made by schoolchildren were above 
the 1:1 line (Figure 2), thus indicating overestimation of 
attack rate as compared with assessments made by a sin-
gle trained observer.

Figure 1: Location of oak trees included in the study. An interactive version of this map can be found in the Sup-
plemental File as Figure 1.
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There was no relationship between attack rates esti-
mated by schoolchildren versus a single trained observer 
(slope estimate ± 95% bootstrap 95% CI: β1 = 0.43 ± 
[–0.02, 0.90]), whereas professional scientists made more 
accurate assessments (β1 = 0.66 ± [0.54, 0.77], Figure 2). 
Attack rates estimated by schoolchildren and professional 
scientists did not differ between years (F1, 53.9 < 0.01, 
P = 0.952 and F1, 23.5 = 0.22, P = 0.644, respectively).

Insect herbivory  
Insect herbivory estimates by trained professional scien-
tists were the lowest (mean ± SE = 9.00% ± 0.51%, range 
2.20% to 19.6%) (Figure 3; Figure S1 in the Supplemen-
tal File), whereas insect herbivory estimates by untrained 
professional scientists were the highest (14.65% ± 1.01%, 
range from 3.80% to 62.00%) (Figure 3; Figure S1 in the 
Supplemental File). Schoolchildren estimates of insect 
herbivory were intermediate (11.55% ± 0.64%, range 
from 2.20% to 27.40%) (Figure 3; Figure S1 in the Sup-
plemental File). Both untrained professional scientists 
and schoolchildren consistently overestimated insect 
herbivory compared wiht trained professional scien-
tists (Figure S1 in the Supplemental File), but this effect 
was not statistically significant at α = 0.05 (F2,31.9 = 2.79, 
P = 0.076) (Figure 3). Herbivory did not vary significantly 
with time (Time: F1, 28.5 < 0.01, P = 0.954; Time × Observer: 
F2, 33.0 = 0.62, P = 0.544).

Interestingly, ICC revealed that the consistency of her-
bivory estimates was comparable between trained profes-
sional scientists (ICC ± 95% CI: 0.58 ± [0.31, 0.84]) and 
schoolchildren (0.54 ± [0.22, 0.76]), whereas estimates 
made by untrained professional scientists were less con-
sistent (0.44 ± [0.13, 0.67]).

Discussion
Our comparison of data collected by different audiences 
(schoolchildren, untrained scientists, and trained scien-
tists) allowed us to examine the quality of ecological data 
collected by schoolchildren, and to suggest improvements 
for future CS programs.

Can schoolchildren collect data of sufficient quality 
for ecological research?
The main strength of CS programs, from a research per-
spective, is the collection power achieved by volunteers 
(especially if the data are independently verified). How-
ever, our findings proved ambiguous with respect to 
whether the resulting data are of sufficient quality to yield 
scientifically robust results. On the one hand, we clearly 
show that schoolchildren overestimated attack rate com-
pared with trained professional scientists (Figure 2). They 
also tended to overestimate insect herbivory, but this 
effect was not significant at the common α = 0.05 thresh-
old (Figure 4). On the other hand, professional scientists 
with mixed expertise in these fields also tended to overes-
timate attack rate and insect herbivory (Figures 2 and 3).

Importantly for the interpretability of the data, overes-
timation of attack rates was consistent across schools, as 
overestimation occurred in 81% of observations. Attack 
rates as assessed by professional scientists were, on aver-
age, slightly higher than attack rates re-estimated by a 
single trained observer. However, pairwise comparisons 
revealed that over- and underestimation of attack rates 
were more balanced in this group. In sharp contrast, we 
also found schoolchildren assessed insect herbivory in 
a more consistent way than untrained professional sci-
entists did. Collectively, our results indicate that data 

Figure 2: Precision and accuracy of school children (a) and professional scientists (b) in assessing attack 
rate (% artificial larvae with predation marks). Dots represent attack rate aggregated at the level of oak trees 
for each survey separately. Dot size is proportional to the number of overlapping dots. Dashed lines indicate a 1:1 
relation. In Panel a, the thick dashed red line represents the non-significant regression line (y = 0.08·x + 50.32, 
marginal R2: Rm

2 < 0.01, conditional R2: Rc
2 = 0.66). In Panel b, the bold red line represents the significant regression 

line (y = 0.66·x + 23.41, Rm
2 = 0.31, Rc

2 = 0.78). EVC, Elena Valdés Correcher (a single professional scientist trained to 
identify predation marks on artificial larvae).
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provided by schoolchildren should be considered with 
caution, but the same holds true for data provided by 
untrained professional scientists.

Why did (so) many schools overestimate attack rate?
Overestimation principally arose from partners scoring 
scratch marks left by contact with buds or leaves as signs 
of predation (Figure 4). Other sources of overestimation 
of predation cannot be ignored. Although no teachers 
mentioned vandalism of experiments, researchers should 
be aware of this possibility, particularly when caterpillars 
are placed on trees in urban environments. This may lead 
to missing caterpillars falsely scored as attacked. In addi-
tion, schoolchildren were told by teachers that the aim of 
the study was to determine “who protects oaks” against 
herbivores. It is possible that schoolchildren (and their 
teachers too) felt they had to see predation marks because 
this is what they perceived as the aim of the experiment. 
However, although confirmation bias is more likely to 
occur in schoolchildren and their teachers, it is important 
to stress that this type of cognitive bias is also common 
among trained professional scientists who may have inter-
preted small cracks (for example) on the caterpillar sur-
face as predation marks (Forstmeier, Wagenmakers, and 
Parker 2017; Zvereva and Kozlov 2019).

Although the protocol clearly specified how to standard-
ize caterpillar size and shape, and emphasized the impor-
tance of standardization, we noticed that the dimensions 
of dummy caterpillars varied widely, both within and 
among schools. In other studies, the probability of detect-
ing predation marks left by avian or arthropod predators 
was found to be influenced by the length and width of arti-
ficial caterpillars (Lövei and Ferrante 2017). It is unlikely 
that variability in the dimension of artificial caterpillars 
has affected the comparison of attack rate as estimated 
by schoolchildren versus trained observers. However, the 
variation found should be regarded as a potential source 

of bias in large-scale multi-partner studies. As a potential 
mitigation procedure, researchers can provide pre-made 
caterpillars to project partners (Roslin et al. 2017). That 
said, making caterpillars according to a standard proto-
col is also an important dimension of student training. 
Despite potential biases in data collection, the pedagogi-
cal aspects of citizen science programs at schools must 
not be neglected, and scientists must recognize trade-offs 
between scientific and pedagogic objectives when plan-
ning mitigation procedures. As a compromise, scientists 
could provide partners with a reference caterpillar made 
of hardened undeformable clay. 3D-printed models of cat-
erpillars attacked by different predator types may also be 
included as examples. In any case, we advise that project 
partners be instructed to carefully pack caterpillars when 
sending these to lead scientists for calibration of preda-
tion assessment. We also recommend that data collected 
by schoolchildren are not directly used in the project—
their value lays in the pedagogical outcomes—but that 
trained professional scientists use their own scoring on 
the material provided by schoolchildren.

Schoolchildren scored insect herbivory in a more 
consistent way than untrained professional scientists did
Johnson et al. (2016) found that bias in herbivory assess-
ment decreased with the number of years of experience 
in herbivory assessment. Assuming that being trained as 
a scientist increases accuracy and the sense of rigor, we 
expected that herbivory would have been scored more 
accurately by untrained professional scientists than by 
schoolchildren. Our findings do not support this predic-
tion. Although both schoolchildren and untrained pro-
fessional scientists ranked the different leaf sets in the 
same order, for a given leaf set, schoolchildren always 
overestimated herbivory compared with trained pro-
fessional scientists, with only one exception (Figure S1 
in the Supplemental File), and untrained professional 

Figure 3: Comparisons between insect herbivory as estimated by school children, trained scientists, and 
untrained professional scientists. Empty dots represent individual observations (i.e., a single assessment on a 
particular leaf set). Filled circles and vertical bars represent means ± SE of the raw data.
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scientists always overestimated herbivory compared with 
schoolchildren, with only one exception (Figure S1 in the 
Supplemental File). However, this tendency was not statis-
tically clear (Figure 3).

Interestingly, both schoolchildren and trained profes-
sional scientists assessed herbivory in a more consistent 
way than untrained professional scientists did, as revealed 
by the greater ICC in estimates. Individuals may vary in 
their observational skills, but training likely reduces this 
variability. Schoolchildren formed groups of 2 to 3 partici-
pants, while untrained professional scientists were alone 
when estimating herbivory. It is possible that within-
group discussion leveled out intrinsic variability in obser-
vational skills and therefore variability of estimates made 
by schoolchildren. An alternative explanation for this 
unexpected finding is that schoolchildren took the activity 
more seriously than untrained professional scientists did. 
Regardless of the cause, these results stress that school-
children are no less reliable than untrained professional 
scientists when it comes to estimating insect herbivory 
(on oak leaves).

How can we make data collected by schoolchildren 
more reliable?
CS programs can help to generate a large amount of data, 
but the quality has been questioned, especially when these 
big data are not based on standard protocols (Bayraktarov 
et al. 2019; Burgess et al. 2016). Few studies have evalu-
ated the quality of data collected by schoolchildren par-
ticipating in CS programs (Miczajka, Klein and Pufal 2015; 
Saunders et al. 2018; Steinke et al. 2017). It emerges from 
these studies that schoolchildren can actually provide 
data accurate enough to support ecological research, pro-
vided that the tasks they are requested to undertake are 
adapted to their skills and that they receive proper train-
ing (Miczajka, Klein and Pufal 2015; Ratnieks et al. 2016; 
Saunders et al. 2018). Although we could not provide face-
to-face training sessions for every school partner involved 
in the Oak Bodyguards project, the project methodology 
was simple and based on a detailed protocol. Nonetheless, 
this simplicity did not suffice to guarantee unbiased data, 
as illustrated by the fact that schoolchildren consistently 
overestimated attack rates. We therefore emphasize that 
CS programs relying on data collected by schoolchildren 
should include several checks of data quality and appro-
priate mitigation procedures. In particular, training ses-
sions undertaken face-to-face or at least remotely must 
be planned before data collection (Ratnieks et al. 2016). 
Finally, whenever possible, the researcher analyzing the 
data should recover the raw material collected by chil-
dren, or at the very least access pictures that allow for 
the re-assessment of measurements (Ekholm et al. 2019; 
Steinke et al. 2017). Importantly, these recommendations 
also hold true for large multi-partner research programs, 
as we also detected bias in data collected by professional 
scientists (Zvereva and Kozlov 2019). Whether variability 
in observations made by schoolchildren is random or can 
be modelled using appropriate covariates is an important 
question deserving further attention.

Conclusion
We found that schoolchildren involved in CS programs can 
support ecological research, but only if their contributions 
are considered with caution. The acquisition of reliable data 

Figure 4: Examples of real and false-positive observa-
tions of predation. (a) Grey arrows point to typical bird 
predation marks. The black arrow points toward marks 
made by the wire when attaching the caterpillar on the 
branch and taking it off. (b) White and grey arrows indi-
cate marks made by arthropod mandibles and bird beaks, 
respectively. (c) Black arrows indicate typical marks erro-
neously counted as predation marks by school children. 
The scar-like mark on the top caterpillar was made when 
rolling the caterpillar onto the wire. Deep marks on the 
bottom caterpillar are imprints of branches and buds.
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requires experimental procedures that are easy to imple-
ment, but even so, a measurement of interpretation bias 
seems essential. Several quality checks and curation proce-
dures are needed prior to using data collected by school-
children for ecological research. Unexpectedly, we found 
that such checks are necessary even for data acquired by 
professional scientists. It must be kept in mind that thrill, 
motivation, and self-confidence are keys to schoolchildren 
engagement with science and with practical scientific activ-
ities (Ganzevoort and van den Born 2019; Ruiz-Mallen et al. 
2016). Our findings that schoolchildren did no worse than 
untrained professional scientists in collecting ecological 
data (here, in estimating insect herbivory) can strengthen 
their confidence and help them gain motivation and a pos-
itive attitude toward science in general. Despite legitimate 
concerns about the quality of data acquired by schoolchil-
dren, following a protocol, collecting and formatting data, 
and sharing the process with scientists are valuable parts of 
training schoolchildren in scientific literacy. The trade-off 
between positive learning outcomes and the quality of raw 
data cannot be ignored, but with appropriate data qual-
ity checks and curation procedures, it actually favors the 
implementation of CS programs at school.
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