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Abstract 13 

It is generally accepted that the spatial distribution of neutral genetic diversity within a 14 

species’ native range mostly depends on effective population size, demographic history, and 15 

geographic position. However, it is unclear how genetic diversity at adaptive loci correlates 16 

with geographic peripherality or with habitat suitability within the ecological niche. Using 17 

exome-wide genomic data and distribution maps of the Alpine range, we first tested whether 18 

geographic peripherality correlates with four measures of population genetic diversity at 19 

>17,000 SNP loci in 24 Alpine populations (480 individuals) of Swiss stone pine (Pinus 20 

cembra) from Switzerland. To distinguish between neutral and adaptive SNP sets, we used 21 

four approaches (two gene diversity estimates, FST outlier test, and environmental association 22 

analysis) that search for signatures of selection. Second, we established ecological niche 23 

models for P. cembra in the study range and investigated how habitat suitability correlates 24 

with genetic diversity at neutral and adaptive loci. All estimates of neutral genetic diversity 25 

decreased with geographic peripherality, but were uncorrelated with habitat suitability. 26 

However, heterozygosity (He) at adaptive loci based on Tajima’s D declined significantly 27 

with increasingly suitable conditions. No other diversity estimates at adaptive loci were 28 

correlated with habitat suitability. Our findings suggest that populations at the edge of a 29 

species' geographic distribution harbour limited neutral genetic diversity due to demographic 30 

properties. Moreover, we argue that populations from suitable habitats went through strong 31 

selection processes, are thus well adapted to local conditions, and therefore exhibit reduced 32 

genetic diversity at adaptive loci compared to populations at niche margins. 33 

Keywords 34 

conifers, exome capture, gene diversity, geographic peripherality, habitat suitability, Pinus 35 

cembra  36 
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Introduction 37 

Mutations as a source of genetic diversity are the major driving force of evolution (Nei, 38 

2013). Most of the new variants behave neutrally, i.e., are not subject to natural selection 39 

(Nei, Suzuki, & Nozawa, 2010), but those variants in the small part of the genome that is 40 

shaped by selection allow populations to adapt to environmental change (Aitken, Yeaman, 41 

Holliday, Wang, & Curtis-McLane, 2008). This adaptive capacity or evolvability of 42 

populations is often based on standing genetic variation inherited through generations rather 43 

than on new mutations spontaneously arising in populations (Barrett & Schluter, 2008; Houle, 44 

1992). This is particularly true for species with a long generation time (e.g. hydrozoans, 45 

reptiles, sponges, ferns, trees), for which the restricted temporal scale of current rapid 46 

environmental change leaves little chance for new beneficial mutations to spread across a 47 

population. Both standing genetic variation and recent mutations may confer adaptive 48 

capacity to novel environmental conditions. Besides mutations, gene flow among populations 49 

is also a key process for introducing new alleles into a population (Slatkin, 1985). 50 

Aside from contemporary biotic or abiotic constraints, the geographic distribution of 51 

species primarily results from their demographic history, e.g., following contraction or 52 

expansion cycles due to glacial oscillations. The central abundance hypothesis (CAH; Brown, 53 

1984; Hengelveld & Haeck, 1982) assumes that species abundance is largest at the centre of 54 

its geographical range and decreases gradually towards peripheral areas. However, empirical 55 

studies have shown that a large number of species do not conform to the CAH (Sagarin & 56 

Gaines, 2002). This is likely due to the fact that the geographic position within a species’ 57 

range (i.e. geographic peripherality, GP, or centrality) and habitat suitability (HS) are often 58 

not spatially correlated and a species’ occurrence is mostly driven by habitat conditions. In 59 

this context, several descriptors were proposed to characterise species presence based on 60 
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ecological niche conditions (Martínez-Meyer, Díaz-Porras, Peterson, & Yáñez-Arenas, 2013). 61 

In the HS approach of Martínez-Meyer et al. (2013), populations that are close to the niche 62 

centre (optimal habitat conditions) are considered core populations, whereas those distant 63 

from the niche centre are considered marginal populations. In cases where geographic and 64 

environmental features of a species' habitat are uncorrelated, using both concepts of GP and 65 

HS allows disentangling the geographic and environmental determinants of population 66 

dynamics. 67 

The CAH can conceptually be applied in the context of genetic diversity, because 68 

large central populations likely have large census and effective population sizes (Nc and Ne) as 69 

well as high among-population gene flow, resulting in high genetic diversity (Macdonald, 70 

Llewelyn, Moritz, & Phillips, 2017). Therefore, past demographic history, in concert with 71 

selection processes, strongly shape patterns of genetic variation across a species’ range 72 

(Felsenstein, 1976). Several empirical studies have shown that overall genetic diversity of 73 

populations is related to their geographic position within the species’ range, with central 74 

populations harbouring higher genetic diversity compared to peripheral populations (Eckert, 75 

Samis, & Lougheed, 2008; Lee-Yaw, Fracassetti, & Willi, 2018; Lira-Noriega & Manthey, 76 

2014). Nevertheless, this pattern seems difficult to generalise. Analyses of closely related 77 

species (e.g. Bombus spp. or Cardellina spp.; Lira-Noriega & Manthey, 2014) have shown 78 

contrasting and species-dependent patterns. The mentioned study additionally used a niche 79 

centroid-based approach to correlate the distance of populations from the niche centre with 80 

their genetic diversity and found, for some species, that core populations harboured highest 81 

genetic diversity, with a gradual decrease in genetic diversity towards marginal populations. 82 

This pattern is expected when HS is negatively correlated with GP. 83 
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The findings described above characterised overall (including genome-wide) genetic 84 

diversity, without differentiating between neutral and adaptive loci. Only a small fraction of 85 

the genome is supposedly shaped directly by natural selection (Exposito-Alonso, Burbano, 86 

Bossdorf, Nielsen, & Weigel, 2019; Fischer, Foll, Heckel, & Excoffier, 2014; Shapiro et al., 87 

2007). Therefore, overall genetic diversity basically represents neutral genetic diversity 88 

shaped by neutral processes such as demographic history, genetic drift, and gene flow, which 89 

is largely uninformative regarding adaptive processes. In contrast, loci under selection often 90 

show distinct patterns of allele frequencies compared to those that evolve neutrally 91 

(Savolainen, Lascoux, & Merilä, 2013). In past investigations of GP and HS, little attention 92 

has been given to such a partitioning of genetic diversity at neutral and adaptive loci, despite 93 

high interest in conservation and population genetics. Investigations on the evolutionary and 94 

environmental drivers of genetic variation have often been based on overall or even solely 95 

neutral genetic diversity (e.g. Lei, Wang, Liu, He, & Li, 2015; Šurinová, Hadincová, 96 

Vandvik, & Münzbergová, 2019). There is thus a clear need to separately analyse neutral and 97 

adaptive regions in the genome to disentangle the geographic and environmental drivers of 98 

genetic variation. Moreover, it is still an open question how genetic diversity at adaptive loci 99 

varies across a species’ range, and to what extent habitat suitability affects this diversity. 100 

Generally, it is assumed that peripheral populations occur in less suitable and less 101 

stable habitats, and often in restricted and small habitat patches. Hence, sizes of peripheral 102 

and marginal populations are likely small, and populations might be rather young, except if 103 

they are relicts (e.g. refugial populations during the last glacial maximum). Moreover, 104 

colonisation of peripheral sites may have originated from different sources, and they are often 105 

far from each other. As a consequence, low gene flow among peripheral populations is 106 

expected, and genetic drift might be strong. Taken together, this situation is expected to lead 107 
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to low neutral genetic diversity in peripheral and in marginal populations (Figure 1a, b; 108 

Hampe & Petit, 2005). In contrast, populations in central geographic positions or at the core 109 

of a species’ niche are generally established in suitable habitat patches. Populations are thus 110 

dense, numerous, and can be old. Consequently, neutral genetic diversity should be high, and 111 

gene flow is expected to homogenise allele frequencies at neutral loci. 112 

Patterns of genetic diversity at adaptive loci are primarily determined by two main 113 

factors (Felsenstein, 1976; Slatkin, 1973); the strength of selection (selection coefficient [s]), 114 

itself influenced by effective population size (Ne; Gravel, 2016), and the counteracting effect 115 

of gene flow (i.e. migration rate [m]). In the scenario where m > s, selection might not be 116 

effective in small marginal populations, especially in unstable habitats where selective 117 

pressure constantly varies. Large core populations should experience high gene flow that 118 

leads to high genetic diversity also at adaptive loci; these populations should therefore be 119 

more diverse than marginal populations as a result of their large Ne (dashed line in Figure 1d). 120 

In the alternative scenario (m < s, solid line in Figure 1d), strong selection generally leads to 121 

low genetic diversity at adaptive loci. Large core populations would have adapted to their 122 

highly suitable habitat, which might result in low genetic diversity at adaptive loci. This is, 123 

however, only the case for single populations; overall genetic diversity at adaptive loci across 124 

all core populations can nevertheless be high, in particular if single populations show 125 

different genetic mechanisms to adapt to a similar habitat and, hence, selective pressures 126 

(Rellstab et al., 2017). Selection in populations of low habitat suitability might have been less 127 

efficient in pruning mal-adapted alleles, leading to populations with higher genetic diversity 128 

at adaptive loci than in populations occurring in highly suitable habitat. In both scenarios on 129 

the relative importance of m versus s, we hypothesise to find no correlation between GP and 130 

genetic diversity at adaptive loci, because selection is exerted by the environment and not by 131 
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neutral geographic processes (Figure 1c). However, since Ne is affecting the effectiveness of 132 

selection and is hypothesised to be correlated to GP (see above), we acknowledge that another 133 

possible scenario suggests that genetic diversity at adaptive loci is influenced indirectly by Ne, 134 

potentially leading to a similar pattern as in Figure 1a. 135 

To test the hypotheses presented in Figure 1, one ideally considers a study species that 136 

(a) experiences strong natural selection, (b) occupies heterogeneous habitats, and (c) exhibits 137 

no strong correlation between GP and HS in order to disentangle these two components that 138 

often covary in space. Under these premises, Alpine Swiss stone pine (Pinus cembra) 139 

provides an ideal study system, because it grows at the timberline ecotone that exhibits high 140 

selection pressures (e.g. by frost and high UV radiation) and occurs in heterogeneous habitats 141 

including various micro-topographic conditions (e.g. slope, exposure, and drainage). The 142 

species is also known to have experienced a complex re-colonisation history after the last 143 

glacial maximum with putatively multiple refugia in the periphery of the Alps (Höhn et al., 144 

2009). As a consequence, GP and HS are decoupled in this system to a certain extent, 145 

allowing us to assess their relative effects on genetic diversity. Here, we use presence/absence 146 

data, species distribution modelling, and exome-wide genomic data of 480 trees in 24 147 

populations to investigate the relationships between GP/HS and genetic diversity at neutral 148 

and adaptive loci. We show how patterns of genetic diversity are distributed across space and 149 

how genetic diversity is influenced by geographic position and environmental conditions. We 150 

further demonstrate how important it is to distinguish neutral and adaptive loci to fully 151 

account for the nature of genetic diversity and its respective drivers. 152 

 153 
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Materials and Methods 154 

Study species and area 155 

Swiss stone pine (Pinus cembra L.) is a five-needle, closed-cone pine of subgenus Strobus 156 

(Gernandt, Geada López, Ortiz García, & Liston, 2005). It has a restricted geographical range 157 

in the Central European Alps and the Carpathian Mountains and is found at the upper range of 158 

forested area (1,500–2,400 m a.s.l.) up to the colonisation front at the tree line. It is a keystone 159 

species of the timberline ecotone that has experienced substantial population decline over the 160 

last two centuries, mainly as a consequence of human activity such as forest clearing for 161 

pastures and ungulate grazing (Höhn et al., 2009; Motta & Nola, 2001). The species is mostly 162 

outcrossing and shows high levels of gene flow supported by wind pollination (Salzer & 163 

Gugerli, 2012). However, dispersal by seed, primarily through spotted nutcracker (Nucifraga 164 

caryocatactes), is spatially limited (Salzer, 2011). Other biotic drivers (e.g., understory 165 

vegetation) and climatic factors seem to play an important role in post-dispersal recruitment 166 

(Meier et al., 2010; Neuschulz, Merges, Bollmann, Gugerli, & Böhning-Gaese, 2018). As 167 

most conifers, P. cembra has a complex and very large genome (29.3 Gbp, 2n = 24; 168 

Zonneveld, 2012). Switzerland, with its long and steep environmental gradients, offers a 169 

unique opportunity to study environmental marginality for an alpine species such as P. 170 

cembra (Figure S1). 171 

 172 

Sampling and collection of occurrence data 173 

We sampled 24 populations across a large environmental gradient covering the two main 174 

phylogeographical lineages of P. cembra (Gugerli, Rüegg, & Vendramin, 2009) in the Swiss 175 

Alpine range (Table S1, Figure 2). In each population, we sampled 20 georeferenced juvenile 176 

trees. Tree ages were estimated in the field by counting annual shoot increments, targeting 177 
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juveniles aged about 10-20 years. In total, we collected needle samples of 480 individuals for 178 

molecular analyses. 179 

We obtained species occurrence data from the fourth Swiss National Forest Inventory 180 

(NFI4 recorded in the years 2009-2017; Fischer & Traub, 2019) and from InfoFlora, the Swiss 181 

national floristic database (https://www.infoflora.ch). The data were manually curated by 182 

removing non-native occurrences (e.g., possibly planted trees), non-validated occurrences 183 

(e.g., uncertain species identification), or records with imprecise geographical coordinates 184 

(precision >50 m). After this filtering, we retained 1,876 presence observations (1,621 from 185 

InfoFlora, 255 from NFI4) and 6,057 absence records from NFI4 (Figure 2). 186 

 187 

Environmental data 188 

We collected topographic and climatic data to characterise environmental conditions in each 189 

population to (a) carry out species distribution modelling (SDMs, Guisan & Zimmermann, 190 

2000) and (b) correlate environmental variation with genomic variation in environmental 191 

association analysis (EAA, Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015). For 192 

topography, we used a 100 m digital elevation model (aggregated from the DHM25 at 25 m 193 

resolution; Swisstopo, 2004) to derive 15 variables (Table S2) based on their informative 194 

power at local scale (Leempoel et al., 2015). We calculated morphometric, hydrologic, and 195 

radiation grids for Switzerland using SAGA 6.2 (details in Table S3; Conrad et al., 2015). 196 

Climatic data consisted of 19 bioclimatic predictors (as described at http://chelsa-197 

climate.org/bioclim/), which were calculated using monthly aggregated temperature and 198 

precipitation data for the reference period 1981–2010. The monthly data were based on 199 

weather station data from the Federal Office of Meteorology and Climatology MeteoSwiss 200 
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interpolated to a resolution of 100 m × 100 m using the 100 m digital elevation model and the 201 

DAYMET software (Thornton, Running, & White, 1997). 202 

 203 

Geographic peripherality and habitat suitability 204 

To characterise the GP of each population, we used the geographic distribution of the species 205 

in the Alps (Caudullo, Welk, & San-Miguel-Ayanz, 2017) to assess the Euclidian distance of 206 

the centroid of each sampled population to the closest range limit. This distance was then 207 

converted to a continuous peripherality index: 208 

𝐺𝑃$ = (𝐷()* − 𝐷$) + 1 , 209 

where GPi is the geographic peripherality of population i, Dmax is the maximum Euclidian 210 

distance [km] to the closest range limit across all populations, and Di is the Euclidian distance 211 

of population i to its closest range limit. The fixed added term (+1) avoids a null value for the 212 

population that has the highest Euclidian distance to the closest range limit. High GP values 213 

indicate that a population is close to the species' range limit (i.e. is a peripheral population), 214 

and low GP values represent central populations. Note that the GP index is limited to the scale 215 

of the European Alps, ignoring the fragmented distribution of the species in the Carpathian 216 

Mountains. 217 

We used a species distribution modelling (SDM) approach to characterise the 218 

distribution of suitable habitat for P. cembra in Switzerland. Following current standards 219 

(Araújo et al., 2019), we constructed an ensemble of SDMs using the following five SDM 220 

algorithms and packages of the R statistical software (version 3.4.4; R Core Team, 2019): (1) 221 

generalised linear model (GLM; Nelder & Wedderburn, 1972; using STATS); (2) generalised 222 

additive model (GAM; Hastie & Tibshirani, 1990; using MGCV; Wood, 2011); (3) random 223 

forest (RF; Breiman, 2001; using RANDOMFOREST; Liaw & Wiener, 2002); (4) artificial 224 
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neural networks (ANN; Ripley, 1996; using NNET; Venables & Ripley, 2002); (5) maximum-225 

entropy (MAXENT, Phillips, Aneja, Kang, & Arya, 2006; using DISMO; Hijmans, Phillips, 226 

Leathwick, Elith, & Hijmans, 2017). We fitted GLM using linear and quadratic terms and 227 

GAM with smooths of up to four degrees of freedom, while assuming binomial error 228 

distribution and logit link for both. RF and ANN were tuned, with resulting optimal 229 

parameters as follows: minimal terminal node size was set to three, number of trees to 1,000, 230 

and the number of candidate variables at each split to three for RF, whereas number of hidden 231 

layers was set to four and weight decay to 0.1 for ANN. We used default settings for 232 

MAXENT, except that we set the minimal number of observations for including hinge and 233 

product features to 100 and 150, respectively. All variables were standardised prior to model 234 

fitting. 235 

Before fitting the SDMs, we applied a variable selection procedure that chooses the 236 

best performing predictors while simultaneously avoiding high collinearity. We followed the 237 

procedure described in Wüest et al. (2020) that first fits a logistic regression for each predictor 238 

including a linear and quadratic term and cross-validates these univariate models using 239 

repeated split-sample cross-validation (details follow the procedure for the evaluation of 240 

model performance outlined below). We averaged the true skill statistic (TSS; Allouche, 241 

Tsoar, & Kadmon, 2006) on the out-of-bag portion in each repetition to rank the predictors 242 

according to their predictive power. As a final step, we reduced the predictor set to only 243 

contain variables with pairwise Pearson correlations of |r| < 0.7, while giving preference to 244 

variables with high predictive power. 245 

Model performance was assessed using cross-validation. We repeatedly split our data 246 

into 70% training and 30% testing data. In each repeat, we fitted the five SDM algorithms to 247 

the training data, and transformed the predicted probabilities of occurrence for the testing data 248 
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into binary presence and absence using a threshold that optimises TSS. This TSS was then 249 

calculated for all five models and each of the 100 repeats to serve as a measure of the model’s 250 

predictive performance. 251 

We generated ensemble predictions of habitat suitability for each of the sampled and 252 

georeferenced trees as follows. Using the relevant environmental predictors extracted for each 253 

of the individual tree locations, we predicted the probability of occurrence using the five fitted 254 

models. The ensemble consisted of a weighted average, for which we used model-specific 255 

TSS values (averaged over the 100 cross-validation repeats) as weights. These ensemble 256 

predictions at the level of individual trees were then averaged to obtain population-level 257 

habitat suitability. We further generated spatial projections of all single SDM algorithms as 258 

well as the weighted ensemble and standard deviation (among the five SDM algorithms) 259 

across Switzerland for illustrative purposes. 260 

Variable importance of each variable across all five SDM algorithms was assessed by 261 

repeatedly permuting the values of a predictor variable (only one variable at a time) and 262 

predicting the probability of occurrence using a permuted dataset. These predictions 𝑝01233  263 

were then compared to the original predictions (𝑝453; no permutation of any predictor 264 

variable) to generate an importance measure defined as 1 − 𝜌789:;;,7=>;  (where 𝜌789:;;,7=>;  is 265 

the correlation between 𝑝01233  and 𝑝453). This importance was calculated for each model and 266 

variable in each of the repeats. To facilitate interpretation, we scaled variable importance 267 

averaged across the repeats to sum to 100%. 268 

 269 

Exome capture sequencing, SNP calling, and filtering steps 270 

We carried out DNA extraction, library preparation, and exome capture as described in 271 

Rellstab et al. (2019). Briefly, high-quality DNA of 20 trees per population was used to 272 
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produce equimolar DNA pools for all 24 populations for pooled sequencing (Pool-Seq; 273 

Rellstab, Zoller, Tedder, Gugerli, & Fischer, 2013; Schlötterer, Tobler, Kofler, & Nolte, 274 

2014), which has shown to yield accurate estimates of allele frequencies in this sequencing 275 

approach (Rellstab et al., 2019). We generated barcoded libraries (average insert size of 550 276 

bp) using the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs, 277 

Massachusetts, USA) and subsequently performed probe hybridisation using the MYcroarray 278 

myBaits Custom Capture Kit. The 24 hybridised libraries were then sequenced on four lanes 279 

of an Illumina HiSeq 4000 (paired-end reads of 150 bp) at the Functional Genomics Center 280 

Zurich (FGCZ, Zurich, Switzerland) and Fasteris (Geneva, Switzerland; Table S4). 281 

Following Rellstab et al. (2019), we trimmed and filtered raw reads with 282 

TRIMMOMATIC 0.35 (Bolger, Lohse, & Usadel, 2014) using a quality threshold of 20 on both 283 

forward and reverse reads. We then mapped the remaining reads back to those transcripts of 284 

the reference transcriptome that contained probe bases using BOWTIE 2.3.0 (Langmead, 285 

Trapnell, Pop, & Salzberg, 2009), and performed variant (i.e. SNP) and invariant site calling 286 

using GATK 3.8 (McKenna et al., 2010) with ploidy set to 40 (i.e. number of chromosomes 287 

sequenced per pool of 20 diploid individuals), a coverage ≥40×, and a mapping quality/depth 288 

ratio ≥0.25. To get rid of putatively paralogous genes, variant and invariant calling was 289 

carried out only for the 4,950 single-copy contigs as determined in Rellstab et al. (2019). 290 

These authors used HDPLOT (McKinney, Waples, Seeb, & Seeb, 2017) to exclude putatively 291 

paralogous contigs based on excess heterozygosity and deviation from usual allele balance 292 

(read ratio). To conduct population genetic analyses, we assembled a SNP set based on two 293 

additional filters to exclude weakly supported SNPs: excluding SNPs with (i) a minor allele 294 

frequency (MAF) ≤2.5% across populations (i.e. one chromosome in a pool) and (ii) missing 295 
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data in at least one population. We used the resulting SNP set in the format of either 296 

population allele frequency or read count data for downstream analyses (see below). 297 

 298 

Population genetic structure and diversity 299 

To investigate population genetic structure, we performed a principal component analysis 300 

(PCA) using allele frequencies of the complete SNP set with the prcomp function from the R 301 

package STATS (centring and scaling by default; R Core Team, 2019). Based on read count 302 

data, we carried out a hierarchical clustering analysis from the dissimilarity matrix Ω (𝑑$@ =303 

1 − 𝜌$@) generated with BAYPASS 2.1 (Gautier, 2015), using the hclust function from the R 304 

package STATS. Pairwise genetic differentiation (FST) among populations was estimated from 305 

read count data using the R package POOLFSTAT (Hivert, Leblois, Petit, Gautier, & Vitalis, 306 

2018), and pairwise geographic distances were estimated from latitude and longitude of 307 

population centroids using the R package GEOSPHERE (Hijmans, Williams, Vennes, & 308 

Hijmans, 2017). We tested for patterns of isolation by distance (IBD) using transformed 309 

geographical (ln) and genetic distances (𝐹BC/(1− 𝐹BC); Rousset, 1997) and 999 permutations 310 

in a Mantel test with the R package VEGAN (Oksanen, Blanchet, Kindt, Legendre, & O’Hara, 311 

2011). We assessed exome-wide genetic diversity within each population by calculating the 312 

proportion of polymorphic loci (PPL) and expected heterozygosity (He) based on population 313 

allele frequencies (Fischer et al., 2017). To identify populations with substantially high and 314 

low genetic diversity, we checked whether each diversity metric was normally distributed 315 

using the shapiro.test function and identified which populations were beyond the confidence 316 

interval (CI, at 97.5 % level) from a Student's t distribution using the qt function in R. 317 

 318 
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Compilation of different SNP sets and testing relationships 319 

The main aim of our study was to correlate GP and HS with different measures of genetic 320 

diversity at all, neutral, and adaptive loci, respectively. To do so, we compiled ten different 321 

SNP sets (Table 1). The first set (SNP_all) included all available SNPs. Next, we identified 322 

putatively adaptive SNPs based on four different criteria (Tajima’s D, π, FST outliers, SNPs 323 

associated to environmental factors) to create four different adaptive SNP sets, respectively 324 

(SNP_adaptive_D, SNP_adaptive_pi, SNP_adaptive_XTX, and SNP_adaptive_LFMM). By 325 

means of the four adaptive SNP sets, we created four neutral SNP sets (SNP_neutral_D, 326 

SNP_neutral_pi, SNP_neutral_XTX, and SNP_neutral_LFMM), which were complementary 327 

to the four adaptive SNP sets. Finally, we created a neutral SNP set (SNP_neutral_overall), 328 

which consisted of SNPs that were not included in any of the four adaptive SNP sets. 329 

For each SNP set, we calculated four population-specific measures of genetic 330 

diversity: PPL, He (calculation see above), π and ΘW (calculation see below). To identify 331 

significant relationships between GP or HS and these genetic diversity measures, we 332 

compared three nested models using analysis of variance (ANOVA) with the R package 333 

ANOVA (R Core Team, 2019); a null model (intercept only), a model adding GP or HS as 334 

linear term, and a model that additionally added GP or HS as quadratic term. The quadratic 335 

term was added to investigate non-linear response curves. We also calculated Pearson’s 336 

correlation coefficients r between GP or HS and the four genetic diversity indices using the R 337 

package STATS to indicate the direction of the relationship. Furthermore, we tested 338 

correlations between diversity indices for both the full (SNP_all) and overall neutral 339 

(SNP_neutral_overall) SNP datasets using the same procedure. 340 

 341 
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Gene diversity measures 342 

We calculated nucleotide diversity (π; Nei & Li, 1979) and Watterson’s ΘW (Watterson, 343 

1975) to estimate Tajima’s D (Tajima, 1989) for every contig in each population. These 344 

calculations were done to identify contigs (genes) under positive selection (using π and D) 345 

and to estimate exome-wide genetic diversity for each of the ten SNP sets (π and ΘW). We re-346 

implemented the Python workflow used for Pool-Seq data in Sailer et al. (2018) in R and 347 

performed calculations based on read count data using both variant and invariant sites at the 348 

contig level. To identify genes under positive selection, we used the following procedure. For 349 

π, we defined a gene as being under positive selection if the standard deviation (SD) for this 350 

gene across all populations was above the 95% quantile. By doing so, we wanted to detect 351 

those genes that showed the highest variation in π across populations, indicating that some, 352 

but not all populations showed low gene-specific genetic diversity for some of the populations 353 

compared to others, i.e. exhibited strong signatures of selection. For Tajima’s D, we defined 354 

those genes as being under positive selection which exhibited a D below the 5% quantile in at 355 

least one population-specific distribution. We also checked for genes that were repeatedly 356 

found as being under selection based on D across populations, which informed about the 357 

proportion of common adaptive signals. For those genes identified with SD of π, we tested the 358 

distribution of π values between eastern and western lineages using a Wilcoxon test in R to 359 

ensure no demographic bias in gene selection. To calculate exome-wide genetic diversity for 360 

the ten different SNP sets, we averaged the diversity measures of all respective genes for each 361 

population. Low exome-wide values for π and ΘW are considered indicative of low overall 362 

diversity. 363 

 364 
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FST outlier test 365 

We performed an FST outlier test to identify overly-differentiated loci using a Bayesian 366 

hierarchical model implemented in BAYPASS (Gautier, 2015), which evaluates the degree of 367 

differentiation of each SNP based on the XTX genetic differentiation statistic (Günther & 368 

Coop, 2013). This method accounts for pool size and read depth in Pool-Seq data and controls 369 

for population genetic structure using the scaled covariance matrix of population allele 370 

frequencies (Ω). We analysed the read count data of the full SNP set under the core model 371 

and set the parameter d0yij to 5 (a fifth of the minimum pool size, as recommended by 372 

Gautier, 2015). Then, we used a pseudo-observed data (POD) analysis to calibrate the XTX 373 

differentiation estimates and considered putatively adaptive SNPs with XTX >99% POD 374 

significant threshold. We performed 10 independent runs (with different initial seeds) and 375 

computed the median of the differentiation estimates. We inspected the congruence of the 376 

posterior estimates of Ω with pairwise Förstner and Moonen distances (FMD; Förstner & 377 

Moonen, 2003) between the estimates of independent runs and the median. Finally, we 378 

retained FST outlier loci that were identified as such in all runs and excluded those 379 

inconsistently supported among runs. 380 

 381 

Environmental association analyses (EAAs) 382 

In EAAs (Rellstab et al., 2015), we tested for linear correlations between allele frequencies 383 

and environmental variables using latent factor mixed models (LFMM; Frichot, Schoville, 384 

Bouchard, & François, 2013). This approach has shown to be robust for detecting candidate 385 

loci putatively under selection (De Villemereuil, Frichot, Bazin, François, & Gaggiotti, 2014; 386 

Lotterhos & Whitlock, 2015) by accounting for population genetic structure with latent 387 

factors in combination with test statistics to stringently control for false discoveries (François, 388 
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Martins, Caye, & Schoville, 2016). We analysed allele frequencies of the full SNP set with 389 

the function lfmm_ridge from K = 2 to K = 8 for each standardised (average = 0, SD = 1) 390 

environmental variable, using LFMM 2.0 implemented in the R package LFMM (Caye, 391 

Jumentier, Lepeule, & François, 2019). Genomic inflation factors (l) were assessed with the 392 

function lfmm_ridge for each K value. Then, the z scores were calculated with the function 393 

lfmm_test, and p values were adjusted based on l and the c2 distribution (Caye et al., 2019). 394 

To control for false positives, we applied the Benjamini-Hochberg algorithm with a false 395 

discovery rate (FDR) of 0.01 (Benjamini & Hochberg, 1995). We also extracted the ß 396 

coefficient (regression slope) of each association and calculated the average absolute ß per 397 

environmental variable for all and for the significant associations to estimate average effect 398 

sizes. We finally assembled a list of candidate loci for each environmental variable based on 399 

the optimal K value. A gene was considered adaptive if at least one of its SNPs was 400 

associated to at least one of the 34 environmental factors. Note that we extracted topographic 401 

variables for each georeferenced individual tree and averaged variables from the 20 402 

individuals of each population to capture spatial heterogeneity and to match genetic data 403 

produced at the population level. 404 

 405 

Results 406 

Geographic peripherality and habitat suitability 407 

Geographic peripherality (GP) varied from 1 km (population CH-150) to 48.1 km (CH-035) 408 

among populations (Table S5), with an average of 25.7 km (SD ± 11.7 km). Habitat 409 

suitability (HS) largely differed among populations, varying from 0.243 (CH-035) to 0.941 410 

(CH-113) for the weighted average (Table S5). Standard deviation between models was 411 

highest for CH-052 (0.235) and lowest for CH-113 (0.065; Table S5). HS prediction across 412 
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the species’ range was consistent among models with a moderate SD distributed across space 413 

(0-0.5; Figures 3a,b, S2). Cross-validation per model resulted in high average TSS (0.882-414 

0.904; Table S6). Yearly mean temperature (Bio1) was clearly the most important variable in 415 

SDMs (50.2%; Table S7), and four other variables showed an importance of at least 5%: 416 

precipitation of driest quarter (Bio17, 15.9%), temperature seasonality (Bio4, 7.6%), 417 

precipitation of wettest month (Bio13, 5.7%), and downslope distance gradient (t06_ddg, 418 

5.4%). Overall, climatic variables were far more important in describing HS compared to 419 

topographic variables (on average 11.3% compared to 1.4%; Table S7). GP and HS were 420 

moderately and negatively correlated (r = -0.430, p < 0.036; Figure 3c), which allowed us to 421 

independently assess correlations of GP and HS with genetic diversity. 422 

 423 

Exome capture sequencing and SNP detection 424 

Exome capture sequencing yielded 2.891 billion read pairs from the 24 population pools 425 

(Table S4). After adapter and quality trimming, 94.0% of these reads were retained. From the 426 

24 libraries, 64.5% (range: 59.0–72.2%; Table S4) of the raw read pairs mapped back to the 427 

targeted transcripts. We obtained 33,125 SNPs and 3,868,577 invariant sites located in 4,870 428 

single-copy genes/contigs. After missing data and MAF filtering, we retained 17,061 SNPs 429 

and 3,719,732 invariant sites in 4,677 genes/contigs (Table 1), with an average of 3.6 SNPs 430 

and 798.3 invariant sites per contig (range of contig size = 187–3,092 bp, median size = 723 431 

bp). 432 

 433 

Population genetic structure and diversity 434 

The overall population genetic structure using the full SNP set (SNP_all) was consistent 435 

between the hierarchical clustering tree based on Ω and the principal component analysis 436 
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(PCA) along the first three axes (Figures 4a, S3). In the PCA, the two main 437 

phylogeographical lineages (East and West) were separated along the first principal 438 

component (PC1, explaining 12.3% of the variance), and substructure in eastern and central 439 

populations (i.e. contact zone of the two lineages) was revealed by PC2 (6.7%) and PC3 440 

(6.0%), respectively. In total, the first four PCs summarised 30.0% of the allele frequency 441 

variation among populations. Pairwise genetic differentiation between populations was low 442 

overall (global FST = 0.058), with a range of pairwise FST values of 0.022 to 0.117, and 443 

highest values for the EN-HJ population (Table S8). Isolation by distance was relatively high 444 

and significant (Mantel r = 0.450, p < 0.001; Figure S4). 445 

Overall genetic diversity (SNP_all) was similar among populations, with the 446 

proportion of polymorphic loci (PPL) ranging from 0.811 to 0.912 (average 0.857) and 447 

expected heterozygosity (He) ranging from 0.208 to 0.235 (average 0.224; Table 2). All four 448 

genetic diversity estimates (PPL, He, π, and ΘW) were consistently below the CI in seven 449 

(CH-005, CH-008, CH-019, CH-045, CH-052, EN-HJ, and WC-HJ) and above the CI in four 450 

(CH-015, CH-150, EC-HJ, and ES-HJ) populations (Table 2; Figure 4b). All diversity 451 

estimates were significantly and highly correlated in both the full (SNP_all) and the overall 452 

neutral SNP sets (SNP_neutral_overall; Table S9). Average values for PPL, He, and π were 453 

slightly higher in the overall neutral SNP set (SNP_neutral_overall) compared to the full SNP 454 

set (SNP_all), but lower for ΘW (Table 2). For He and π, we found significantly higher genetic 455 

diversity estimates in eastern compared to western populations (Figure 4c). At the exome-456 

wide level (SNP_all), Tajima’s D estimates varied between 0.356 (WS-HJ) and 0.455 (CH-457 

015), with an average of 0.413 across populations (Table S10), which is compatible with a 458 

past decrease in population size across the whole Swiss range of the species. 459 

 460 
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Gene diversity-based signature of selection 461 

At the single-gene level and based on π and Tajima’s D, respectively, we found 234 and 1,557 462 

contigs as being under selection in at least one population. Of the latter, 476 contigs (30.6%) 463 

were identified as being under selection only in a single population (Figure S5), indicating 464 

that a large proportion of adaptive signals were population-specific. In turn, only 62 contigs 465 

(4.0%) were found as being under selection in at least half (12) of the sampled populations 466 

(Figure S5). In total, 169 (3.6%) of the 4,677 contigs showed a strong signature of selection in 467 

both π and Tajima’s D. The π values of the two phylogeographical lineages were not 468 

significantly different (Figure S6). 469 

 470 

FST outlier test 471 

Analysis of the full dataset (SNP_all) under the BAYPASS core model (XTX) revealed that 472 

205 SNPs from 154 contigs were overly differentiated among populations and putatively 473 

exhibited signals of adaptive divergence. Pairwise FMDs between independent runs and their 474 

median were lower than 0.072 (SD ± 0.004), and topologies of the hierarchical clustering 475 

trees (HCT) generated from the dissimilarity matrix Ω were unchanged among runs. For the 476 

POD, pairwise FMDs between independent runs and the median were low (0.847 ± 0.034 477 

SD), and topologies of the HCT showed slight differences. Pairwise FMDs between the 478 

median of the original posterior estimates of Ω and the one calculated from the POD was 479 

higher (5.670) and stable across the different runs. 480 

 481 

Environmental association analyses 482 

In LFMM, the genomic inflation factor (l) differed slightly among K values and was on 483 

average lowest for K = 3 (Table S11). Based on this optimal K value, we found a total of 625 484 
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significant associations of a SNP with one of the 34 environmental variables (Table S12). 485 

This number of associations included 346 different SNPs that represent 2.0% of the exome-486 

wide SNP set. From these SNPs, 189 (54.6%) were associated with a single environmental 487 

variable and 157 (45.4%) with at least two variables. The number of significant associations 488 

largely differed among environmental variables, from 0 for several variables to 117 489 

associations for precipitation of the warmest quarter (Bio18; Table S12). Apart from Bio18, 490 

temperature seasonality (Bio4) and temperature annual range (Bio7) showed the highest 491 

numbers of significant associations (88 and 80, respectively). Note that in some cases, despite 492 

a high Pearson’s correlation (r >|0.7|) between environmental variables, contrasting numbers 493 

of significant associations were found (e.g. Bio4 and Bio11; Figure S7). The ranking of these 494 

variables, either based on the number of significant associations or the averaged absolute ß 495 

coefficients, was not significantly correlated with the one representing the variable 496 

importance in SDM (Table S12; Figure S8). Overall, we found more average climate- (25.7) 497 

than topography-related (8.9) associations per variable (Table S12). 498 

 499 

Relationship between geographic peripherality, habitat suitability, and genetic diversity 500 

For the full (SNP_all) and all five neutral SNP sets, GP was significantly and negatively 501 

correlated with all genetic diversity indices (Table 3), i.e. peripheral populations tended to 502 

have lower genetic diversity than central populations (the example of He of 503 

SNP_neutral_overall is given in Figure 5a). None of the diversity indices was correlated to 504 

HS in the full and all neutral datasets (example given in Figure 5b). 505 

Most of the correlations of GP or HS with genetic diversity at adaptive loci were not 506 

significant (the example of He of SNP_adaptive_D for GP is given in Figure 5c). However, 507 

there were three exceptions. PPL and ΘW were negatively correlated with GP in the adaptive 508 
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SNP set based on π (SNP_adaptive_pi), and He in the adaptive SNP set based on low 509 

population-specific D values (SNP_adaptive_D) was negatively correlated with HS (Figure 510 

5d). Hence, populations in more suitable habitats tended to have lower genetic diversity at 511 

adaptive loci than populations towards the margin of the niche. 512 

 513 

Discussion 514 

A better understanding of the potential key drivers of genetic diversity at neutral and adaptive 515 

loci is essential for the assessment of a species’ adaptive capacity (Flanagan, Forester, Latch, 516 

Aitken, & Hoban, 2018). Our study provides one of the first empirical comparisons of genetic 517 

diversity at both neutral and putatively adaptive loci in relation to geographic position within 518 

the species’ native range (i.e. geographic peripherality, GP) and environmental conditions (i.e. 519 

habitat suitability, HS). The fact that GP and HS were only moderately correlated allowed us 520 

to disentangle these two drivers of genetic diversity (Figure 3c). We combined species 521 

distribution models with exome-wide polymorphism data (17,061 SNPs from 4,677 522 

contigs/genes of the estimated 30,000–50,000 genes that can be identified in conifers; Neale 523 

& Wheeler, 2019), and found that neutral genetic diversity was negatively correlated with the 524 

distance to the range centre (i.e. GP); populations living at the periphery of the distribution 525 

had lower neutral or overall genetic diversity than populations from the central area (Table 3). 526 

In contrast, neutral genetic diversity was not correlated with HS. Moreover, estimates of 527 

genetic diversity at adaptive loci were also not correlated with GP or HS in most cases. 528 

However, in the adaptive SNP set based on Tajima's D, heterozygosity (He) was negatively 529 

correlated with HS, meaning that populations situated in less suitable habitats had a higher 530 

genetic diversity at adaptive loci than populations in more suitable habitats (Table 3; Figure 531 

5d). This finding agrees with our expectation under the assumption that migration is weaker 532 
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than selection (solid line in Figure 1d). Based on these insights, we highlight the importance 533 

of distinguishing neutral from adaptive genetic variation. 534 

 535 

Geographic peripherality, habitat suitability, and genetic diversity at neutral loci 536 

Our results based on neutral or overall genetic SNP sets agree with the hypothesised 537 

pattern in respect to GP (Figure 1a, 5a). Neutral genetic diversity is reduced at the range limit 538 

as compared to the central areas of occurrences, which is consistent with the known 539 

population census sizes of P. cembra (Fischer & Traub, 2019). Surprisingly, populations at 540 

the contact zone between the two main phylogeographic lineages of P. cembra in the Swiss 541 

range did not exhibit higher values of heterozygosity than the rest of populations, which could 542 

be expected as a result of admixture (Figure 4). The higher genetic diversity found in eastern 543 

compared to the western populations (Figure 4c) is consistent with the presumed main re-544 

colonisation route of P. cembra from the eastern fringe of the Alps into its current Alpine 545 

range after the last glacial maximum (Gugerli et al., 2009). In turn, a presumed second 546 

immigration route advanced eastward from a likely smaller refugial area in or near the 547 

western Alps (Tóth, Tremblay, Housset, Bergeron, & Carcaillet, 2019), possibly 548 

complemented by a third lineage entering the central Alps from the South (Vescovi et al., 549 

2007). The geographic position of populations per se unlikely affects neutral genetic 550 

diversity, but rather acts via effective population size Ne (through strength of genetic drift, 551 

hence reduction in heterozygosity) and population connectivity (through gene flow). The 552 

highest measures of neutral genetic diversity found in our study suggest that, since the onset 553 

of post-glacial re-colonisation of the central Alps by P. cembra (i.e. about 10,000 years ago; 554 

Vescovi et al., 2007), the Alpine meta-population has carried over a large amount of standing 555 

genetic variation from eastern, southern and western refugia to the current central populations. 556 
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Assuming a generation time of about 50 years for P. cembra (Zoller, 1991), at least 200 557 

generations have passed since the central Alpine populations became established, which 558 

seems to be a rather limited turn-over to accumulate mutations and homogenise allele 559 

frequencies across populations (Austerlitz, Mariette, Machon, Gouyon, & Godelle, 2000). 560 

Interestingly, despite significant isolation by distance among populations, the low pairwise 561 

genetic differentiation (global FST = 0.058; Table S8) suggests that either historical gene flow 562 

or to a lesser extent standing genetic variation is relevant over the entire range of the study 563 

species within the Swiss Alps. 564 

In contrast to GP, HS was not correlated with genetic diversity at neutral loci. This 565 

finding does not confirm the hypothesis presented in Figure 1b, which assumes that 566 

geographic and environmental features are highly correlated. While this was not the case in 567 

our study, one could argue that the environment affects neutral genetic diversity indirectly 568 

through effective population size Ne. Our observations are rather consistent with patterns of 569 

genetic diversity recently reported for P. cembra in a regional study from the southwestern 570 

Alps, where marginal populations harboured similar neutral genetic diversity as core 571 

populations (Tóth et al., 2019). 572 

 573 

Geographic peripherality, habitat suitability, and genetic diversity at adaptive loci 574 

Contrarily to the neutral and overall SNP sets, there was no significant relationship 575 

between GP and diversity indices in the adaptive SNP sets. Generally, our results confirm the 576 

pattern hypothesised (Figure 1c), suggesting that geographic features have no effect on 577 

genetic diversity at adaptive loci, also not indirectly through the effective population size Ne. 578 

However, there were two cases of genetic diversity estimates (PPL and ΘW) showing a 579 

negative correlation between genetic diversity and GP in the adaptive SNP set based on π 580 
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(SNP_adapative_pi; Table 3). This SNP set shows a similar pattern as neutral SNP sets, but to 581 

a lesser degree. This finding could imply that our method to identify adaptive SNPs based on 582 

relative measures (maximum SD) of π led to a SNP set that still contained a considerable 583 

proportion of neutral SNPs or also SNPs under balancing selection in single populations 584 

(Figure S6a). However, using a lower quantile threshold of absolute values of π would not 585 

improve the selection of genes, because it would target mostly genes with no variation (π = 586 

0), which likely are the result of purifying, and not positive selection.  587 

Most correlations between HS and genetic diversity at adaptive loci were also not 588 

significant. However, the significant negative relationship between HS and He for the 589 

adaptive SNP set based on Tajima’s D indicates a continuum of selection responses along 590 

habitat conditions. Focusing on this significant relationship, we see that the strongest signals 591 

of positive selection are detected in populations living in highly suitable habitats, where 592 

among-population gene flow seemed not to fully counteract selection processes, indicating 593 

that m < s as depicted by the solid line in Figure 1d. Populations at the core of the niche may 594 

have gone through a strong selection process, hence currently harbour the best suited allele 595 

composition, and diversity at adaptive loci is therefore reduced. Low genetic diversity at 596 

adaptive loci is, however, only the case for single populations; overall genetic diversity at 597 

adaptive loci across all populations might still be high as supported by the fact that many 598 

adaptive signals (detected with Tajima's D) are population-specific (Figure S5). In other 599 

words, populations have presumably developed independent molecular solutions for adapting 600 

to similar environmental conditions (Rellstab et al., 2017). Note that genetic drift and allele 601 

surfing can potentially mimic such a reduction in genetic diversity at some loci (e.g. Excoffier 602 

& Ray, 2008), but presumably not at the level of the representative fraction of adaptive gene 603 

space. Conversely, populations at the niche margin might still be in the process of locally 604 
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adapting, relaxing selection, or gene flow from differently adapted populations, which leads 605 

to immigrating of mal-adapted alleles, hence contain higher genetic diversity at these adaptive 606 

loci. 607 

Most importantly, our results show that it is important to distinguish between genetic 608 

diversity at neutral and adaptive loci when investigating the geographic and environmental 609 

drivers of genetic diversity. Our investigation also indicates that in sampling designs with 610 

thousands of SNPs, using the whole SNP set (e.g. Lee-Yaw et al., 2018) may lead to similar 611 

results as using neutral loci only (Table 2), even in an exome capture sequencing approach 612 

that mainly targets coding regions (i.e. possible targets of natural selection). Unfortunately, 613 

most studies focusing on population genetic diversity, have ignored the distinction between 614 

neutral and adaptive loci so far (but see Aguirre-Liguori et al., 2017). This is partly due to the 615 

fact that it was technically difficult to discriminate between neutral and adaptive genetic 616 

diversity, because next-generation sequencing (NGS) techniques or genomic resources of 617 

non-model species were not yet available. However, costs for NGS are steadily decreasing 618 

(https://www.genome.gov/sequencingcostsdata), reaching reasonable amounts for reduced-619 

representation sequencing approaches like exome capture (Yeaman et al., 2016) or RAD-Seq 620 

(Andrews, Good, Miller, Luikart, & Hohenlohe, 2016), even in species with large genomes 621 

like P. cembra. Moreover, access to high-performance computer clusters is now available and 622 

user-friendly bioinformatic software is being developed (Danecek et al., 2011; Puritz, 623 

Hollenbeck, & Gold, 2014; Van der Auwera et al., 2013). One major challenge remains, i.e., 624 

the identification of genes involved in adaptive processes to distinguish between neutral and 625 

adaptive genetic variation, a task greatly assisted by the increasing number of available, 626 

annotated reference genomes (e.g. Lewin et al., 2018; Twyford, 2018). In the present study, 627 

we utilised a suite of approaches to identify putatively adaptive loci, but the task remains 628 
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imperfect as a consequence of, e.g., false positives and negatives, arbitrary thresholds, 629 

missing functional annotation, population-specific signatures of selection, and polygenic 630 

processes with many small-effect loci. From the results of our empirical study, we 631 

recommend to disentangle neutral and adaptive genetic variation as far as possible for a better 632 

understanding of a species’ demographic and adaptation history. Moreover, we recall the 633 

importance of using complementary approaches for detecting signatures of selection—i.e. 634 

including population-specific analyses (π and Tajima's D in our study), FST outlier tests or 635 

EAA—because a single method might fail to well describe the diverse signatures of 636 

adaptation (Hohenlohe, Phillips, & Cresko, 2010). 637 

 638 

Environmental factors in species distribution models and environmental association analyses 639 

Although yearly mean temperature (Bio1) was the most important variable for 640 

predicting P. cembra’s habitat suitability (Table S7), this variable did not show a large 641 

number of significant associations, nor a high effect size in EAA (Table S12). Likewise, 642 

variable importance in the SDMs did not correlate with EAA-based importance parameters 643 

(Figure S8). This suggests that variable selection in adaptation studies should not be done 644 

using a priori knowledge solely based on the power of a variable to predict a species' realised 645 

ecological niche. In other words, it is challenging to obtain relevant clues of selective forces 646 

at the local scale when habitat characterisation depends on ecological data from the entire 647 

species’ range (but see, e.g., Borrell, Zohren, Nichols, & Buggs, 2020), especially if the study 648 

design consists of a partial sampling at its leading or rear edges (Hampe & Petit, 2005). One 649 

reason that might explain this mismatch is the temporal lag involved in the two processes; 650 

species presence can reflect rather recent events, while selection signatures are related to an 651 

evolutionary time scale, whose dimension depends, among others, on the species’ generation 652 
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time. Moreover, a species that is highly adapted to a certain niche (e.g. high-altitude habitats 653 

in the case of P. cembra) may experience a limited range in certain environmental factors. 654 

The detection of selection signatures in the genome, however, is often increased in 655 

environmentally heterogenous study systems (Lotterhos & Whitlock, 2015), potentially 656 

leading to the observed mismatch in variable importance. Another reason could be that yearly 657 

mean temperature might well define P. cembra’s realised niche limits at the cold or warm 658 

ends of the temperature gradient, while local adaptation within these general limits acts along 659 

other gradients (such as temperature seasonality or summer precipitation). 660 

 661 

Conclusions 662 

Genetic diversity is a key feature in ecology and evolution, because it is (i) an 663 

important part of biodiversity, and (ii) considering that adaptive and neutral genetic diversity 664 

involve distinct biological processes, it is a suitable proxy of population resilience under 665 

environmental change. With access to large genomic datasets from geo-referenced 666 

populations and individuals, in combination with new spatial and statistical tools, it is now 667 

possible to distinguish genetic diversity at adaptive and neutral loci, despite the confounding 668 

signals of adaptation processes and population demographic history. This is of special 669 

importance for conservation prospects, in which forest and conservation managers or other 670 

stakeholders need reliable estimates of population genetic diversity at adaptive loci together 671 

with an assessment of associated uncertainties for drawing recommendations in the context of 672 

environmental change. 673 

 674 
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Tables 984 
TABLE 1 Details of the full, neutral, and adaptive SNP sets generated for the studied Pinus 985 
cembra populations. Thresholds and the main parameters used in analyses are summarised, 986 
and numbers of contigs and SNPs are indicated. 987 
 988 
Set Type Abbreviation Description and thresholds used in analyses # Contigs # SNPs 
1 All SNP_all All SNPs 4,677 17,061 
2 Neutral SNP_neutral_D All SNPs excluding SNP_adaptive_D 3,120 9,602 
3 Neutral SNP_neutral_pi All SNPs excluding SNP_adaptive_pi 4,443 15,273 
4 Neutral SNP_neutral_XTX All SNPs excluding SNP_adaptive_XTX 4,651 16,856 
5 Neutral SNP_neutral_LFMM All SNPs excluding SNP_adaptive_LFMM 4,648 16,717 
6 Neutral SNP_neutral_overall All SNPs without any adaptive signature (excluding 

SNP sets 7-10) 
8,802 3,007 

7 Adaptive SNP_adaptive_D SNPs in genes below the 0.05 quantile of D in at 
least one population 

232 – 262 1,254 – 
1,437 

8 Adaptive SNP_adaptive_pi SNPs in genes above the 0.95 quantile of the 
standard deviation of (π) across all populations 

234 1,788 

9 Adaptive SNP_adaptive_XTX FST outlier SNPs in BAYPASS (XTX > 0.99 POD) 154 205 

10 Adaptive SNP_adaptive_LFMM SNPs significantly associated to environmental 
factors in LFMM (FDR < 0.01) 

221 346 

  989 
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TABLE 2 Summary of four population genetic diversity estimates for 24 Pinus cembra 990 
populations for the full (SNP_all) and overall neutral (SNP_neutral_overall) SNP sets. PPL: 991 
proportion of polymorphic loci, He: expected heterozygosity, π: nucleotide diversity, ΘW: 992 
Watterson's theta. Values below and above the 97.5% confidence interval (CI) of the t 993 
distribution are represented in italics and in bold, respectively. Populations were classified as 994 
part of the eastern or western lineage of P. cembra based on Figure 4a and in agreement with 995 
Gugerli et al. (2009). 996 
 997    

Full SNP set Overall neutral SNP set 
Population Lineage Sample PPL He π ΘW 

 
PPL He π ΘW 

Chandolin Western CH-005 0.844 0.221 1.192E-03 0.657 
 

0.881 0.278 1.252E-03 0.578 
Forêt du Lapé Western CH-008 0.812 0.214 1.154E-03 0.635 

 
0.869 0.272 1.221E-03 0.567 

Avers Eastern CH-011 0.864 0.225 1.217E-03 0.683 
 

0.894 0.280 1.257E-03 0.587 
Tamangur Eastern CH-015 0.884 0.236 1.273E-03 0.699 

 
0.905 0.288 1.282E-03 0.595 

Arvengarten Western CH-019 0.840 0.220 1.182E-03 0.652 
 

0.875 0.276 1.227E-03 0.570 
Bergün Eastern CH-023 0.864 0.229 1.234E-03 0.680 

 
0.896 0.286 1.276E-03 0.590 

Ritom Eastern CH-028 0.853 0.229 1.244E-03 0.673 
 

0.890 0.284 1.280E-03 0.585 
Sex Carro Western CH-032 0.859 0.225 1.213E-03 0.674 

 
0.893 0.282 1.255E-03 0.584 

Val Medel Eastern CH-034 0.862 0.226 1.222E-03 0.681 
 

0.898 0.281 1.253E-03 0.594 
Lago Sfii Western CH-035 0.859 0.229 1.232E-03 0.677 

 
0.888 0.284 1.270E-03 0.584 

Selva Secca Eastern CH-039 0.848 0.226 1.216E-03 0.667 
 

0.879 0.280 1.249E-03 0.575 
Uerlicherblase Western CH-045 0.839 0.219 1.176E-03 0.656 

 
0.878 0.275 1.231E-03 0.573 

Fafleralp Western CH-046 0.855 0.222 1.198E-03 0.669 
 

0.889 0.280 1.245E-03 0.582 
Meder Western CH-052 0.821 0.216 1.164E-03 0.632 

 
0.866 0.270 1.215E-03 0.564 

Untersteinberg Western CH-053 0.841 0.224 1.208E-03 0.658 
 

0.884 0.281 1.262E-03 0.581 
Bürchen Western CH-113 0.889 0.226 1.228E-03 0.706 

 
0.913 0.284 1.269E-03 0.603 

God Giavagl Eastern CH-150 0.887 0.234 1.266E-03 0.709 
 

0.910 0.287 1.283E-03 0.603 
Davos Eastern EC-HJ 0.880 0.229 1.244E-03 0.696 

 
0.906 0.285 1.279E-03 0.599 

Rautialp Eastern EN-HJ 0.811 0.209 1.129E-03 0.610 
 

0.850 0.262 1.173E-03 0.543 
Celerina Eastern ES-HJ 0.912 0.235 1.276E-03 0.730 

 
0.931 0.291 1.303E-03 0.619 

Grengiols Western WC-HJ 0.837 0.218 1.178E-03 0.650 
 

0.880 0.277 1.237E-03 0.574 
Kandersteg Western WN-HJ 0.861 0.222 1.204E-03 0.672 

 
0.890 0.278 1.250E-03 0.581 

Zermatt Western WS-HJ 0.869 0.221 1.192E-03 0.682 
 

0.901 0.278 1.238E-03 0.589 
Riederalp Western WZ-HJ 0.865 0.223 1.213E-03 0.685 

 
0.890 0.280 1.254E-03 0.587 

  
Average 0.857 0.224 1.211E-03 0.672 

 
0.890 0.280 1.253E-03 0.584 

  
Minimum 0.811 0.209 1.129E-03 0.610 

 
0.850 0.262 1.173E-03 0.543 

  
Maximum 0.912 0.236 1.276E-03 0.731 

 
0.931 0.291 1.303E-03 0.619 
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TABLE 3 Correlation between geographic peripherality (GP), habitat suitability (HS) and 999 
genetic diversity at neutral and adaptive loci using ten different SNP sets (Table 1) and four 1000 
genetic diversity estimates (Table 2). The correlation coefficients r are based on Pearson's 1001 
correlation, the p values on ANOVAs (significant models in bold). 1002 
 1003    

Geographic peripherality (GP) 
 

Habitat suitability (HS) 
SNP set Criterion Index r p value   r p value 

Full SNP set All SNPs  
(SNP_all) 

PPL -0.527 0.009   0.222 0.292 
He -0.461 0.025 

 
-0.059 0.789 

π -0.460 0.026 
 

-0.017 0.940 
ΘW -0.506 0.013 

 
0.158 0.460         

Neutral SNP sets Tajima's D 
(SNP_neutral_D) 

PPL -0.520 0.011 
 

0.198 0.355 
He -0.439 0.035 

 
0.016 0.941 

π -0.437 0.036 
 

0.012 0.956 
ΘW -0.508 0.013 

 
0.150 0.488        

π variation 
(SNP_neutral_pi) 

PPL -0.530 0.009 
 

0.216 0.308 
He -0.465 0.025 

 
-0.041 0.852 

π -0.478 0.021 
 

0.011 0.960 
ΘW -0.510 0.013 

 
0.161 0.453        

FST outliers 
(SNP_neutral_XTX) 

PPL -0.528 0.009 
 

0.222 0.293 
He -0.467 0.023 

 
-0.060 0.786 

π -0.477 0.020 
 

-0.017 0.937 
ΘW -0.508 0.013 

 
0.162 0.450        

EAA  
(SNP_neutral_LFMM) 

PPL -0.528 0.009 
 

0.227 0.281 
He -0.465 0.024 

 
-0.061 0.783 

π -0.458 0.027 
 

-0.017 0.938 
ΘW -0.501 0.014 

 
0.154 0.472        

Overall  
(SNP_neutral_overall) 

PPL -0.514 0.012 
 

0.218 0.306 
He -0.442 0.034 

 
0.030 0.890 

π -0.459 0.027 
 

0.013 0.954 
ΘW -0.500 0.014 

 
0.143 0.507         

Adaptive SNP sets Tajima's D  
(SNP_adaptive_D) 

PPL -0.298 0.165 
 

0.140 0.502 
He 0.078 0.722 

 
-0.724 < 0.001 

π -0.070 0.750 
 

-0.308 0.144 
ΘW -0.192 0.373 

 
0.266 0.208        

π variation 
(SNP_adaptive_pi) 

PPL -0.458 0.024 
 

0.257 0.201 
He -0.368 0.055* 

 
-0.144 0.501 

π -0.337 0.088 
 

-0.114 0.599 
ΘW -0.436 0.033 

 
0.125 0.556        

FST outliers 
(SNP_adaptive_XTX) 

PPL -0.119 0.590 
 

0.147 0.501 
He -0.081 0.714 

 
-0.005 0.982 
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π -0.106 0.621 
 

-0.001 0.996 
ΘW -0.404 0.051 

 
0.050 0.816        

EAA 
(SNP_adaptive_LFMM) 

PPL -0.232 0.285 
 

0.030 0.893 
He 0.029 0.893 

 
0.015 0.945 

π -0.195 0.370 
 

-0.002 0.993 
ΘW -0.413 0.050 

 
0.158 0.470 

* p value of the model with quadratic term 
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Figures 1005 

 1006 
FIGURE 1 Hypothesised relationships between geographic peripherality (GP, a and c), 1007 
habitat suitability (HS, b and d), and genetic diversity at neutral (a-b) and adaptive loci (c-d). 1008 
For adaptive loci in relation to habitat suitability (d), two scenarios are presented; (i) with 1009 
migration rate m > selection coefficient s (dashed line), and (ii) with m < s (solid line).  1010 
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 1011 
FIGURE 2 Natural range with occurrences and sampling sites of Pinus cembra in the Swiss 1012 
Alps. A digital elevation model for Switzerland is used as background map 1013 
(www.swisstopo.admin.ch), the range limit is derived from Caudullo et al. (2017). The 1014 
inserted European map shows the study area and the complete geographical distribution of the 1015 
species.  1016 
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 45 

FIGURE 3 Predicted distribution of habitat suitability (HS) and its correlation with 1018 
geographic peripherality (GP). (a) Weighted average of five species distribution models 1019 
(SDMs) used for prediction (generalised linear model, generalised additive model, random 1020 
forest, artificial neural network, and maximum-entropy). The values 0 and 1 mean the worst 1021 
and the best environmental conditions for the studied species, respectively. (b) Standard 1022 
deviation of the five SDMs. (c) Correlation between GP and HS with Pearson’s correlation 1023 
coefficients r and p value.  1024 
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 1025 
FIGURE 4 Genetic diversity and population structure in Pinus cembra across the species’ 1026 
Swiss range using the full SNP set (SNP_all). (a) Population structure based on a hierarchical 1027 
clustering tree of Ω, with colours referring to the two main phylogeographic lineages. (b) Map 1028 
of the studied populations, with colouring of population codes as in (a) and circle sizes 1029 
denoting expected heterozygosity He. (c) Boxplots showing differences in genetic diversity 1030 
(He and nucleotide diversity π) between eastern and western lineages.  1031 
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 1032 
FIGURE 5 Correlation between geographic peripherality (GP, a and c), habitat suitability 1033 
(HS, b and d), and expected heterozygosity (He) at putatively neutral (a-b) and adaptive loci 1034 
(c-d) in Pinus cembra. The neutral SNP set presented in (a) and (b) consisted of SNPs that 1035 
were not identified as putatively adaptive in any of the four sets of adaptive loci. The adaptive 1036 
SNP set (c-d) is based on Tajima’s D. 1037 
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