2 Table S1: Number of occurrence records (aggregated to 200 m resolution) and UEL for the 16

3 principal tree species across Switzerland and within the study area. Species with observed UEL >=

41800 m a.s.l. were considered "treeline" species and are highlighted in bold.

	Nb of occurrence records			UEL observed
Species	nationwide	study area		in study area (m)
Abies alba Mill.	6276	1625		$\mathbf{1 8 5 0}$
Acer campestre L.	781	234		1250
Acer platanoides L.	564	233		1250
Acer pseudoplatanus L.	4057	1705	1900	
Carpinus betulus L.	1049	78	1000	
Fagus sylvatica L.	9196	1320		1600
Fraxinus excelsior L.	3938	1096	1500	
Picea abies (L.) H. Karst.	12088	2349	2000	
Quercus pubescens Willd.	380	7	550	
Quercus petraea Liebl.	1838	124	1350	
Quercus robur L.	1096	65	1050	
Sorbus aria (L.) Crantz	1406	732	1800	
Sorbus aucuparia L.	629	1470	2000	
Tilia cordata Mill.	692	111	1100	
Tilia platyphyllos Scop.	742	264	1200	
Ulmus glabra Huds	1143	365	1450	
All species	45875	11778		

5

6

7 Table S2

8 Table S2: Parameter values for all the tree and shrub species used in the dynamic forest simulations with TreeMig.

Name	Abbrv	sType/B	sType/N	$\mathrm{D}_{\text {Max }}$	$\mathrm{H}_{\text {Max }}$	$\mathbf{A}_{\text {max }}$	G	$\mathrm{DD}_{\text {Min }}$	d75	WiT	DrT	NTol	brow	Ls	La
Abies alba	Aa	C	5	187	60	700	284	590	900	-6	0.19	2	3	3	1
Acer campestre	Ac	D	2	55	23	170	177	1000	500	-999	0.1	2	1	5	5
Acer platanoides	Ap	D	3	99	32	380	220	1000	200	-17	0.15	2	1	2	4
Acer pseudoplatanus	As	D	3	121	37	550	240	700	250	-999	0.2	2	3	3	4
Alnus glutinosa	Ag	D	2	110	31	240	227	900	400	-16	0.05	2	2	5	5
Alnus incana	Ai	D	2	110	22	150	188	675	200	-999	0.2	2	2	6	7
Alnus viridis	Av	D	2	11	4	100	60	272	250	-999	0.05	2	2	7	7
Betula pendula	Bp	D	1	121	29	220	195	541	250	-999	0.3	1	1	7	9
Carpinus betulus	Cb	D	3	99	27	220	202	1460	350	-9	0.1	2	3	4	3
Castanea sativa	Cs	D	3	198	33	1510	146	1200	250	-999	0.21	1	3	5	5
Corylus avellana	Ca	D	3	22	10	70	95	900	250	-16	0.2	2	3	6	6
Fagus sylvatica	Fs	D	3	154	45	430	279	620	800	-4	0.23	1	2	3	1
Fraxinus excelsior	Fe	D	2	154	42	350	273	820	350	-10	0.23	2	3	4	6
Larix decidua	Ld	D	2	100	44	850	215	325	390	-11	0.4	1	2	8	9
Picea abies	Pe	C	5	180	50	930	215	380	500	-7	0.29	2	1	5	5
Pinus cembra	Pc	C	5	165	26	1050	131	325	300	-11	0.28	1	3	8	5
Pinus mugo	Pm	C	5	88	23	300	100	340	150	-999	0.25	1	2	8	9
Pinus sylvestris	Ps	C	4	99	45	760	243	450	700	-999	0.4	1	1	7	9
Populus nigra	Pn	D	2	220	36	280	258	1700	200	-999	0.1	3	3	5	5
Populus tremula	Pt	D	2	110	30	140	199	850	200	-999	0.23	1	3	6	7
Quercus petraea	Qp	D	3	110	45	860	281	900	600	-5	0.2	1	2	6	7
Quercus pubescens	Qu	D	3	66	25	500	142	1200	100	-999	0.4	2	2	7	7
Quercus robur	Qr	D	3	143	52	1060	355	1100	600	-17	0.15	1	2	7	9
Salix alba	Sa	D	1	220	27	170	121	657	300	-999	0.15	3	1	5	5
Sorbus aria	So	D	2	66	22	180	171	650	300	-999	0.15	2	2	6	7
Sorbus aucuparia	Sr	D	1	66	19	110	177	500	250	-999	0.15	1	2	6	7
Taxus baccata	Tb	C	5	55	22	2110	171	1000	250	-5	0.05	2	3	4	3
Tilia cordata	Tc	D	3	110	30	940	199	950	500	-19	0.25	2	2	5	5
Tilia platyphyllos	Tp	D	3	110	39	960	235	850	700	-999	0.2	2	2	4	3
Ulmus glabra	Us	D	3	143	43	480	277	957	400	-16	0.15	3	1	4	3
Grasses/Dwarf shrubs	Ds	D	5	20	2	100	2000	200	6000	-60	0.5	1	1	1	1

Max. age (years), $\boldsymbol{G}=$ Max. growth rate (cm/y), $\boldsymbol{D} \boldsymbol{D}_{\text {Min }}=$ Min. yearly degree-day sum above 5:5 ${ }^{\circ} \mathrm{C}, \mathbf{d 7 5}=$ Degree-day sum at 75% of maximum growth modifier, WiT $=$ Min. mean temperature of

11 winter months (Dec, Jan, Feb; ${ }^{\circ}$ C), DrT = Drought tolerance: prop. of evapotranspiration deficit tolerated, NTol = Low nitrogen concentration tolerance: tolerant [1] to intolerant [3], brow =
12 Susceptibility to browsing: high [3] to low [1], Ls = Sapling light parameter: shade-tolerant [1] to shade-intolerant [9], La = Adult light parameter: shade-tolerant [1] to shade-intolerant [9]

Table S3: Parameter values for all the tree and shrub species used in the dynamic forest stimulations with TreeMig.

Name	Mtmin	seedGerm	seedLoss	seedMaxAge	period	SD ${ }_{\text {max }}$	dispFac	alfa1	alfa2
Abies alba	7	0.46	0.8	7.7	4.3	50000	1	100	0
Acer campestre	4.1	0.8	0.8	7.7	3.5	193000	1	100	0
Acer platanoides	3.1	0.55	0.8	7.7	3.4	510000	1	100	0
Acer pseudoplatanus	2.6	0.6	0.8	7.7	4	551500	1	100	0
Alnus glutinosa	4.5	0.4	0.8	7.7	2.3	218500	0.99	25	200
Alnus incana	2.6	0.33	0.8	7.7	2	400000	0.99	25	200
Alnus viridis	2.3	0.15	0.8	7.7	2	400000	1	200	0
Betula pendula	4.5	0.19	0.8	7.7	2	11775000	1	200	0
Carpinus betulus	3.4	0.67	0.8	7.7	2	154000	1	100	0
Castanea sativa	2.2	0.58	0.8	7.7	1	4000	0.99	25	200
Corylus avellana	0.7	0.3	0.8	7.7	1.5	6000	0.99	25	200
Fagus sylvatica	14.7	0.71	0.8	7.7	8	29000	0.99	25	200
Fraxinus excelsior	5	0.6	0.8	7.7	3.2	42000	1	100	0
Larix decidua	4.4	0.39	0.8	7.7	5.7	133000	1	100	0
Picea abies	10.1	0.76	0.8	7.7	5.4	96500	1	100	0
Pinus cembra	2.4	0.64	0.8	7.7	8	1000	0.99	25	200
Pinus mugo	1.6	0.54	0.8	7.7	4	11000	1	100	0
Pinus sylvestris	2.6	0.91	0.8	7.7	2.8	22000	1	100	0
Populus nigra	2.7	0.2	0.8	7.7	1	1890000	1	200	0
Populus tremula	4.8	0.4	0.8	7.7	1	1680000	1	200	0
Quercus petraea	10.2	0.69	0.8	7.7	5.5	47000	0.99	25	200
Quercus pubescens	8.7	0.7	0.8	7.7	5	18000	0.99	25	200
Quercus robur	11.6	0.75	0.8	7.7	4.9	27500	0.99	25	200
Salix alba	15.6	0.2	0.8	7.7	2	1512000	1	200	0
Sorbus aria	2.6	0.6	0.8	7.7	1	80500	0.99	25	200
Sorbus aucuparia	3.6	0.7	0.8	7.7	1	375000	0.99	25	200
Taxus baccata	0.6	0.6	0.8	7.7	1	23000	0.99	25	200
Tilia cordata	2.2	0.45	0.8	7.7	2	720000	1	100	0
Tilia platyphyllos	1.6	0.48	0.8	7.7	3	380500	1	100	0
Ulmus glabra	6.4	0.35	0.8	7.7	2.1	372000	1	100	0
Grasses/Dwarf shrubs	0.3	0.48	0.8	7.7	1	50000	0.99	25	200

number of seeds, dispFac = Fraction of long-distance dispersal, alfa1 = Mean short-distance dispersal distance (m), alfa2 = Mean long-distance dispersal distance

Model setup	Abbr.	Explanation
TreeMig - Normal	TM_Normal	TreeMig with all 29 species (competition) and species- specific seed production and dispersal
TreeMig- Unlimited dispersal	TM_UD	TreeMig with all 29 species (competition) and a constant seed rain eliminating dispersal limitations
TreeMig - No competition	TM_NC	TreeMig separately for each species limiting the competition to intra-specific only. Seed production and dispersal is species-specific
TreeMig - Unlimited dispersal \& no competition	TM_UD_NC	TreeMig separately for each species limiting the competition to intra-specific only and a constant seed rain eliminating dispersal limitations
TreeMig - Competition with P. abies only	TM_PA	TreeMig separately for each species with P. abies as sole competitor.
TreeMig - Unlimited Competition with P. $a b i e s ~ o n l y ~$	T_UD_PA	TreeMig separately for each species with P. abies as sole competitor and a constant seed rain eliminating dispersal limitations

Table S4: Short explanation of the six different model setups with varying amounts of dispersal limitation and competition.

Type of	Climate change	v UEL 2000-2085 (m/y)		
Model	scenario	All species	Treeline species	Non-treeline specias
SDM	A1B	11.2 ± 1.1	10.8 ± 0.7	11.4 ± 1.3
	A2	13.6 ± 1.3	13.0 ± 1.0	13.9 ± 1.5
	RCP3PD	4.7 ± 0.6	4.9 ± 0.7	4.6 ± 0.6
TM_Normal	A1B	5.3 ± 1.4	7.1 ± 1.0	4.5 ± 1.5
	A2	5.4 ± 1.5	7.2 ± 1.0	4.6 ± 1.5
	RCP3PD	2.5 ± 0.7	3.2 ± 0.5	2.1 ± 0.7
TM_UD	A1B	5.6 ± 1.5	7.3 ± 1.1	4.8 ± 1.6
	A2	5.6 ± 1.6	7.3 ± 1.1	4.8 ± 1.6
	RCP3PD	2.5 ± 0.8	3.5 ± 0.6	2.1 ± 0.9
TM_NC	A1B	7.5 ± 0.7	7.6 ± 0.5	7.4 ± 0.7
	A2	7.8 ± 0.7	7.8 ± 0.7	7.8 ± 0.8
	RCP3PD	3.5 ± 0.5	3.6 ± 0.5	3.5 ± 0.5
TM_UD_NC	A1B	7.7 ± 0.7	7.5 ± 0.5	7.8 ± 0.8
	A2	8.0 ± 0.8	7.6 ± 0.5	8.2 ± 0.9
	RCP3PD	3.6 ± 0.4	3.5 ± 0.5	3.6 ± 0.4
TM_PA	A1B	5.5 ± 1.2	7.5 ± 0.8	4.7 ± 1.2
	A2	5.7 ± 1.3	7.9 ± 0.9	4.7 ± 1.2
	RCP3PD	2.6 ± 0.5	2.9 ± 0.5	2.5 ± 0.5
TM_UD_PA	A1B	6.0 ± 1.2	7.9 ± 0.9	5.2 ± 1.2
	A2	6.2 ± 1.3	8.0 ± 1.0	5.3 ± 1.2
	RCP3PD	3.0 ± 0.4	3.1 ± 0.5	2.9 ± 0.4

SDM = Species distribution model, TM_Normal = TreeMig with all species and explicit dispersal, TM_UD $=$ TreeMig with unlimited dispersal, TM_NC = TreeMig without intraspecific competition, TM_UD_NC = TreeMig with unlimited dispersal and no intraspecific competition, TM_PA = TreeMig with only P. abies as competing species, TM_UD_PA = TreeMig with unlimited dispersal and only P. abies as competing species.

Table S6: The expected species-specific upslope migration velocity ($V U E L$) of the bioclimatic envelope (SDMs) and the dynamic forest (TreeMig) based on

33 different climate change scenarios. The difference between the bioclimatic envelope and expected upslope migration velocity of the forest was partitioned into
different processes hindering the upslope advancement of tree species.

Climate Scenario	Species	vUEL (m/y)			Contribution to difference in vUEL (\mathbf{m} / y)		
		Climate suitability	Dynamic forest	Difference	Dispersal limitation	Competition Suppression	Demography
A1B	Abies alba	9.4	4	5.4	0 (0\%)	4 (74\%)	1.4 (26\%)
	Acer campestre	11.2	8	3.2	0.7 (22\%)	0 (0\%)	2.5 (78\%)
	Acer platanoides	11.8	7.3	4.5	0.7 (16\%)	1.3 (29\%)	2.5 (55\%)
	Acer pseudoplatanus	12.9	7.3	5.6	0.7 (12\%)	0.1 (2\%)	4.8 (86\%)
	Carpinus betulus	8.2	5.3	2.9	0 (0\%)	0 (0\%)	2.9 (100\%)
	Fagus sylvatica	11.2	3.4	7.8	-0.7 (0\%)	4.7 (60\%)	3.8 (40\%)
	Fraxinus excelsior	17	5.3	11.7	0 (0\%)	2.7 (23\%)	9 (77\%)
	Picea abies	11.7	10	1.7	0 (0\%)	-0.7 (0\%)	2.4 (100\%)
	Quercus petraea	13.5	2	11.5	0.7 (6\%)	6 (52\%)	4.8 (42\%)
	Quercus pubescens	11.8	-1.3	13.1	-1.4 (0\%)	5.3 (40\%)	9.2 (60\%)
	Quercus robur	7.6	0.7	6.9	2 (29\%)	6 (87\%)	0 (0\%)
	Sorbus aria	10.6	7.4	3.2	0 (0\%)	-0.7 (0\%)	3.9 (100\%)
	Sorbus aucuparia	9.4	6.7	2.7	0.6 (22\%)	0 (0\%)	2.1 (78\%)
	Tilia cordata	9.4	6.6	2.8	0 (0\%)	2 (71\%)	0.8 (29\%)
	Tilia platyphyllos	11.7	7.3	4.4	0 (0\%)	1.4 (32\%)	3 (68\%)
	Ulmus glabra	12.4	5.4	7	0.6 (9\%)	2.6 (37\%)	3.8 (54\%)
A2	Abies alba	14.7	4	10.7	0 (0\%)	4 (37\%)	6.7 (63\%)
	Acer campestre	12.9	8.7	4.2	0 (0\%)	0.6 (14\%)	3.6 (86\%)

	Acer platanoides	15.3	8	7.3	0 (0\%)	0.6 (8\%)	6.7 (92\%)
	Acer pseudoplatanus	14.7	7.3	7.4	0.7 (9\%)	0.1 (1\%)	6.6 (90\%)
	Carpinus betulus	7	5.3	1.7	0 (0\%)	0 (0\%)	1.7 (100\%)
	Fagus sylvatica	15.9	3.4	12.5	-0.7 (0\%)	4.7 (38\%)	8.5 (62\%)
	Fraxinus excelsior	18.8	5.3	13.5	0 (0\%)	2.7 (20\%)	10.8 (80\%)
	Picea abies	13.5	10	3.5	0 (0\%)	-0.7 (0\%)	4.2 (100\%)
	Quercus petraea	13.5	2	11.5	0 (0\%)	7.3 (63\%)	4.2 (37\%)
	Quercus pubescens	11.8	-1.3	13.1	-1.4 (0\%)	5.3 (40\%)	9.2 (60\%)
	Quercus robur	14.1	0.7	13.4	2 (15\%)	7.3 (54\%)	4.1 (31\%)
	Sorbus aria	12.3	7.4	4.9	0 (0\%)	-0.7 (0\%)	5.6 (100\%)
	Sorbus aucuparia	10	7.3	2.7	0 (0\%)	0 (0\%)	2.7 (100\%)
	Tilia cordata	13.5	6.6	6.9	0 (0\%)	2 (29\%)	4.9 (71\%)
	Tilia platyphyllos	13	7.3	5.7	0.7 (12\%)	1.4 (25\%)	3.6 (63\%)
	Ulmus glabra	17	4.7	12.3	1.3 (11\%)	3.3 (27\%)	7.7 (62\%)
RCP3PD	Abies alba	5.9	3.3	2.6	0 (0\%)	0.7 (27\%)	1.9 (73\%)
	Acer campestre	3.5	3.3	0.2	0 (0\%)	0.7 (350\%)	0 (0\%)
	Acer platanoides	5.9	2.7	3.2	0 (0\%)	1.3 (41\%)	1.9 (59\%)
	Acer pseudoplatanus	5.9	4	1.9	0 (0\%)	0.7 (37\%)	1.2 (63\%)
	Carpinus betulus	4.1	3.3	0.8	0 (0\%)	-0.7 (0\%)	1.5 (100\%)
	Fagus sylvatica	6.4	2	4.4	0 (0\%)	3.3 (75\%)	1.1 (25\%)
	Fraxinus excelsior	6.5	2.7	3.8	0.7 (18\%)	0.6 (16\%)	2.5 (66\%)
	Picea abies	5.3	4	1.3	0 (0\%)	-0.6 (0\%)	1.9 (100\%)
	Quercus petraea	3.5	2	1.5	0 (0\%)	2 (133\%)	0 (0\%)
	Quercus pubescens	3	-1.3	4.3	-1.4 (0\%)	2.6 (60\%)	3.1 (40\%)
	Quercus robur	4.1	0.7	3.4	0.6 (18\%)	2 (59\%)	0.8 (23\%)
	Sorbus aria	5.3	3.3	2	1.4 (70\%)	0.7 (35\%)	0 (0\%)
	Sorbus aucuparia	2.4	1.3	1.1	0 (0\%)	0.7 (64\%)	0.4 (36\%)
	Tilia cordata	3.5	2	1.5	0 (0\%)	2 (133\%)	0 (0\%)
	Tilia platyphyllos	4.1	3.3	0.8	0 (0\%)	0.7 (88\%)	0.1 (12\%)
	Ulmus glabra	5.9	2.7	3.2	0 (0\%)	0.6 (19\%)	2.6 (81\%)

Table S7

Table S7: The expected average upslope migration velocity of the bioclimatic envelope (v UELSDM) and the dynamic forest $\left(v \mathrm{UEL}_{T M}\right)$ based on different climate change scenarios. The difference between the bioclimatic envelope and expected upslope migration velocity of the forest was partitioned into different processes hindering the upslope advancement of tree species. The numbers in the bracket (\%) indicate the proportional distribution to the observed difference between bioclimatic envelope and dynamic forest model. Values represent mean $\pm 95 \%$ C.I.

	vUEL (m/y)			Contribution to difference in vUEL (m/y)		
Climate Scenario	Bioclimatic envelope	Dynamic forest	Difference	Dispersal limitation	Competition Suppression	Demography
A1B	11.2 ± 1.1	5.3 ± 1.4	5.9 ± 1.7	$\begin{gathered} 0.3 \pm 0.4 \\ (8.2 \pm 5.9 \%) \end{gathered}$	$\begin{gathered} 2.2 \pm 1.2 \\ (33.0 \pm 14.3 \%) \end{gathered}$	$\begin{gathered} 3.5 \pm 1.3 \\ (59.8 \pm 14.4 \%) \end{gathered}$
A2	13.6 ± 1.3	5.4 ± 1.5	8.2 ± 2.0	$\begin{gathered} 0.2 \pm 0.4 \\ (5.2 \pm 6.1 \%) \end{gathered}$	$\begin{gathered} 2.4 \pm 1.3 \\ (22.2 \pm 10.0 \%) \end{gathered}$	$\begin{gathered} 5.6 \pm 1.3 \\ (72.6 \pm 10.6 \%) \end{gathered}$
RCP3PD	4.7 ± 0.6	2.5 ± 0.7	2.2 ± 0.7	$\begin{gathered} 0.1 \pm 0.3 \\ (7.6 \pm 8.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.1 \pm 0.5 \\ (71.1 \pm 41.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.1 \pm 0.5 \\ (41.4 \pm 17.9 \%) \\ \hline \end{gathered}$

Table S8
Table S8: Tables of the two-way ANOVA and TukeyHSD posthoc-test for scenario A1B (a), A2 (b) and RCP3PD (c). The test analyses the effect of Processes (demography, competition, dispersal limitation) and Tree_Type ("treeline", "non-treeline") on the upslope migration speed (vUEL).
(a) Climate change scenario A1B: aov(vUEL ~ Process + Treetype)

	Df	Sum Sq	Mean Sq	F value $\operatorname{Pr}(>F)$	
Process	3	128.0	42.66	5.950	0.00129 **
TreeType	1	35.7	35.72	4.982	0.02942 *
Residuals	59	423.0	7.17		

\$Process				
	diff	lwr	upr	p adj
Demography-Competition	1.25625	-1.246625	3.7591248	0.5497172
Dispersal-Competition	-1.88125	-4.384125	0.6216248	0.2044564
Dynamic_Forest-Competition	-2.21250	-4.715375	0.2903748	0.1012390
Dispersal-Demography	-3.13750	-5.640375	-0.6346252	0.0083422
Dynamic_Forest-Demography	-3.46875	-5.971625	-0.9658752	0.0029221
Dynamic_Forest-Dispersal	-0.33125	-2.834125	2.1716248	0.9851484
\$TreeType				padj
	diff	lwr	upr	adi
TL-Non_TL	1.611818	0.1668729	3.056763	0.0294195

(b) Climate change scenario A2: aov(vUEL ~ Process + Treetype)

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
Process	3	1306.3	435.4	30.324	$5.45 \mathrm{e}-12$ ***
TreeType	1	107.1	107.1	7.459	$0.00831^{* *}$
Residuals	59	847.2	14.4		

\$Process				
	diff	lwr	upr	p adj
Demography-Competition	3.22500	0.6608728	5.7891272	0.0080792
Dispersal-Competition	-2.12500	-4.6891272	0.4391272	0.1376511
Dynamic_Forest-Competition	-2.36875	-4.9328772	0.1953772	0.0801808
Dispersal-Demography	-5.35000	-7.9141272	-2.7858728	0.0000048
Dynamic_Forest-Demography	-5.59375	-8.1578772	-3.0296228	0.0000019
Dynamic_Forest-Dispersal	-0.24375	-2.8078772	2.3203772	0.9943677
\$TreeType			upr	p adj
	diff	lwr		
TL-Non_TL	1.730455	0.2501474	3.210762	0.0227347

(c) Climate change scenario RCP3PD: $\operatorname{aov}(v U E L$ ~ Process + Treetype)

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
Process	3	17.8	5.932	3.120	0.0327^{*}
TreeType	1	10.0	9.998	5.258	0.0254^{*}
Residuals	59	112.2	1.901		

\$Process

Demography-Competition

diff	lwr	upr	p adj
0.06250	-1.226402	1.3514024	0.9992386
-0.95625	-2.245152	0.3326524	0.2143048
-1.08125	-2.370152	0.2076524	0.1302850
-1.01875	-2.307652	0.2701524	0.1684116
-1.14375	-2.432652	0.1451524	0.0992809
-0.12500	-1.413902	1.1639024	0.9940255
diff	Iwr	upr	padj
0.8527273	0.1086256	1.596829	0.0254227

Figure S1

Figure S1: Performance of the species distribution models (SDMs) as measured by area under curve (AUC) of the receiver operator characteristic (ROC) and the True Skill Statistic (TSS) across the 16 principal species.

Figure S2

Figure S2: Variable importance of SDMs across the 16 principal species and modelling techniques.

Tyear = mean annual temperature, Tmin = minimum temperature of the coldest month, Tsummer = mean temperature of the driest quarter, Pyear = annual sum of precipitation, Psummer = sum of precipitation of the direst quarter

Figure S3

Figure S3: Variable importance of SDMs for the 16 principal tree species. Tyear = mean annual temperature, Tmin = minimum temperature of the coldest month, Tsummer = mean temperature of the driest quarter, Pyear = annual sum of precipitation, Psummer = sum of precipitation of the direst quarter

Figure S4

Figure S4: Relative contribution of the 16 principal tree species to the average biomass per ha in four different elevation bands based on either observations in the national forest inventory ($\mathrm{N}=315$) or as simulated by the dynamic forest model ($\mathrm{N}=21^{\prime} 971$). The whiskers indicate the standard error of the mean.

Figure S5

Figure S5: Biomass per ha ($\mathrm{m}^{3} / \mathrm{ha}$) of the 16 principal tree species in four different elevation bands and depending on the different model setups used for the dynamic forest model. The whiskers indicate the standard error of the mean values.

Figure S6

Figure S6: Correlation of the species-specific UEL based on TreeMig predictions for the year 2000 and field observations (1981-2015) within the study area for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95% confidence interval as shaded areas.

Figure S7

Year of SDM
$\rightarrow 2000$
$\rightarrow 2060$
$\rightarrow 2085$

Figure S7: The mean elevation difference between the SDM and TreeMig predictions across the 16 principal tree species for the year 2000, 2060 and 2085 based on the climate change scenario A2. The lines represent the difference between the upper limit estimated by the dynamic forest model (TreeMig) and the bioclimatic envelope (SDM prediction) of a given year (colours) across time. The numbers indicated the average elevation difference at a given point in time and the years the TreeMig models are ahead or behind the SDM predictions (time lag).

Figure S8

Figure S8: The mean elevation difference between the SDM and TreeMig predictions across all 16 tree species for the year 2000, 2060 and 2085 based on the climate change scenario RCP3PD. The lines represent the difference between the upper limit estimated by the dynamic forest model (TreeMig) and the bioclimatic envelope (SDM prediction) of a given year (colours) across time. The numbers indicated the average elevation difference at a given point in time and the years the TreeMig models are ahead or behind the SDM predictions (time lag).

Figure S9

Figure S9: Correlation of the species-specific UEL (dots) based on predictions of the dynamic forest model (TreeMig) and the bioclimatic envelope (SDM prediction) for the different TreeMig setups and time steps based on the climate change scenario A2. Normal = TreeMig - Normal, UD = TreeMig Unlimited dispersal, NC = TreeMig - No competition, UD \& NC = TreeMig - Unlimited dispersal \& no competition, PA = Competition with P. abies only, UD \& PA = Unlimited dispersal \& competition with P. abies only.

Figure S10

Figure S10: Correlation of the species-specific UEL (dots) based on predictions of the dynamic forest model (TreeMig) and the bioclimatic envelope (SDM prediction) for the different TreeMig setups and time steps based on the climate change scenario RCP3PD. Normal = TreeMig - Normal, UD = TreeMig - Unlimited dispersal, NC = TreeMig - No competition, UD \& NC = TreeMig - Unlimited dispersal \& no competition, PA = Competition with P. abies only, UD \& PA = Unlimited dispersal \& competition with P. abies only.

Figure S11

Figure S11: Species-specific UELs across time based on observations (2000), SDM predictions (2000, 2060, 2085) and TreeMig simulations (1950 to 2300, 25 year intervals). For the future climate, the scenario A2 was used. Observation = Highest observation within study area, SDM = Correlative species distribution model, TM_Normal = TreeMig simulation, TM_UD = TreeMig simulation with unlimited dispersal, TM_NC = TreeMig simulation without competition, TM_UD_NC = TreeMig simulation with unlimited dispersal and no competition, TM_PA = TreeMig simulation with P. abies as sole competitor, TM_PA_UD = TreeMig simulation with P. abies as sole competitor and unlimited dispersal.

Figure S12

Figure S12: Species-specific UELs across time based on observations (2000), SDM predictions (2000, 2060, 2085) and TreeMig simulations (1950 to 2300, 25 year intervals). For the future climate, the scenario RCP3PD was used. Observation = Highest observation within study area, SDM = Correlative species distribution model, TM_Normal = TreeMig simulation, TM_UD = TreeMig simulation with unlimited dispersal, TM_NC = TreeMig simulation without competition, TM_UD_NC = TreeMig simulation with unlimited dispersal and no competition, TM_PA = TreeMig simulation with P. abies as sole competitor, TM_PA_UD = TreeMig simulation with P. abies as sole competitor and unlimited dispersal.

Figure S13

Figure S13: Correlation of the species-specific UEL based on the dynamic forest model (TreeMig) and the bioclimatic envelope (based on SDM predictions) for the year 2000 for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95% confidence interval as shaded areas.

Figure S14

Figure S14: Correlation of the species-specific UEL based on the dynamic forest model (TreeMig) and the bioclimatic envelope (based on SDM predictions) for the year 2060 based on climate change scenario A1B for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95\% confidence interval as shaded areas.

Figure S15

Figure S15: Correlation of the species-specific UEL based on the dynamic forest model (TreeMig) and the bioclimatic envelope (based on SDM predictions) for the year 2060 based on climate change scenario A2 for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95\% confidence interval as shaded areas.

Figure S16

Figure S16: Correlation of the species-specific UEL based on the dynamic forest model (TreeMig) and the bioclimatic envelope (based on SDM predictions) for the year 2060 based on climate change scenario RCP3PD for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95% confidence interval as shaded areas.

Figure S17

Figure S17: Correlation of the species-specific UEL based on the dynamic forest model (TreeMig) and the bioclimatic envelope (based on SDM predictions) for the year 2085 based on climate change scenario A1B for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95\% confidence interval as shaded areas.

Figure S18

Figure S18: Correlation of the species-specific UEL based on the dynamic forest model (TreeMig) and the bioclimatic envelope (based on SDM predictions) for the year 2085 based on climate change scenario A2 for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95\% confidence interval as shaded areas.

Figure S19

Figure S19: Correlation of the species-specific UEL based on the dynamic forest model (TreeMig) and the bioclimatic envelope (based on SDM predictions) for the year 2085 based on climate change scenario RCP3PD for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95% confidence interval as shaded areas.

Figure S20

Figure S20: Correlation the species-specific UEL based on the dynamic forest model (TreeMig, year 2500) and the bioclimatic envelope (based on SDM predictions, year 2085) based on climate change scenario A1B for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95% confidence interval as shaded areas.

Figure S21

Figure S21: Correlation of the species-specific UEL based on the dynamic forest model (TreeMig, year 2500) and the bioclimatic envelope (based on SDM predictions, year 2085) based on climate change scenario A2 for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95\% confidence interval as shaded areas.

Figure S22

Figure S22: Correlation of the species-specific UEL based on the dynamic forest model (TreeMig, year 2500) and the bioclimatic envelope (based on SDM predictions, year 2085) based on climate change scenario RCP3PD for all six TreeMig setups. The dotted lines represent perfect agreement, the blue lines a simple linear regression with the 95% confidence interval as shaded areas.

