RESEARCH LETTER
10.1029/2020GL087832

Key Points:
- Sedimentation of 3-D snow particles, obtained from snow microtomography and a phase field model, is computed in still air in Stokes regime.
- Particles fall in preferred orientations either drifting or spiralling, drag and rotation torque coefficient are modeled with particle sphericity.
- Terminal velocity in still air can be modeled with sphericity and provides effective dynamics and mean settling velocity in turbulence.

Supporting Information:
- Supporting Information S1
- Table S1
- Movie S1
- Movie S2

Correspondence to:
T. Zeugin, zeugin@ifu.baug.ethz.ch

Citation:

1. Introduction
The motion of snow particles in atmosphere is a fundamental process for many physical phenomena, for example, collisions (Shaw, 2003), aggregation (Westbrook et al., 2006), or snow particle growth and sublimation (Pruppacher & Klett, 1978). The presence of snow crystals within clouds significantly influences cloud properties, among others, the albedo (e.g., Yang et al., 2015). Snow particle terminal velocity, u_∞, also determines the lifetime of cirrus clouds (Sanderson et al., 2008). Given that snow clouds are a main contributor to Earth’s energy balance (e.g., Harrison et al., 1990; Stephens et al., 2012), current climate models are highly sensitive to the fallout rate of snow particles in cirrus clouds (Mitchell et al., 2008). Therefore, an accurate description of snow particles’ behavior in clouds, especially the reliable prediction of terminal velocities, is paramount to estimate climate scenarios.

Distribution and redistribution of snow on the earth surface is influenced by snow particles’ motion in air. For example, Aksamit and Pomeroy (2016) demonstrate complex motion of blowing snow during salting. Sommer et al. (2018) show that snow redistribution due to salting and subsequent sublimation processes of snow particles in turbulent conditions impact the mass balance of the Antarctic snow cover. Current snow transport models used to predict snow distribution may be improved by more accurate description of the interaction between air and snow particles (Aksamit et al., 2017).

The motion of snow particles suspended in air is governed by gravity and external hydrodynamic forces dictated by the dynamics of the atmosphere. In general, determination of the hydrodynamic forces (drag and lift) and torques (pitching and rotation torques) acting on a particle (for an overview see Zastawny et al., 2012) is a nonlinear problem that requires solving the full Navier-Stokes equations of the fluid flow around the particle. For small relative velocities (Reynolds number Re<1) the flow perturbation by the particle can...
be described by Stokes flow (Happel & Brenner, 1983). In Stokes flow the nonlinear term of the Navier-Stokes equations is neglected. As a result the hydrodynamic forces and torques acting on a particle are determined from a linear combination of relative particle velocity, particle angular velocity, and the so-called particle resistance matrix consisting of the translation, coupling, and rotation resistance tensors (Brenner, 1967). The translation and rotation resistance tensors describe the resistance of the particle to the respective motion, whereas the coupling tensor characterizes the interplay of translational and rotational motion. The resistance matrix is known analytically only for a few simple particle shapes (e.g., sphere, spheroids, and discs) (Happel & Brenner, 1983). Symmetric particles exhibit a vanishing coupling tensor with respect to the particle centre. Either numerical simulations or experiments have to be performed to investigate the forces and torques acting on arbitrary particles.

Particles suspended in fluids and turbulence are well studied, though much of the literature focuses on simple geometries (Voth & Soldati, 2017). Commonly, the interaction between fluid and particle is expressed with dimensionless coefficients for the drag and lift forces and pitching and rotation torques. This enables easy comparison between different shapes and sizes. Most studies investigating nonspherical particles in fluids focus on the drag coefficient. (Haider & Levenspiel, 1989) correlate the drag coefficient of nonspherical particles to sphericity Φ, the ratio of the surface of a volume equivalent sphere to the actual particle surface area. Sphericity Φ is not to be confused with the same named parameter characterizing the shape of snow grains in snow packs (see Lehning et al., 2002; Bartlett et al., 2008). Leith (1987) proposes a model for the drag coefficient as a function of sphericity and the so-called crosswise sphericity, the ratio between the projected area of the volume equivalent sphere to the projected area of the particle perpendicular to the flow. Hölzer and Sommerfeld (2008) additionally introduce the lengthwise sphericity to improve on the model by Leith (1987). Others use anisotropy parameters to predict the drag coefficient (e.g., Bagheri & Bonadonna, 2016). Regarding the lift coefficient, there are studies which present models for specific particle shapes (e.g., Zastawny et al., 2012). Furthermore, the cross flow principle assumes that lift is proportional to drag and the incidence angle of a particle (Hoerner & Borst, 1985), which holds for simple geometries. To the best of our knowledge, no relation to reasonably estimate the lift coefficient exists for complex, irregular particle shapes. The situation is similar for the rotational and the pitching torque of arbitrary particles (Zastawny et al., 2012).

Snow particles exhibit a broad range of complex shapes initially mostly determined by the air temperature and supersaturation present during crystal growth (Libbrecht, 2005; Nakaya, 1951). During their fall, snow crystals are subject to collisions, mechanical damage, and early metamorphism, enhancing the range of particle shapes. The situation is similar for the rotational and the pitching torque of arbitrary particles.

In this study we start from first principles, recap the full equations of motion of a particle in the Stokes regime, and compute the particle resistance matrices of 72 realistic snow particle shapes. The majority of the 3-D snow particle geometries are extracted from microcomputed tomography (μCT) data of real, fresh snow using a segmentation algorithm. Additionally, geometries representing younger precipitation particles are obtained from a numerical phase field model conducted in another study (Demange et al., 2017), which simulates the growth of snowflakes in 3-D based on the governing physical mechanisms. Each particle's resistance matrix is computed by numerically solving the steady Navier-Stokes equations for small Reynolds numbers. Subsequently, particle tracking simulations using the equations of motion and computed resistance matrices are performed to investigate the transient motion of the snow particles settling in still air. The sedimentation would usually occur in the presence of turbulence. Still, sedimentation in air at rest, studied here, is very useful since it gives a reasonable estimate for the mean settling velocity in
turbulence. We deduce models of snow particles’ drag and rotation torque coefficients as well as of the terminal velocity from our particle tracking simulations and discuss their validity. In this study, we focus on the Stokes regime for a number of reasons. First, a rough assessment shows that most of the snow particles investigated will sediment at Re below or of order 10. The fluid mechanical flow in this range is qualitatively similar to the low-Re flow (Happel & Brenner, 1983) where there is no wake, vortex shedding, randomness, or other phenomena associated with high-Re flows. Second, a fully resolved study of the sedimentation is computationally extremely expensive. This prohibits the investigation of large numbers of particles for practical reasons. Restricting our study to Stokes regime, enables us to study a broad range of complex snow particle geometries with a variety of initial conditions.

2. Theoretical Background

The motion of an arbitrarily shaped particle suspended in a viscous fluid is governed by the conservation of linear and angular momentum. Expressed in the body-fixed particle frame of reference, the equations of motion of a particle are given by

\[
\begin{bmatrix}
 m_p \ 0 \\
 0 \quad I
\end{bmatrix}
\frac{d}{dt}
\begin{bmatrix}
 \mathbf{u}_p \\
 \omega
\end{bmatrix}
+ \begin{bmatrix}
 m_p \omega \times \mathbf{u}_p \\
 \omega \times (I \omega)
\end{bmatrix}
= \begin{bmatrix}
 F_D + F_L \\
 T
\end{bmatrix}
+ \begin{bmatrix}
 (m_p - m_l)g \\
 0
\end{bmatrix},
\]

with \(m_p \) the particle mass, \(m_l \) the displaced fluid mass, \(\mathbf{u}_p \) the velocity of the particle centre of mass relative to the fluid, \(\mathbf{g} \) the gravitational acceleration (rotated into the body-fixed particle frame), \(F_{D,L} \), the hydrodynamic drag and lift forces, \(I \) the particle’s moment of inertia, \(\omega \) the particle’s angular velocity, and \(T \) the hydrodynamic torques acting on the particle. For a complete derivation of the equations of motion, we refer to the supporting information (SI). Stokes flow can be assumed in the limit that Reynolds number, \(Re = 2u r_{eq}/\nu \), and rotational Reynolds number, \(Re_\omega = 4\omega r_{eq}^2/\nu \), are small (\(Re, Re_\omega \ll 1 \)).

Here, \(u \) and \(\omega \) are the magnitudes of the relative streaming and angular velocities and \(\nu \) is the kinematic viscosity of the fluid. Following (Brenner, 1967), hydrodynamic forces and torques in Stokes regime are expressed with the particle resistance matrix \(\mathcal{X}_p \) as

\[
\begin{bmatrix}
 F_D + F_L \\
 T
\end{bmatrix}
+ \begin{bmatrix}
 \mathbf{u}_p \\
 \omega
\end{bmatrix}
= -\mu \mathcal{X}_p
\begin{bmatrix}
 \mathbf{u}_p \\
 \omega
\end{bmatrix}
= -\mu
\begin{bmatrix}
 \mathcal{X}_p \mathbf{e}_p^T \\
 \mathcal{X}_p \Omega_p
\end{bmatrix}
\begin{bmatrix}
 \mathbf{u}_p \\
 \omega
\end{bmatrix},
\]

again expressed in the body-fixed particle frame of reference. The \(\mu \) is the dynamic viscosity of the fluid, \(\mathcal{X}_p \) is the translation tensor. \(\mathbf{e}_p \) is the coupling tensor, \(\Omega_p \) the rotation tensor, and \(T_{P,R} \) are the hydrodynamic pitching and rotation torques, all with respect to the particle center of mass.

The drag and lift coefficients are commonly formulated as

\[
C_D = \frac{\| F_D \|}{0.5 u_p^2 \rho_p \pi r_{eq}^2}, \quad C_L = \frac{\| F_L \|}{0.5 u_p^2 \rho_p \pi r_{eq}^2},
\]

where \(r_{eq} \) is the volume equivalent spherical radius (Landau & Lifshitz, 1987). Analogously, rotation torque and pitching torque coefficients are defined as

\[
C_R = \frac{\| T_R \|}{0.5 \omega^2 \rho_p \pi r_{eq}^3}, \quad C_P = \frac{\| T_P \|}{0.5 \omega^2 \rho_p \pi r_{eq}^3},
\]

Leith (1987) proposed a model to estimate the average drag coefficient of arbitrary particles in Stokes regime as a function of Stokes drag of the volume equivalent sphere and shape factor \(K \). \(K \) is given by \(K = 1/3\Phi_{5,5}^{0.5} + 2/3\Phi_{5,5}^{0.5} \), where \(\Phi_{5,5} \) is the crosswise sphericity. Analyzing the individual terms, we see that \(\Phi \) is at minimum 2.7 times more important in determining \(K \) than \(\Phi_{5,5} \). Furthermore, obtaining \(\Phi_{5,5} \) a priori for complex shaped particles proves very difficult, since final orientation is not known. For these reasons, we adopt a simplified model for the average drag coefficient with a shape factor based solely on \(\Phi \). Analogously, we introduce a model for the rotation torque coefficient. Both models have the same basic structure and are given by
where \(b_D = -0.5 \) and, \(b_R = -1.5 \) are obtained from theoretical considerations (see Leith, 1987). The two models strictly hold only for Stokes regime. Outside Stokes regime, the nonlinear term in the Navier-Stokes equations is not negligible anymore. However, up to \(Re \leq 10 \) the force acting on the particle can be effectively described as the force resulting from Stokes equations times a modifying factor \(f \) of order 1, for example, for a sphere \(f = 1 + 0.15 Re^{0.687} \) (Ayala et al., 2008). For more complex particles it is reasonable to assume that a similar factor of order one holds too. However, the exact form and range of applicability is a topic for future work. Here, for particles outside of Stokes regime, our study is only qualitative and determines \(C_D \) and \(C_R \) up to factors of order 1.

Happel and Brenner (1983) introduced an average resistance to translation \(\mathcal{T} \) of an arbitrarily shaped particle. It can be obtained by averaging the resistances to translation for any orientation assuming that all particle orientations are equally probable. \(\mathcal{T} \) is defined as the harmonic mean of the translation tensor eigenvalues. The average settling velocity when neglecting coupling between translation and rotation can be obtained through balancing of the hydrodynamic and hydrostatic forces and is given by

\[
\mathcal{U}_\infty = \mu^{-1} \mathcal{T}^{-1} V_p (\rho_p - \rho_f) g.
\]

3. Methodology

3.1. Snowflake Geometries

To account for the complex shapes of snow particles, we consider geometries obtained from \(\mu \)CT scans of fresh snow samples (Schleef et al., 2014) as well as geometries simulated with a phase field model (Demange et al., 2017).

The experimental snow particle geometries are extracted from \(\mu \)CT data of two distinct samples of fresh, sieved snow (snow samples No. 2 and 5 from Schleef et al., 2014). Details on the sampling and the snow samples themselves can be found in Schleef et al. (2014). The 3-D binary \(\mu \)CT images are segmented into individual particles by applying an algorithm based on watershedding (see SI). Thirty particles from each data set
are chosen randomly for the use in the hydrodynamic simulations. We chose samples No. 2 and 5 because they are not subjected to any external impacts and allow us to study a broad variability of particle geometries. Particles of snow sample No. 2 exhibit plate-like features and some dendritic structures, while sample No. 5 contains highly dendritic particles. The average maximal extension of the chosen particles is \(827 \pm 329 \mu m\). Figures 1c–1f show two examples of snow particles from both snow samples.

Twelve elementary snowflake geometries generated with a modified phase field model are provided by Demange et al. (2017). The phase field model simulates the physical growth of snowflakes in 3-D and yields a broad range of precipitation particle geometries. The phase field particles feature regular, almost symmetric particles with varying dendricity. In Figures 1a and 1b two examples of phase field snow particles used for the hydrodynamic simulations are shown. All particles can be found in Figures S5–S7 (SI).

3.2. Simulation of the Resistance Matrix

Steady-state simulations of the laminar streaming and rotating flows around the particle are conducted to extract the resistance matrix of a snow particle. The simulations are performed using the open source software OpenFOAM. The steady Navier-Stokes equations are solved using the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) for the velocity-pressure coupling. Two distinct simulation types are conducted; one for the translation of the particle and one for the rotation. Each simulation solves for the coupled velocity and pressure field. The hydrodynamic forces and torques are then computed (Equation S4 in the SI) and subsequently transformed into the body-fixed particle frame. The respective resistance matrix can be computed by solving Equation 2. The setup and validation studies for both simulation types are described in detail in the SI.

3.3. Particle Free Fall Simulations

To investigate the sedimentation behavior of the examined snow particles, their motion is calculated numerically for the case of free-falling particles in still air. The numerical procedures are adopted from (Zhang et al., 2001). A pseudo-code of the simulation can be found in the SI. The previously computed resistance matrices are used to calculate the hydrodynamic forces and torques acting on the particles, using Equation 2. Furthermore, only hydrostatic and hydrodynamic forces and torques are considered. Euler’s four parameters are numerically integrated using the fourth-order Runge-Kutta scheme, while the explicit Euler forward scheme is used to obtain the new particle position, velocity, and angular velocity. The integration time step is set to \(10^{-5}\) s, and each 1,000th time step is registered; that is, the temporal resolution of the stored time series is \(10^{-2}\) s. Since we investigate the sedimentation of particles in still air, no background flow field is assumed and all particles are at rest initially. To ensure that all particles remain in Stokes regime throughout their complete sedimentation time, all particles are rescaled to \(r_{eq} = 10 \mu m\).

We assign 125 different initial orientations for each particle and the simulation is terminated for a given particle-initial orientation combination once a steady state is reached. The criteria for steady state are defined by a maximal relative change of \(10^{-6}\%\) for both \(u\) and \(\omega\). Note that this is a less strict definition of steady state compared to (Happel & Brenner, 1983) since it concerns magnitudes instead of vectors. The first initial orientation of each particle is chosen randomly, while the other 124 initial orientations are described by all possible combinations of the three Euler angles, where each Euler angle may be assigned a multiple of \(\pi/5\). Thus, approximately all particle orientations are probed.

4. Results

During free fall in still air, all investigated snow particles eventually attain preferred orientations in which they reach steady state; that is, the magnitudes of both translational and angular velocities stay constant over time. We observe two different modes of motion in steady state. Ten particles exhibit a drifting motion while rotating only slightly (see also Figure S8 in the SI). The remaining 62 particles all spiral while sedimenting, where the center of mass describes a downward spiral and the particle itself generally also rotates. Example videos of the sedimentation are provided in the supporting information. The type of motion and the preferred orientation is only dependent on particle geometry and does not change with initial orientation.

We calculate drag, lift, pitching torque, and rotation torque coefficients for all particles in steady state. All four coefficients are trivially dependent on either \(Re\) or \(Re_{ar}\). In the simulation all particles sediment with...
different terminal velocities; thus, the coefficients are extracted at different Reynolds numbers $Re' = 2u_{infty}r_{eq}/\nu$ and $Re' = 4u_{infty}r_{eq}^2/\nu$. To assess the impact of the shape, we control for Re and rescale the coefficients at $Re = Re_{infty} = 0.1$ using $C_D = C_D \cdot L$, $\Phi = \Phi \cdot L$, and $C_R = C_R \cdot r_{infty} / 0.1$. Figure 2 (top) shows C_D as a function of Φ. Also shown is Equation 5 with $b_3 = -0.5$. Figure 2 (bottom) shows C_R as a function of Φ. Equation 5 with $b_3 = -1.5$ is also shown. Residuals to both models are shown in Figures S10 and S11 (SI).

We could not find any correlation for C_R, while C_D is weakly correlated to C_D and anisotropy. We refer to the SI for more details on the pitching torque and lift coefficients.

Correct prediction of the terminal velocity of a particle in a viscous fluid is of great importance for many practical applications. (Happel & Brenner, 1983) proposed Equation 6 as an estimate of π_{infty} provided that one knows the particle’s translation tensor. When C_D of a particle is known, π_{infty} may also be predicted through balancing hydrostatic and hydrodynamic forces. Using the drag relation presented in this study, Equation 5 with $b_3 = -0.5$, we can formulate the average settling velocity of an irregular particle as

$$\pi_{infty} = \frac{2gr_{eq}^2 \Phi_{eq}^{0.5}}{9\nu} \left(\frac{\rho_\ell - \rho_i}{\rho_\ell} \right) C_D^{0.5} C_R^{0.5}$$

Examining Equations 6 and 7, we see that π_{infty} can be modeled as a function of Φ. Figure 3 shows the simulated average terminal velocity compared to predictions using Equations 6 and 7.

We also investigated the importance of coupling between translational and rotational motion on the terminal velocity. On average terminal velocity is 5.0% smaller when coupling is artificially neglected, while the maximum relative difference is approximately 20%. For more details we refer to the SI.

5. Discussion

Naturally, particles with a drift mode of motion in the steady state translate without significantly rotating. Seven of these particles are phase field particles with clear symmetry features. The three μCT particles with drift motion exhibit no obvious geometric features grouping them together. Figure S8 (SI) shows that also spiralling particles may sediment while barely rotating. These particles include all remaining phase field and 14 μCT particles. Most of those μCT particles are either predominantly planar or have a highly irregular mass distribution. Since the phase field particles have a high degree of symmetry, those particles are expected to translate with little to no rotation.

Equation 5 with $b_3 = -0.5$ exhibits an adjusted R^2 of 0.73, indicating a reasonable representation of C_D. Thus, the simplified version of the model proposed by Leith (1987) holds also for complex, irregular snow particle shapes. A least squares fitted parameter $b_3 = -0.45$ deviates from its theoretical value by 10% and has an adjusted R^2 of 0.73 as well, showing good agreement of the data with theory. In literature, it is suggested that C_D is also dependent on particle anisotropy (e.g., Bagheri & Bonadonna, 2016). However, introduction of various anisotropy measures (e.g., flatness and elongation) does not improve the correlation significantly (not shown). For the rotation torque coefficient, the adjusted R^2 of Equation 5 with $b_3 = -1.5$ is a mere 0.04. However, excluding the three marked outliers results in an adjusted R^2 of 0.54. A simple least squares fit of the parameter b_3 to the data gives $b_3 = 1.46$, a deviation of 2.7% from the theoretical value. The adjusted R^2 remains unchanged. Thus, for the majority of the snow particles, C_R can reasonably be predicted by Re_{infty} and Φ. The largest outlier was a needle-like phase field particle. The two μCT particles also excluded from consideration resemble a two-bladed propeller and a helix, respectively, which are expected to have geometries optimized to high rotational resistance.
The models to predict Φ_∞ (Equations 6 and 7) have an adjusted R^2 of 0.87 and 0.75, respectively. Thus, both formulations lead to a reasonable estimate of a particle’s average settling velocity. It is to be noted that Equation 6 shows less scatter, though obtaining a particle’s translation tensor is significantly more difficult than its sphericity. More so, Equation 6 is based on the assumption that all particle orientations are equally probable. This, however, is not the case, since particles attain preferred orientations during free fall.

Based on the maximum steady state Reynolds numbers achieved in the particle free fall simulations and assuming $Re = Re_\infty = 0.1$ as the upper limit of Stokes regime (Stokes drag of a sphere is associated with an error of 2% at $Re = 0.1$; Mando & Rosendahl, 2010), we estimate the maximum particle dimensions for their sedimentation to still be in Stokes regime, as $re_{eq,max} \approx 20\mu m$ and $d_{b,max} \approx 100\mu m$. Particles of such dimensions may occur in clouds and in the saltation layer, though particles close to the earth surface, such as the particles from the snow samples used in this study, are typically larger. However, as mentioned above, Equation 7 can reasonably be extended up to $Re \approx 10$ using modifying factors f. Applying this extended model to the original sized μCT particles we find that roughly two thirds of the studied particles are expected to sediment at $Re \leq 10$ (see Figure S13 in the SI). Future work can be dedicated to investigate a possible extension to higher Re ($10^-1,000$) also present in the atmosphere. For this, we propose to find expressions for f, g, and c in the generalized model of Clift and Gauvin (1971), $C_D = 24/Re\Phi^{0.5} + g\Phi$, where g is a modifying factor depending on Re.

In the turbulent airflow $u(x,t)$ the simplified equation of motion of snow particles is $du_p/dt = -(u_p - u(x,t))/\tau_{eff} + g$ if the smallest scale of flow variations is much larger than the snow particle size. Here, $\tau_{eff} = \Phi_\infty/g$ is the effective particle response time and Φ_∞ can be obtained from Equation 7, if necessary in conjunction with f. Averaging this simplified equation of motion, we find that the mean settling velocity in turbulence $\Phi_\infty(t)$ is equal to the average settling velocity in still air Φ_∞ plus the average flow velocity in the particle frame $\Phi_p(x, t)$. Wang and Maxey (1993) studied the case for homogeneous isotropic turbulence and found that $\Phi_p(t)$ equals Φ_∞ times a factor of order 1 whose magnitude depends on the ratio of τ_{eff} and the Kolmogorov time scale. As such, Φ_∞ serves as a good estimation for $\Phi_\infty(t)$.

6. Conclusions

The behavior of snowflakes in the atmosphere is a complex phenomenon and important for many physical processes. Even though there are several previous studies investigating the interaction of particles with the surrounding fluid, it is unknown for snow particles, due to the high degree of complexity and irregularity exhibited in their shapes. In this study, the particle resistance matrix of 72 distinct, realistic snow particles (12 from a phase field model, 30 particles each from μCT data of two snow samples) were calculated using numerical simulations of the steady Navier-Stokes equations. The resistance matrices were then used in particle tracking simulations to investigate the motion of the snow particles sedimenting in still air in Stokes regime. We found that all snow particles attain preferred orientations in which they reach a steady state. In these steady states the particles exhibit either a drifting or a spiralling mode of motion.

We tested a drag relation based on the particle Reynolds number and the particle sphericity (Equation 5 with $b_D = 0.5$) and found that it describes the behavior of complex snow particles rather well. A new relation of the same basic structure (Equation 5 with $b_D = 1.5$) was presented as an estimate of the average rotation torque coefficient based on the rotational Reynolds number and sphericity. Finally, we presented a new formulation to estimate the average terminal velocity of irregular particles based solely on sphericity and we formulated a simplified equation of motion for realistic snow particles. From considerations on the Reynolds number, we established an upper limit $(re_{eq,max} \approx 20\mu m, d_{b,max} \approx 100\mu m)$ to the direct applicability of our results. The results can be reasonably extended to moderately higher Re (\sim10) by introducing modifying factors f, and possibly even to high Re (\sim100–1,000) by introducing modifying factors along the lines of the generalized model of Clift and Gauvin (1971). In this study, we imposed the surrounding air be at rest. Thus, a logical next step would be to adopt this framework to real-life atmospheric or saltation layer flow conditions.
This study's findings are not restricted to snow particles, but are expected to hold generally for complex shaped particles sedimenting in viscous fluids.

Data Availability Statement

The snow particle geometries as well as a table summarizing the main parameters and results can be downloaded in the ETH Zurich Research Collection (https://doi.org/10.3929/ethz-b-000401995) as stl-files and as a csv-file, respectively. The table is also available in the supporting information accompanying this article. Provided in the supporting information are as well details on the particle segmentation algorithm and on the numerical procedures, additional findings, and example videos of the simulated snow particle sedimentation.

Acknowledgments

The authors would like to acknowledge G. Demange for providing the geometries of the phase field particle data and H. Lowe for providing the experimental µCT data sets. We acknowledge P. Corso for inputs on the numerical methods. Furthermore, we would like to thank Prof. M. Lehning for discussions. Markus Holzner acknowledges financial support from Swiss National Science Foundation SNF under Grant 172916.

References

