Biomass transport for energy

Analysing costs, energy and CO₂ emissions of the main forest wood and manure transport chains in Switzerland

V. Schnorf^{a,b}, E. Trutnevyte^b, G. Bowman^a, V. Burg^{a,c}

- ^a Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- ^b Université de Genève, faculté des sciences de l'environnement, Boulevard Carl-Vogt 66, CH-1211 Geneva, Switzerland
- ^c Swiss Federal Instituté of Technology Zürich (ETH Zürich), Institute of Environmental Engineering, John-von-Neumann-Weg 9, CH-8093 Zürich, Switzerland

Background:

Promoting the use of new renewables, including biomass, is key to decarbonizing the energy sector. Biomass in Switzerland could double its contribution by 2050. Forest wood and manure still have a large unused sustainable potential.

Goals:

- 1. Identify the main forest wood and manure transport chains in Switzerland
- 2. Calculate their costs (in Swiss francs CHF), energy requirements, and eq- CO_2 emissions per tonne of dry mass (t_{DM})
- 3. Calculate threshold transport distances
- 4. Evaluate and compare the performance of transport between Swiss cantons

Methodology:

Main results:

- All transport chains expect one take place locally (<30 km) on roads
- The performance of these paths varies significantly, as the efficiency ratios range from 370 : 1 to 2 : 1
- Costs are the first barrier to biomass transport.
- This leads to threshold distances between 3 and 500 km when considering costs, 360 and 8000 km considering energy, and 145 and 5000 km considering eq-CO₂ emissions.
- Differences in feedstock type and category directly impact the cantonal performance.

