
1 

Competition and demography rather than dispersal limitation slow 1 

down upward shifts of trees’ upper elevation limits in the Alps2 

Daniel Scherrer1,2, Yann Vitasse1, Antoine Guisan2,3, Thomas Wohlgemuth1, Heike Lischke1 3 

4 

1 Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, 5 

Switzerland 6 

2 Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, 7 

Switzerland 8 

3 Institute of Earth Surface Dynamics, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland 9 

10 

Corresponding author: Daniel Scherrer 11 

Zürcherstr. 111, CH-8903 Birmensdorf, Switzerland 12 

daniel.scherrer@wsl.ch 13 

This document is the accepted manuscript version of the following article: 
Scherrer, D., Vitasse, Y., Guisan, A., Wohlgemuth, T., & Lischke, H. (2020). Competition 
and demography rather than dispersal limitation slow down upward shifts of trees' upper 
elevation limits in the Alps. Journal of Ecology. https://doi.org/10.1111/1365-2745.13451



2 
 

Abstract 14 

1. Species range limits are expected to be dramatically altered under future climate change and many 15 

species are predicted to shift their distribution upslope to track their suitable conditions (i.e. based 16 

on their niche). However, there might be large discrepancies between the speed of the upward 17 

shift of the climatic niche and the actual migration velocity of the species, especially in long-lived 18 

organisms such as trees. In fact, most studies did not find any significant upward shift of the 19 

distributional limits of temperate forest trees over the last decades. It therefore beckons the 20 

questions why trees are moving upslope much slower than their bioclimatic envelope and what 21 

are the implications for ecosystem functioning. 22 

2. Here, we compared the simulations of the upslope displacement of the bioclimatic envelope of 16 23 

tree species inhabiting temperate mountain forests under ongoing and future climate change 24 

obtained by correlative species distribution models (SDMs) to those from a dynamic forest model 25 

accounting for dispersal, competition and demography. We then partitioned the discrepancy in 26 

upslope migration velocity between the SDMs and the dynamic forest model into different 27 

components by manipulating dispersal limitation, interspecific competition and demography.  28 

3. Tree species in the dynamic forest model migrated only slowly upslope in contrast to the SDMs. 29 

Most of the difference in migration velocity can directly be attributed to tree’s demography (long 30 

life cycle), followed by effects of competition and only a marginal contribution of dispersal 31 

limitation. Additionally, lower elevation species (“non-treeline”) shifted slower upslope than high 32 

elevation species (“treeline”) indicating a strong effect of inter-specific competition at their leading 33 

edge. 34 

4. Synthesis. Forests have a high inertia to climate change because of their longevity and ability to 35 

acclimatise to high climatic fluctuations. Lower elevation tree species (deciduous) only slowly 36 

establish in stands at higher elevation where coniferous species dominate and likely profit from 37 

facilitation by disturbance events. Therefore, forest ecosystems seem to persist, even if climate 38 

becomes unfavourable, until they approach a tipping point at which an extreme event (e.g., 39 
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drought, storm or insect attack) leads to a large dieback and resource change enabling new 40 

suitable species to spread and establish. 41 

 42 

Keywords: climate change, climate potential, dynamic forest models, mountain forest, Picea abies, 43 

species distribution model, TreeMig  44 
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Introduction 45 

Species range limits and abundance are expected to be dramatically altered under ongoing and future 46 

climate warming (Parmesan et al. 1999; Deutsch et al. 2008; Pereira et al. 2010; Lindner et al. 2014; 47 

Dyderski et al. 2018). One of the most iconic ecological limits is the treeline, i.e. the boundary beyond 48 

which trees are not able to thrive, which is generally determined by climatic factors putting constraints 49 

on the tree life-form (Körner 2012; Paulsen & Körner 2014). As a result, the treeline is expected to shift 50 

upward in elevation or latitude with the projected future climate (Dullinger, Dirnböck & Grabherr 2004; 51 

Gehrig-Fasel, Guisan & Zimmermann 2007; Körner 2012). However, only few tree species make the 52 

treeline (called hereafter “treeline” species) whereas numerous tree species have their upper 53 

elevation limits (UELs) below the treeline (called hereafter “non-treeline” species). The UEL of these 54 

“non-treeline” species seem also indirectly linked to temperature (e.g., by late spring frost tolerance 55 

and limitation in tissue and seed maturation; Körner et al. 2016; Lenz et al. 2016) but such limits are 56 

less visible and their dynamics have been much less studied than the treeline (but see Vitasse et al. 57 

2012; Körner et al. 2016), especially in the context of climate change. In addition, the UEL may remain 58 

stable while the abundance peak or the rear edge limit may move upward (Lenoir et al. 2008; Freeman 59 

et al. 2018; Rumpf et al. 2018) or sometimes even downward (Lenoir et al. 2010b). Although many 60 

models predict a rapid upslope shift of the suitable climate conditions and thereby the potential UEL 61 

for most tree species in the next decades, only small shifts (Peñuelas & Boada 2003; Gehrig-Fasel, 62 

Guisan & Zimmermann 2007) or even no shifts at all have been observed during the last decades 63 

(Lenoir et al. 2008; Lenoir et al. 2010b; Bertrand et al. 2011; Küchler et al. 2015), especially for “non-64 

treeline” species (Shi et al. 2020). This discrepancy between bioclimatic envelope based expectations 65 

and observations could be explained by three main factors: 1) long generation time, slow regeneration 66 

speed, high plasticity and rare mast fructification (e.g., Bertrand et al. 2011; Copenhaver‐Parry et al. 67 

2020), 2) limited dispersal capacities (e.g., Svenning & Skov 2007; Lenoir et al. 2010a) and 3) 68 

suppressed establishment due to competition and fluctuating resource availabilities (e.g., Bertrand et 69 

al. 2016; Shi et al. 2020). 70 
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While empirical data about past forest dynamic at the upper elevational limit exist (i.e., vegetation 71 

surveys, dendrochronological series, old pictures, aerial images), we largely depend on model 72 

projections to assess future trends especially under increasing rates of environmental change. One 73 

often used type of model to predict distributional changes are correlative species distribution models 74 

(SDMs) relating occurrence data to environmental variables to construct the realised niche of a species 75 

(Peterson et al. 2011; Guisan, Thuiller & Zimmermann 2017). For each species, the fitted niche can 76 

then be projected in space and time to estimate the potential distribution of a species based on the 77 

selected environmental predictors (i.e., usually climate) without explicitly considering any population 78 

dynamic processes (i.e., dispersal, succession, competition; but see Guisan, Thuiller & Zimmermann 79 

2017 for arguments about implicit inclusion of those processes). In contrast to purely correlative 80 

models, in particular SDMs, dynamic vegetation models (Snell et al. 2014) quantitatively integrate 81 

biological processes (e.g., dispersal, succession and competition) which have been recognized to 82 

largely influence UELs (Feuillet et al. 2019; Copenhaver‐Parry et al. 2020; Shi et al. 2020), while still 83 

accounting for climatic suitability. These models use species-specific growth and demographic 84 

parameters adjusted by spatially explicit local climatic conditions to simulate dynamic processes 85 

relevant for populations, e.g. mortality, dispersal, competition for light and recruitment. There are also 86 

hybrid models that combine features of SDM and dynamic approaches (Dullinger et al. 2012). 87 

 While the role of dispersal limitation on the ability of a species to track conditions of their shifting 88 

climatic niche in a warming world is often discussed and studied (e.g., Svenning & Skov 2007; Engler et 89 

al. 2009; Vacchiano et al. 2018), the role of competition is much less obvious (Scheller & Mladenoff 90 

2008; Meier et al. 2012). However, competition (e.g., due to light availability and shade tolerance; 91 

Nieto-Lugilde et al. 2014) might play an important role in limiting a species’ ability to migrate upslope, 92 

especially in long-lived and highly competitive ecosystems such as forests where seedling 93 

establishment is often highly dependent on disturbance events (Wohlgemuth et al. 2018; Bugmann et 94 

al. 2019).  95 
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In this study, we compared correlative SDMs with a dynamic forest model (TreeMig; Lischke, Loffler & 96 

Fischlin 1998; Lischke et al. 2006) regarding the occurrences of 16 tree species of the Western Swiss 97 

Alps to answer the following questions: (1) How well do these models estimate the observed species-98 

specific UEL for different tree species? (2) How will the estimated future UELs based on the dynamic 99 

forest model differ from the UELs estimated by correlative SDMs under different climate warming 100 

scenarios? And (3) how much of the differences between the potential and dynamically modelled UELs 101 

(i.e., time lag) is explained by dispersal limitation, competition, succession and demography?  102 
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Material and Methods 103 

Study area 104 

The study area is located in the western Swiss Alps (Canton de Vaud, 46°10 to 46°30′N; 6°50′ to 7°10′E, 105 

Figure 1) and represents both a priority area for interdisciplinary research at the University of Lausanne 106 

(http://rechalp.unil.ch; Von Daniken, Guisan & Lane 2014) and for conservation at the European level 107 

(Lassen & Savoia 2005). It covers ca. 700 km2, which encompass an elevation gradient ranging from 108 

372 m to 3,210 m a.s.l. with forested areas up to ~2000 m. The annual mean temperature and total 109 

precipitation vary, respectively, from 8°C and 1,200 mm at 600 m a.s.l. to −5°C and 2,600 mm at 3,000 110 

m a.s.l. (MeteoSwiss 2015). Since the beginning of systematic meteorological observations over 150 111 

years ago, average temperatures in Switzerland have increased by 1.7°C (MeteoSwiss 2015). While 112 

until the 1970ies temperatures mainly fluctuated, the warming has strongly advanced since the late 113 

1980ies and is projected to further accelerate during the 21st century (MeteoSwiss 2015). In contrast, 114 

annual precipitation sums have not significantly changed in Switzerland during the last few decades 115 

(MeteoSwiss 2015). While the study area has been influenced by anthropogenic land-use (Gago-Silva, 116 

Ray & Lehmann 2017), we here decided to consider the whole study area as potentially colonisable by 117 

forest (i.e., no land-use filter excluding forest). This clearly leads to an overestimation of simulated 118 

forest cover at the lowest elevations where urbanised and agriculturally used land predominates. 119 

Similarly, it might lead to an overestimation of the actual highest elevation of the treeline, which in 120 

part of the study region is currently supressed by land use as alpine pastures (Pellissier et al. 2013) but 121 

could nevertheless be recolonized in a near future as a result of the increasing abandonment of this 122 

traditional though little profitable land use (Gellrich et al. 2007). However, as we are mainly interested 123 

in the UEL of tree species rather than the area and amount of forest, this simplification should not 124 

cause large errors but rather prevent noise potentially caused by including uncertain future land-use 125 

scenarios (Gago-Silva, Ray & Lehmann 2017). 126 

Study species 127 
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We modelled the current and future distribution of 16 widely spread, so-called principal tree species 128 

in Switzerland that are abundantly growing in the forests of the study area: Abies alba Mill., Acer 129 

campestre L., Acer platanoides L., Acer pseudoplatanus L., Carpinus betulus L., Fagus sylvatica L., 130 

Fraxinus excelsior L., Picea abies (L.) H. Karst., Quercus pubescens Willd., Quercus petraea Liebl., 131 

Quercus robur L., Sorbus aria (L.) Crantz, Sorbus aucuparia L., Tilia cordata Mill., Tilia platyphyllos Scop. 132 

and Ulmus glabra Huds. These species were subdivided into two groups with either species having an 133 

observed UEL above 1800 m a.s.l. within the study area and being considered as “treeline” species or 134 

all other species termed as “non-treeline” (Table S1). To simulate inter-specific competition more 135 

realistically, in the forest model we also included 12 less abundant woody species as competitors in 136 

our simulations: Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench, Alnus viridis (Chaix) DC., Betula 137 

pendula Roth, Castanea sativa Mill., Corylus avellana L., Larix decidua Mill., Pinus cembra L., Pinus 138 

mugo Turra, Pinus sylvestris L., Populus nigra L., Populus tremula L., Salix alba L. and Taxus baccata L. 139 

The distributional limits of these additional species were not analysed further, as we did not have 140 

enough observations in the study area to allow a confident estimation of distribution limits or their 141 

data did not produce meaningful SDMs (AUC < 0.7; Swets 1988). To account for competition by other, 142 

non-tree vegetation types such as small shrubs or dense grass, likely affecting tree regeneration 143 

particularly above the treeline, we included an additional general plant functional type called “shrubs 144 

and grasses”. 145 

Occurrence records (presence data) for all species were available from three main data sources: The 146 

Swiss national forest inventory (LFI-1; EAFV 1988), the Swiss forest vegetation database (Wohlgemuth 147 

2012) and the cantonal forest inventory of Canton de Vaud (Hartmann, Fouvy & Horisberger 2009). 148 

The occurrences were aggregated to a 200 m grid to match the environmental data used for modelling 149 

and analysis resulting in 57,653 records across the 16 tree species (Table S1). All data were collected 150 

within the period 1981–2010, matching the 30-year average of the climatic data used for SDM 151 

modelling (see below).  152 

Correlative species distribution models 153 
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For our correlative SDMs, we selected the following seven topo-climatic predictors based on 154 

explanatory power (model selection by AIC) and ecological significance: mean annual temperature (°C; 155 

Tyear), minimum temperature of the coldest month (°C; Tmin), temperature of the driest quarter (°C; 156 

Tsummer), annual sum of precipitation (mm; Pyear), sum of precipitation of the driest quarter (mm; 157 

Psummer), slope (°) and topographic position (concave-convex, unitless; Topo). These variables were 158 

derived from national gridded climate data (i.e., temperature and precipitation) and digital elevation 159 

models (DEM; Federal Office of Topography: swisstopo.ch) as spatial layers at a resolution of 200 m, 160 

with climatic data based on both the current conditions (reference period of 1981–2010) and future 161 

scenarios (IPCC's SRES A1B, A2 and RCP3PD for periods 2045-2075 and 2070-2100; meteoswiss.ch; 162 

Zubler et al. 2014). The scenarios A2, A1B and RCP3PD represent an average temperature increase of 163 

3.2 – 4.8 °C, 2.7 – 4.1 °C and 1.2 – 1.8 °C, respectively, until the end of the 21st century (for details on 164 

scenarios see CH2011 2011). While we acknowledge that other environmental variables than 165 

derivations of temperature and precipitation are important in determining the distribution of trees (in 166 

particular bedrock/substrate and light availability; Mod et al. 2016), we decided to limit our variables 167 

in the SDMs to these factors to match the information given to the dynamic forest model (i.e., allowing 168 

a more straightforward comparison) and to focus on the bioclimatic predictors of the tree 169 

distributions.  170 

To guarantee an independent evaluation of our SDMs, we split the available data into two subsets. The 171 

calibration dataset contained all occurrences within Switzerland outside of the study area and the 172 

evaluation dataset all occurrences within the study area. While our dataset contains both presence 173 

and absence data (i.e., most occurrences stem from plot observations) they naturally are restricted to 174 

the forested areas of Switzerland. As a result, they do not appropriately cover the available climate of 175 

Switzerland (i.e., mainly omitting the area above the current treeline) leading to unreliable 176 

extrapolations into this non-analog climatic areas (Fitzpatrick & Hargrove 2009). We therefore decided 177 

to use presence-only data in combination with 100,000 background points randomly sampled across 178 

the whole of Switzerland to provide a representative signal of the available climatic conditions. All our 179 
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models were run with biomod2 (Thuiller et al. 2009; Thuiller et al. 2019) in R.3.4.3 (R Core Team 2019) 180 

using an ensemble modelling approach (Araujo & New 2007) employing generalised linear models 181 

(GLM), generalised additive models (GAM), boosted regression trees (BRT) and random forests (RF). 182 

All modelling techniques were run with the default settings of biomod2 and the background data 183 

(pseudo-absences) were weighted to equal the presences (prevalence = 0.5). We used these four 184 

modelling techniques as they provide a mix of regression-based and machine learning techniques and 185 

are among the most applied in SDM studies (Guisan, Thuiller & Zimmermann 2017). The models were 186 

evaluated on the independent data of our study area using the area under the ROC curve (AUC) and 187 

maximizations of the true skill statistics (maxTSS; see Guisan, Thuiller & Zimmermann 2017). Variable 188 

importance was estimated based on permutation tests (Thuiller et al. 2019). All probabilistic 189 

predictions were binarised using a threshold optimising TSS (Liu et al. 2005). 190 

Dynamic forest model 191 

We used the dynamic forest landscape model (Shifley et al. 2017) TreeMig (for details see Lischke, 192 

Loffler & Fischlin 1998; Lischke et al. 2006) on a spatial grid of 200 m resolution. Process functions and 193 

relationships in the model are species-specific. In details, the local annual dynamics of each species in 194 

each of 15 discrete tree height classes is determined by germination from available seeds, mortality 195 

and growth from the next lower and to the next higher height class. Trees compete for light i.e., trees 196 

in higher height classes shade lower height classes, which implies that shade tolerance, shading ability, 197 

maximum height and growth – the latter influenced by environment – affect competitiveness. These 198 

species-specific demographic processes depend on temporally changing and spatially-explicit 199 

bioclimatic variables: mean temperature of the coldest month, degree-days and a yearly drought stress 200 

calculated from monthly precipitation, temperature, slope, aspect and a site-specific field capacity. 201 

Browsing is accounted for by a constant pressure and species-specific decrease of seedling survival 202 

(Kienast 1987). Effects of random medium scale disturbances are included by increasing tree mortality 203 

in each grid cell with a given probability (set to 0.001) and amount (set to 0.8; i.e., killing 80% of all 204 

individuals). The trees of each species and height classes within tree species are assumed to be 205 



11 
 

randomly distributed over the grid cell, implicitly accounting for random small-scale disturbance and 206 

resulting in a heterogeneous distribution of the light conditions. Seed production starts from a certain 207 

species-specific height class (Lischke & Löffler 2006), determining the generation time, and increases 208 

up to a maximum value in the highest height class. The seeds are dispersed to other grid cells with a 209 

distance-dependent probability, which combines frequent short-distance dispersal events with rare 210 

long-distance dispersal events up to several kilometres. The seeds landing in a cell are accumulated in 211 

the seedbank. The species-specific parameters used in the TreeMig model are given in the 212 

Supplementary Material (Table S2-S3). TreeMig produces various output variables (biomass, tree 213 

numbers, LAI) per ha, time step, height class, and species. Here, we evaluated only the species-specific 214 

biomass/ha. 215 

Simulation setup 216 

We used six different model setups with varying amounts of dispersal limitation and inter-specific 217 

competition (see below). All our simulations had four distinct time periods: a spin-up phase (1500-218 

1863), a historic time period (1864-2015; from first systematic daily meteorological information to 219 

present), future warming projections (2016-2100) and a stabilising period (2101–2500). The necessary 220 

bioclimatic variables per grid cell and year were calculated with monthly temperature and precipitation 221 

data for the period 1500–2500, slope, aspect and field capacity values derived from the Swiss Soil 222 

Fertility Map (EJPD, EVD & EDI 1980). While slope, aspect and field capacity were considered static 223 

across time, temperature and precipitation (and their deviates) varied across time. The spatial 224 

variation within the study area (i.e., temperature and precipitation difference between two points in 225 

space) and the range of inter-annual variation for all time periods were based on our reference period 226 

(1981–2010). The climate of the spin-up period (1500–1863) was based on the long-term average 227 

temperature of 1864 to 1900 with randomized inter-annual variations. This spin-up phase had the sole 228 

purpose to establish a baseline forest (i.e., realistic tree communities along the elevation gradient) to 229 

start our climate forcing with historic and future data. As we start (year 1500) from seeds of all species 230 

across the whole study area it takes several hundred years to establish these tree communities (i.e., 231 
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tree growth and species succession). The climate for the historic period 1864 to 1980 were calculated 232 

based on anomalies compared to our reference period (1981-2010) provided by 14 long-term 233 

homogenized climate stations (Bader & Bantle 2004) and considered to be spatially homogenous (i.e., 234 

same spatial variation as reference period). The climate from 1981 to 2015 was directly based on 235 

available data for the study area. The climate of the future was based on the previously mentioned 236 

climate change scenarios and used linear interpolation across time for temperature and precipitation 237 

to generate climate variables based on the available projections for 2035, 2065 and 2085 with added 238 

random inter-annual variation. The stabilising period (2101–2500) had the constant average 239 

temperature predicted for 2100 with random inter-annual variation. 240 

The first of our six different model setups simulated all 29 species together (full competition) with 241 

species-specific seed production and dispersal kernels (TM_Normal = TreeMig with normal settings; 242 

see Table S4 for all following model setups). Our second model setup also simulated all species, but in 243 

addition to the normal recruitment of the species there was a constant seed rain (120 seed per ha, 244 

year and species) eliminating dispersal limitations (TM_UD; unlimited dispersal). The third model setup 245 

was eliminating all forms of inter-specific competition by running each species alone and therefore 246 

only suffering from intra-specific competition of age cohorts (TM_NC; no competition). The fourth 247 

model setup combined the setups with no dispersal limitation and no competition (i.e., each species 248 

alone with seed rain; TM_UD_NC). The last two scenarios ran each species in combination with Picea 249 

abies (two-species setup), which resulted to be the most competitive species in our model either with 250 

species-specific (TM_PA) or unlimited dispersal (TM_UD_PA). 251 

Determination of the species upper elevation limits (UELs) 252 

To determine the UELs of the 16 tree principal species, we defined a set of rules applicable to both the 253 

SDM and the TreeMig models. The original output of the SDMs is a habitat suitability, which is then 254 

reclassified into presence/absence data by a threshold, while the output of TreeMig is biomass per ha.  255 
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In a first step, we classified the whole elevation gradient in the study area into 50 m elevation bands. 256 

For each band, we then calculated the percentage of presences predicted by SDMs and the predicted 257 

average biomass per ha (i.e., for TreeMig). In a second step, we identified the elevation band with the 258 

highest values (i.e., percentage of presence and biomass). In a last step, we defined the upper elevation 259 

limit (UEL) as the highest elevated band in which the percentage of presence/biomass was still above 260 

5% of the maximum value. This definition of 5% instead of fixed value (i.e., biomass) was chosen to 261 

account for the very different amounts of biomass produced by the 16 study species. This procedure 262 

to determine the UEL of each species was repeated separately for each simulation setup and climate 263 

change scenario. 264 

To check if our 5% rule returns realistic elevation limits, we compared the scores to field observations 265 

in the study area (EAFV 1988; Wohlgemuth 2012) as well as with literature about the species limits in 266 

Switzerland (Vitasse et al. 2012; Randin et al. 2013; Kollas, Körner & Randin 2014). To calculate the 267 

proportional contribution of the three main processes – demography, competition and dispersal 268 

limitation – to the upslope migration velocity (m/y; vUEL), we compared the UEL based on the different 269 

modelling setups. The vUEL between 2000 and 2085 was calculated for the bioclimatic envelope model 270 

(SDM) and all setups of the dynamic forest model (TreeMig). We assumed that the vUELSDM (upslope 271 

migration velocity of bioclimatic envelope) is prone to follow climatic change while vUELTM_Normal 272 

provides the most realistic estimate of upslope migration. The difference between the two (vUELSDM – 273 

vUELTM_Normal) must therefore be explained by demography, competition and dispersal limitation as the 274 

explicit inclusion of these processes represents the major discrepancy between the two model types. 275 

By comparing vUELTM_UD, vUELTM_NC and vUELTM_UD_NC to vUELTM_Normal we can estimate the contribution 276 

of dispersal limitation, interspecific competition and the combined effect. We then simply assumed 277 

that the remaining difference between the bioclimatic envelope (vUELSDM) and “unrestricted” dynamic 278 

forest model (vUELTM_UD_NC) is explained by demographic effects (i.e., slow growth and tree species 279 

succession). To statistically compare the contribution to vUEL between the different processes and if 280 

there is a difference between “treeline” and “non-treeline” species we used a two-way ANOVA with a 281 
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TukeyHSD as posthoc-test. The influence of the different scenarios and modelling procedures were 282 

analysed both at the ecosystem level (i.e. average across species) as well as at the individual species 283 

level.  284 
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Results 285 

Model performance 286 

The SDMs for the 16 principal tree species performed well with mean values and standard deviations 287 

of AUC and maxTSS of 0.88 ± 0.06 and 0.62 ± 0.11 respectively when evaluated on independent data 288 

(i.e. the study area; Figure S1). Overall, the most influential variable was mean annual temperature 289 

followed by slope (Figure S2) with variable importance strongly varying among species (Figure S3). 290 

The species-specific biomass predictions of the dynamic forest model (TM_Normal) were mostly in line 291 

with observation data based on the national forest inventory both in term of relative contribution to 292 

the total biomass (Figure S4) and absolute values of biomass (Figure S5). The most notable exception 293 

was A. alba, for which the majority of the biomass was predicted at lower elevations (< 1000 m) while 294 

most observations stem from higher elevation areas (>1000 m; Figure S4). This lack of A. alba at low 295 

elevation is most likely due to a long tradition of human land-use supressing the species in the lowlands 296 

(Tinner et al. 2013; Vitasse et al. 2019). Both the dynamic models and observations highlight that at 297 

lower elevations (< 1000 m) F. sylvatica and P. abies build the majority of the biomass while at the 298 

higher elevation sites P. abies accounts for the vast majority of the biomass, with some contribution 299 

of A. alba (Figure S4). 300 

Observations vs models 301 

Our simulated species-specific UELs based on SDMs (Spearman correlation = 0.82) and TreeMig 302 

(TM_Normal; 0.87) correlated well with field observations for the period 1981 - 2015 (Figure 2, for the 303 

other TreeMig setups see Figure S6). However, both the SDMs and TreeMig simulations drastically 304 

overestimated the UEL of Q. pubescens and underestimated the one of A. alba (Figure 2). 305 

Time lag 306 

The average elevation difference between the potential UELs of species based on correlative SDMs 307 

and dynamic TreeMig predictions (TM_Normal) was almost zero in the year 2000 (Figure 3). However, 308 
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for the year 2060 the SDMs predicted the average potential species-specific UEL to be 475 m, 493 m 309 

and 247 m higher than based on the dynamic forest model (TM_Normal) for the climate change 310 

scenarios A1B, A2 and RCP3PD, respectively. Consequently, for the three climate change scenarios, 311 

simulations from the dynamic forest model required 42, 34 and 377 additional years, respectively, to 312 

reach the potential UELs predicted by the SDM for 2060. This gap between potential bioclimatic UELs 313 

(SDMs) and dynamic forest simulations (TM_Normal) widened even more in 2085, with 565 m / 253 314 

years, 758 m / 256 years and 222 m / 364 years for scenarios A1B, A2 and RCP3PD, respectively (Figure 315 

3, Figure S7-S8). These time lags are the direct consequences of the difference in upslope migration 316 

velocity between the bioclimatic envelope (i.e., vUELSDM) and the simulated forest dynamics (i.e., 317 

vUELTM_Normal). While, in the period 2000 - 2085, the bioclimatic envelope shifted upslope at an average 318 

velocity of 11.2 ± 1.1 m (mean ± 95% C.I.) , 13.6 ± 1.3 m and 4.7 ± 0.6 m per year for the scenario A1B, 319 

A2 and RCP3PD, respectively, the values resulted from the dynamic forest (vUELTM_Normal) amounted to 320 

only 5.3 ± 1.4 m, 5.4 ± 1.5 m and 2.5 ± 0.7 m upslope per year, respectively (Figure 4, Table S5-S7). The 321 

patterns across the three climate change scenarios were similar and simply scaled with the expected 322 

amount of warming (Figures 3-6 for scenario A1B; figures for scenario A2 and RCP3PD in 323 

Supplementary Materials). 324 

The difference found in vUEL does not seem to be the effect of dispersal limitation, as the scenarios 325 

with unlimited dispersal only slightly reduced the difference between the bioclimatic envelope (SDM) 326 

and dynamic forest predictions of the UELs (TM_Normal; Figure 4; Table S5). In contrast, removing the 327 

effects of competition and succession largely reduced the difference between bioclimatic envelope 328 

and dynamic forest predictions (Figure 4). In fact, without competition and succession the average 329 

species UEL was predicted to be more than 200 m higher in the year 2000 than currently observed or 330 

predicted by SDMs (Figure 3). However, even with unlimited dispersal and without competition, the 331 

upslope migration velocity (vUELTM_UD_NC) was still slower than the bioclimatic envelope estimated by 332 

SDMs (Figure 4, Table S7). This proportion of the time lag (50–70%) is therefore directly linked to the 333 
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simulated demography of the tree species and reflects the trees’ long generation times and thus few 334 

regeneration opportunities delaying the stepwise upwards migration across generations.  335 

While under the two climate warming scenarios (A2, A1B) demographic processes (p < 0.05) and 336 

competition (p < 0.1) had a strong effect on the vUEL, dispersal limitation (p > 0.95) did not (Table S8). 337 

Additionally, “treeline” and “non-treeline” species were affected differently by these processes (p < 338 

0.05, Table S8). This difference between “treeline” and “non-treeline” trees was driven by the effect 339 

of competition, which was almost zero for “treeline” species but significantly higher for “non-treeline” 340 

species (Table S5). 341 

This very strong effect of competition/succession was largely due to the removal of Picea abies as 342 

competing species in our simulations, the latter being the dominant species of the mid to high 343 

elevation sites in the region. Results from the simulations that run each species in combination with P. 344 

abies (TM_PA and TM_UD_PA) were almost identical to the ones obtained from simulations with all 345 

species (TM_Normal), indicating that mainly P. abies is hindering the advancement of most species 346 

(Figure 3). The competition effect (especially by P. abies) hindering the upward migration of lower 347 

elevation species is further highlighted by the changes in the slope of the SDMs vs. TreeMig predictions 348 

across time (Figure 5, Figure S9-S10). While the simulations without competition (TM_NC and 349 

TM_UD_NC) showed a synchronised upwards migration across species (i.e., no change in slope across 350 

time), all the other simulations including competition (TM_Normal, TM_UD, TM_PA, TM_UD_PA) 351 

showed a reduction in slope across time, suggesting a slower upwards migration of “non-treeline” 352 

compared to “treeline” species (Figure 5, Figure S9-S10).  353 

However, the effects of dispersal limitation and competition/succession were very species-specific 354 

(Figure 6, Figure S11-S12). In our TreeMig simulations, P. abies was clearly the dominant species at mid 355 

and high elevation and was neither limited by competition nor by dispersal (i.e., different scenarios 356 

have no effect). In fact, the UEL of P. abies as predicted by TreeMig was even always higher than the 357 

potential UEL based on SDMs or observations for all points in time (Figure 6). Additionally, our 358 
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simulations showed that S. aria, S. aucuparia and A. campestre were also hardly affected by 359 

competition or dispersal limitation. All other species were significantly affected by competition, 360 

especially A. alba, F. sylvatica, F. excelsior, Quercus species and Tilia species (Figure 6). A strong effect 361 

of dispersal limitation was only observed for the three Quercus species, most notably Q. robur (Figure 362 

6). However, this stronger effect of dispersal limitation might simply reflect an underestimation of 363 

zoochorie in oak species (Gómez 2003; Pesendorfer, Sillett & Morrison 2017). For most species, the 364 

effect of competition/succession was mostly due to P. abies (i.e., TM_PA is identical to TM_Normal), 365 

but the three Quercus species seem also to be limited by competition with other lowland species (i.e., 366 

F. sylvatica; Figure 6). All these factors influencing the species’ UELs and migration velocity lead to a 367 

predicted reshuffling of the species along elevation with climate warming (Figure S13-S22)  368 
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Discussion 369 

Simulations from the two types of models successfully defined the upper elevation limits (UEL) of most 370 

tree species under current conditions. However, simulations of the bioclimatic envelope models 371 

(SDMs) and the dynamic forests models (TreeMig) diverged under future climate warming suggesting 372 

a growing gap between the upslope displacement of the bioclimatic envelope and the actual migration 373 

of tree species. This gap, which translates to a migration lag between the bioclimatic envelope and 374 

predictions of the dynamic forest model, is especially large for “non-treeline” species. Analyses showed 375 

that population dynamics and inter-specific competition are the main factors explaining the divergence 376 

between the two model types, suggesting that these factors will likely hamper upslope advancement 377 

in the future.  378 

Upward migration: limited by competition rather than seed dispersal 379 

Our study provides several important general insights. Firstly, we quantify the effects that limit the 380 

observed upslope migration of trees compared to their bioclimatic envelope. Simulations suggest that 381 

most of the discrepancy between potential and observed upslope migration (e.g., Lenoir et al. 2010a; 382 

Küchler et al. 2015) accounts for the species’ population dynamics (i.e., slow biomass increase and long 383 

generation time, 59.8 ± 14.1% [mean ± 95% C.I.]) followed by competition effects (especially at the 384 

leading edge of low elevation species, 33.0 ± 14.3%), while dispersal limitation only showed marginal 385 

effects on most species (8.2 ± 5.9%). This is in line with findings of Lenoir et al. (2008) and Küchler et 386 

al. (2015) showing that short lived understorey species react much faster to climate change than long-387 

lived organisms such as trees. Here, we only studied the upslope migration of trees in a mountain area 388 

with steep environmental gradients (i.e., slopes) resulting in relatively short lateral distances to be 389 

travelled per degree of warming. Therefore, when looking at latitudinal rather than elevation gradients 390 

we expected the influence of dispersal limitation to increase, as the distances to travel per degree of 391 

warming are much larger in latitude than elevation (Jump, Mátyás & Peñuelas 2009). In fact, similar 392 

simulations with TreeMig along latitudinal transects in Siberia comparing tree shifts by migration to 393 
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ubiquitous seeds showed a migrational lag of several millennia due to seed dispersal limitations 394 

(Epstein et al. 2007; Goetz et al. 2010). Such population dynamic effects on delayed range shifts were 395 

already documented for alpine plants across the Alps (Dullinger et al. 2012). 396 

Second, our dynamic simulations suggest that especially “non-treeline” species are limited in their 397 

ability to track the shifting suitable climatic conditions due to competition at their leading edge. This 398 

hampering of shifts by competition at the leading edge seems surprising, as it is generally assumed 399 

that lower elevation species should be stronger competitors than higher elevation species (i.e., 400 

specialists of harsher environments). This assumption is related to two distinct theories: (i) the Species 401 

Interactions–Abiotic Stress Hypothesis (SIASH) that states that abiotic drivers define range limits at the 402 

most stressful end of species range, while competition sets range limits at the most benign range end 403 

(Normand et al. 2009; Louthan, Doak & Angert 2015); (ii) the stress- gradient hypothesis (Bertness & 404 

Callaway 1994; Chamberlain, Bronstein & Rudgers 2014), suggesting that as environmental stress 405 

increases the competitive effects decrease and facilitation might increase (Callaway & Walker 1997; 406 

Choler, Michalet & Callaway 2001). Following these hypotheses, one would expect that the assumed 407 

stronger competitors would quickly outcompete the treeline species when shifting upwards.  In 408 

particular, while the lower elevation species F. sylvatica and A. alba might ultimately be the stronger 409 

competitors, according to the simulations they are very slow to invade established stands of higher 410 

elevation species (mostly P. abies). Therefore, the abiotic and demographic processes responsible for 411 

the limitations at the leading and the trailing edge of a species distribution likely differ considerably 412 

leading to complex interactions among species (Kunstler et al. 2019; Shi et al. 2020). At higher 413 

elevations, environmental harshness can repeatedly reduce growth of “non-treeline” species such as 414 

F. sylvatica (synthesized by Packham et al. 2012), which reduces their competitiveness (e.g., Vanoni et 415 

al. 2016). Apart from the environmental gradient, also the succession gradient needs to be considered, 416 

which ranges from pioneer species being fast growing, shade-intolerant and often wind-dispersed over 417 

long distances, to stand-forming species eventually overgrowing pioneers, tolerating shade and often 418 

dispersing their seeds by animals over shorter distances. This successional gradient might be a further 419 
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explanation for why the two late successional species F. sylvatica and A. alba take so long (i.e., several 420 

100 years in our simulations) to catch up with their climatic niche and eventually would replace P. abies 421 

and other higher elevation species. 422 

Models reproduce observations variably 423 

Our results demonstrate that, based on our “5% of maximum value” threshold, both the correlative 424 

and dynamic models predicted the UELs well for most species under current conditions (Spearman 425 

correlation > 0.8). This is a good additional validation for the usability of the presented approach 426 

comparing climate suitability with dynamic forest models. Nevertheless, there were some noteworthy 427 

species-specific differences between models and observations. Firstly, both the SDMs and TreeMig 428 

simulations overestimated the UEL of Quercus pubescens in the study area. This likely results from the 429 

strong competition with F. sylvatica. Q. pubescens only occurs on dry and calcareous sites where F. 430 

sylvatica cannot survive on such sites due to water shortage. In our study area, F. sylvatica dominates 431 

the comparably humid low elevation forest stands, suppressing oaks in general and Q. pubescens in 432 

particular (Rohner et al. 2012). As a consequence, Q. pubescens only rarely thrives in the study area (7 433 

observations) and the estimation of the UEL was therefore uncertain. In fact, most of the calibration 434 

data for Q. pubescens stem from habitats in a drier region of Switzerland (i.e., Valais) where F. sylvatica 435 

is widely absent, and might therefore have introduced a climatic sampling bias to our models, leading 436 

to imprecise predictions (Mette et al. 2013). Additionally, the overall low biomass and frequency of Q. 437 

pubescens within the study area likely results in an overestimation of the UEL based on our 5% 438 

threshold method (i.e. “flat” density distribution) while observations might underestimate the UEL by 439 

missing some of the rare higher elevation populations (highest observation in the Valais at 1750 m 440 

a.s.l.; https://www.lfi.ch/resultate/meldungen/). Secondly, the current UELs of two very important 441 

tree species, F. sylvatica and A. alba, were underestimated by the TreeMig models. This seems to be 442 

related to competition with P. abies, as in our TreeMig models both F. sylvatica and A. alba are 443 

supressed by P. abies at mid to high elevation. In fact, when the competition effect of P. abies was 444 

removed, the UELs of F. sylvatica and A. alba were overestimated toward higher elevations than 445 



22 
 

actually observed. This indicates that at least in some parts of the study area the suppression effect of 446 

P. abies seems to be lower than parameterised in the dynamic forest models, possibly because either 447 

forest management or specific environmental conditions may have hindered the competitive 448 

strength/growth of P. abies. Thirdly, our dynamic forest model overestimated the UEL of P. abies. This 449 

could be a direct effect of local land-use, more specifically the anthropogenic suppression of the 450 

treeline (in particular P. abies and A. alba) by a century-long use of this zone as alpine meadows and 451 

pastures (i.e., grazing/browsing; Gehrig-Fasel, Guisan & Zimmermann 2007; Pellissier et al. 2013), 452 

which is, however, not implemented in the models used here. 453 

Interestingly, when competitive effects were removed from the dynamic forest model, most species 454 

had a current UEL about 200 m higher than in the observations. This discrepancy indicates that most 455 

species might not be in equilibrium with the current climate but already lag behind their physiological 456 

limit as a result of inter-specific competition that occurs at their leading edge, which is often set by 457 

competition (Species Interactions–Abiotic Stress Hypothesis, SIASH; Normand et al. 2009; Louthan, 458 

Doak & Angert 2015), most notably competition with P. abies.  459 

It is important to keep in mind that the mostly good agreement between observation and model 460 

simulations does not indicate that climate and the distribution of the species are in an equilibrium 461 

state, but the SDMs simply approximate the current (possibly disequilibrium) state and assume this 462 

state to be conserved across time and space. Similarly, the species-specific parameters for 463 

environmental dependences used in the TreeMig model were partly based on estimates from these 464 

current observational data sources (Lischke et al. 2006).  465 

Potential edge shifts under changing climate 466 

In the projections regarding future climatic scenarios, almost all species lag behind their bioclimatic 467 

envelope computed by SDM predictions. However, the discrepancy between the two type of models 468 

is not uniform but highly species-specific, with “treeline” species being able to follow their potential 469 

limit much closer than “non-treeline” species. This might again be linked to different forest dynamics 470 
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at the trailing and leading edges of migrating tree species (Zhu, Woodall & Clark 2012). In our dynamic 471 

forest model, trees growing at the leading edge of the “treeline” species can migrate more or less 472 

unhindered into the newly available space empty of trees/forest (i.e., the alpine belt), despite the 473 

potential competition of tree seedlings with dwarf shrubs, tall herbs or alpine grasses accounted for in 474 

the simulations. In contrast, “non-treeline” species at their leading edge have to establish in sites 475 

already occupied by forest (i.e., the trailing edge of the ”treeline” species) – a process that only works 476 

if prevailing trees die, e.g. by disturbances such as windthrow, pests and other extreme events and 477 

create open patches (Moser et al. 2010; Wohlgemuth et al. 2018; Bugmann et al. 2019). This is 478 

accounted for in TreeMig by random disturbances on the patch and stand scale, but not over larger 479 

areas. Because trees are long-lived organisms and thus are rather resilient to environmental 480 

fluctuations, and large-scale disturbances are not simulated, populations may be able to 481 

endure/persist for long times despite decreasing climatic suitability. This seems to hinder the upslope 482 

migration of lower elevation species, especially if they encounter the trailing edge of a very 483 

competitive, i.e. stand-forming, species. In our simulations, this is the case for most species trying to 484 

invade almost pure P. abies stands and for the oak species invading beech-dominated forests.  485 

Our simulations showed that if these elements of competition at the leading edge of “non-treeline” 486 

species are removed, the migration velocity does increase substantially. Our dynamic forest model 487 

predicts that “treeline” species will move upslope considerably faster than lowland species even if they 488 

still fall behind their bioclimatic envelope. While we most likely overestimate the potential of this 489 

"treeline” species to invade the alpine areas, the advancement of the treeline might still drastically 490 

reduce the alpine areas (Pellissier et al. 2013), especially in productive and sheltered sites. In many 491 

places of the study area the treeline is currently suppressed and slowed in its advancement by land-492 

use (i.e., alpine pastures). As more and more of these alpine pastures become unprofitable and get 493 

abandoned the advancement of the treeline might speed up considerably (Gellrich et al. 2007; Dubuis 494 

et al. 2013; Pellissier et al. 2013; Schwörer et al. 2014).  495 
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However, it is important to note here that the fast upslope migration of the “treeline” species is 496 

partially influenced by some model assumptions. For instance, alpine areas are considered ready for 497 

colonisation as soon as they become climatically suitable. Although competition with dwarf shrubs and 498 

grasses is implemented in the model, the potential of this competition might still be underestimated 499 

(Dullinger, Dirnböck & Grabherr 2004). Additionally, the suppression of seedlings by grazing and 500 

browsing, problems with soil formation, lack of mycorrhiza, snow mold (Cunningham et al. 2006),  and 501 

wind and micro-topography effects (Barbeito et al. 2012) in the upper zones that are forest free were 502 

also not considered in our current simulations.  503 

Conclusions 504 

Implied by forest’s inertia under the absence of disturbance, climate change effects on tree distribution 505 

limits might be delayed by several decades, likely reflecting a high resilience of these ecosystems to 506 

environmental change. In particular, competition by prevailing trees rather than spread by seeds is 507 

likely to slow down upward shifts. Forest might be able to persist in unfavourable climatic conditions 508 

for an extended amount of time, thus slowly becoming more vulnerable to disturbances or extreme 509 

events and approaching a tipping point. Sufficiently large perturbation by extreme events such as 510 

drought, storms, fire, insect infestation or interactions of these agents might lead to a large-scale 511 

dieback of the prevailing but now “maladapted” tree species. This delayed dieback (in analogy to the 512 

local extinction debt; Dullinger et al. 2012; Rumpf et al. 2019) might have severe economic (e.g., loss 513 

of timber) and ecosystem service implications (e.g., loss of protection function; Thrippleton, Lüscher 514 

& Bugmann 2020). However, such a break-down (e.g., Schuldt et al. 2020) might be essential to provide 515 

the opportunity for new species (i.e., lower elevation species) to establish by natural regeneration and 516 

transition the forest ecosystem into a new “equilibrium” state (Beisner, Haydon & Cuddington 2003).  517 
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Figure 1 783 

 784 

Figure 1: Study area in the Western Swiss Alps. Green shades indicate areas that were covered by 785 

forest in the year 2000. 786 
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Figure 2 788 

 789 

Figure 2: Correlation of the observed species-specific UEL with predictions based on SDMs (cor = 790 

0.82) or TreeMig simulations (TM_Normal; cor = 0.87). Each point represents one of the 16 modelled 791 

principal tree species. Aa = Abies alba, Ac = Acer campestre, Ap = Acer platanoides, As = Acer 792 

pseudoplatanus, Cp = Carpinus betulus, Fs = Fagus sylvatica, Fe = Fraxinus excelsior, Pa = Picea abies, 793 

Qp = Quercus petraea, Qu = Quercus pubsescens, Qr = Quercus robus, So = Sorbus aria, Sr = Sorbus 794 

aucuparia, Tc = Tila cordata, Tp = Tila platyphyllos, Ug = Ulmus glabra. 795 
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Figure 3 797 

 798 

Figure 3: The mean elevation difference between the SDM and TreeMig predictions across the 16 799 

principal tree species for the year 2000, 2060 and 2085 based on the climate change scenario A1B. 800 

The lines represent the difference between the upper limit estimated by the dynamic forest model 801 

(TreeMig) and the bioclimatic envelope (SDM prediction) of a given year (colours) across time. The 802 

numbers indicated the average elevation difference at a given point in time and the years the 803 

TreeMig models are ahead or behind the SDM predictions (time lag). 804 
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 806 

Figure 4: Density of the distribution of upslope migration velocity (vUEL) for the time period 2000–807 

2085 for the 16 principal tree species based on different climate change scenarios and model setup. 808 

The dashed lines represent the mean values. SDM represents the migration velocity (vUEL) of the 809 

bioclimatic envelope while dynamic forest model is displayed either with realistic dispersal and 810 

competition (TM_Normal), without dispersal limitation (TM_UD), without intra-specific competition 811 

(TM_NC) or a combination of both (TM_UD_NC). 812 
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Figure 5 814 

 815 

Figure 5: Correlation of species UEL (dots) based on predictions of the dynamic forest model (TreeMig) 816 

and the bioclimatic envelope (SDM prediction) for the different TreeMig setups and time steps based 817 

on the climate change scenario A1B. Normal = TreeMig – Normal, UD = TreeMig – Unlimited dispersal, 818 

NC = TreeMig – No competition, UD & NC = TreeMig – Unlimited dispersal & no competition, PA = 819 

Competition with P. abies only, UD & PA = Unlimited dispersal & competition with P. abies only.  820 
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Figure 6 821 

 822 

Figure 6: Species-specific UELs across time based on observations (2000), SDM predictions (2000, 823 

2060, 2085) and TreeMig simulations (1950 to 2300, 25 year intervals). For the future climate, the 824 

scenario A1B was used. Observation = Highest observation within study area, SDM = Correlative 825 

species distribution model, TM_Normal = TreeMig simulation, TM_UD = TreeMig simulation with 826 

unlimited dispersal, TM_NC = TreeMig simulation without competition, TM_UD_NC = TreeMig 827 

simulation with unlimited dispersal and no competition, TM_PA = TreeMig simulation with P. abies as 828 

sole competitor, TM_PA_UD = TreeMig simulation with P. abies as sole competitor and unlimited 829 

dispersal. 830 




