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Essential forest ecosystem services can be assessed by better understanding the diversity of 

vegetation, specifically those of Mediterranean region. A species level classification of maquis 

would be useful in understanding vegetation structure and dynamics, which would be an indicator of 

degradation or succession in the region. Although remote sensing was regularly used for 

classification in the region, maquis are simply represented as one to three categories based on density 

or height. To fill this gap, we test the capability of Sentinel-2 imagery, together with selected 

ancillary variables, for an accurate mapping of the dominant maquis formations. We applied 

Recursive Feature Selection procedure and used a Random Forest classifier. The algorithm is tested 

using ground truth collected from site and reached 78% and 93% overall accuracy at species level 

and physiognomic level, respectively. Our results suggest species level characterization of dominant 

maquis is possible with Sentinel-2 spatial resolution. 
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Introduction 

Sustainable Forest Management (SFM), which encompasses a wide spectrum of concerns, from 

timber to non-timber forest products, and further towards forest related ecosystem services and 

functions (Wang and Wilson, 2007), requires management of the regenerative capacity of forests for 

an array of demands of goods (i.e. timber, food) and services (i.e. water regulation, soil protection) 

for current and future generations (MacDicken et al., 2015). To fulfil these requirements, it is 

important to understand the diversity of forests for three reasons. First, the compositional and 

structural diversity of forests serve multiple ecosystem services (Lindenmayer et al., 2000; 

Burrascano et al., 2011). Second, the composition and structure of forests are important indicators to 

be monitored for guiding the adaptive management imposed by SFM (Rist and Moen, 2013). In this 

context, the composition and structure of maquis (defined here as a dense evergreen sclerophyllous 

cover of small trees and shrubs at various heights and densities) correspond to various stages of 

regressive succession and degradation (Tomaselli, 1977; Scarascia-Mugnozza et al., 2000). Third, 

diversity contributes to the resilience of the system (Ciancio and Nocentini, 2004), and it is important 

to identify the ecologically vulnerable and resilient sites, a crucial topic in Mediterranean because of 
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its susceptibility to fire, degradation, and desertification, as a direct consequence of climate change 

(Peñuelas et al., 2010). 

Despite management shifts towards a SFM perspective, the planning process and inventory 

principles largely continue to be tied to the conventional methods. National Forest Inventories (NFI) 

and derived management maps are still dependent upon timber increment interest (Laamanen and 

Kangas, 2011) and only partially meet the requirements of a sustainable management perspective 

(Siry et al., 2005; Groot et al., 2015). This is especially evident in Mediterranean sparse forests 

characterized by tree canopy closure of less than 10% while maquis generate a dense vegetation 

layer underneath. To classify, plan and manage such ecosystems considering only the sparsely 

distributed tall trees but ignoring the shrub/small tree layer causes a serious shortcoming due to 

several reasons: (1) maquis play an important role in ecosystem functioning since they prevent soil 

erosion (Gabarrón-Galeote et al., 2013), (2) enhance soil quality (García-Orenes et al., 2012), (3) 

control surface runoff (Casermeiro et al., 2004) (4) create a microclimate for further vegetation 

generation (Tomaselli, 1977), (6) enhance overall biodiversity (Goberna et al., 2007) and (7) provide 

indispensable economic resources to local livelihoods, i.e. non-timber forest products such as seeds, 

fruits, gums, resins, dyes, medicines and aromatic plants (Özturk, 1995; Palahi et al., 2008). 

Forests in the Mediterranean basin cover approx. 88 million hectares (FAO, 2018) and according to 

Bontemps et al. (2011) sparse trees (including shrublands and grasslands) cover across 17.7% of the 

Mediterranean basin. Turkey’s Mediterranean region covers 5.7 million hectares of forest where 

41.85% belong to “sparse forest” and are managed as if only tall trees (eg. Pinus brutia) exist (GDF, 

2019). However, according to the SFM principles, it is necessary to map the maquis distribution and 

incorporate their compositional diversity into management practices. Since recreating the maps that 

reflect the complex structure of maquis via surveys is impossible, remote sensing should be 

employed for this purpose. 

The use of remote sensing techniques to delineate maquis is not a novel attempt for the 

Mediterranean region. Earlier efforts comprise: (1) land use change detection (Sluiter and de Jong, 

2007; Tzanopoulos and Vogiatzakis, 2011), (2) vegetation mapping (de Jong and Burrough, 1995; 

Grignetti et al., 1997), (3) assessing vegetation dynamics (Kadmon and Harari-Kremer, 1999) 

particularly during recovery from fire (García and Caselles, 1991; Laurin et al., 2018), (4) detection 

of the flammability for fire management (Koutsias and Karteris, 2003; Bajocco et al., 2017), (5) 

biomass estimation (Calvão and Palmeirim 2004, Meer at al., 2001) and (6) monitoring land 

degradation and restoration management (Fava et al., 2016). However, in all previous studies in our 

knowledge, maquis were treated as a single group (Telesca and Lasaponara, 2006; Bajocco et al., 

2012) or they were classified into maximal three categories on the basis of height (Maselli et al., 

2000), density/coverage (Laurin et al., 2018) or physiological classes (maquis/garrrigue/phyrgana) 

(De Jong and Burrough, 1995; Esbah et al., 2010). Only Manevski et al. (2011) applied a species 

level classification scheme based on field spectrometry that requires costly fieldwork. 

This study introduces a detailed species level classification scheme for the dominant maquis species 

(Genista acanthoclada, Erica spp., Phillyrea latifolia, Quercus spp., Olea europea and Arbutus 

andrachne) based on Copernicus Sentinel-2 time series and a machine learning approach. As a multi-

spectral satellite constellation Sentinel-2 provides an opportunity for heterogeneous forests with its 

10 m resolution and the short revisit cycle of five days. Applying a multi-temporal methodology 

helps to catch the spectral variances in phenology and thus increase accuracy in vegetation mapping 

(Grabska et al., 2019). Due to these reasons Sentinel-2 imagery has been widely used in the forestry 

sector to classify tree species composition (Immitzer et al. 2016, Persson et al. 2018; Kampouri et al., 

2019), quantify forest extent (Suresh and Hovenbitzer, 2018), estimate above ground biomass 

(Chang and Shoshany, 2016; Laurin et al., 2018), and monitoring forest disturbances from fire 

(Colson et al., 2018) or logging (Lima et al. 2019). 
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The main objective of this study is to map the compositional diversity in complex Mediterranean 

maquis ecosystems with high accuracies based on Sentinel-2 images, and ancillary data. The specific 

aims comprise: 

(1) to create a species level classification for maquis in order to increase our knowledge in 

compositional data, especially for the relevant formations “sparse forests” in forest stand 

maps, although they are maquis from an ecological perspective, 

(2) to present a semi-automated approach based on open software and freely available global 

remote sensing data to guarantee that the method can be applied to similar formations over 

large areas in the Mediterranean region and easily be repeated for monitoring purposes, 

(3) to assess the explanatory power of remote sensing and ancillary features in the context of the 

present mapping task. 

The contributions of this paper to the state-of-the-art are as follows: 

(1) It is a pioneering study that shows the feasibility of remote sensing methods to species level 

maquis classification using machine learning techniques and ancillary data in addition to 

satellite multi-temporal images, 

(2) It introduces new features designed to accentuate the subtle spectral differences among 

maquis species, 

(3) It determines the remote sensing variables along with anciellary variables, that has a 

significant effect on species distribution in maquis. 

Materials and Methods 

Overview 

In this study, a workflow (Figure 1) to produce an accurate and detailed composition map for 

Mediterranean woodlands, which distinguishes six dominant maquis species was developed. Since 

no detailed information about maquis distribution at the species level exists, a field survey was 

carried out to collect Ground Truth (GT) data. The main focus of the field survey was laid on “sparse 

forests” in NFI where the tree canopy cover is marked as less than 10%. Then, based on 

orthoimages, GT polygons were delineated around the sampling points. Finally, Sentinel-2 imagery 

Level 1C products for the time period between 01-01-2016 and 30-05-2019 were acquired via 

Google Earth Engine (GEE), which is a cloud computing platform for geospatial analysis which has 

been widely used to monitor deforestation, disaster risk, food security, etc. at the global, regional and 

local scales (Gorelick et al. 2017). 

In addition to remote sensing features such as original spectral bands and spectral indices, also 

ancillary data such as soil type, geological information, bio-climatic surfaces and topographic 

variables were prepared and in total, a set of 44 features were used. Multi-collinearity was reduced 

by applying a feature selection procedure that identified the 20 most important variables. We applied 

a Random Forest (RF) classifier (Liaw and Wiener, 2002) with 10-fold cross-validation using R 

3.3.2 (R Core Team, 2017) and Caret Packages (Kuhn, 2008). 

The Study Area 

Köyceğiz Forest Management Unit is located between 36.77 - 37.120 E and 28.41 – 29.070 N in the 

southwestern part of Turkey (Figure 2a) and covers 118,081 hectares. Elevation starts from sea level 

and reaches up to 2296 m above sea level (a.s.l.). 44.9% of the unit is under various protection status 

(National Park, Specially Protected Area and Wildlife Reserve) due to the region’s ecological 

significance for threatened species. A mosaic of freshwater, coastal, and woodland habitats 
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contributes to the exceptional biodiversity of the region. The mean annual temperature is 18.3°C, 

while the absolute minimum and maximum temperatures are -7.0°C and 43.0°C, respectively, and 

the annual mean precipitation is 1032 mm (Turkish State of Meteorological Service, 2016). Wooded 

vegetation covers 74.7% of the area and are composed mainly of Pinus brutia (81.8%) and P. nigra 

(19.5%) woodlands, of which approximatively a quarter is managed under the “sparse forest” label 

(GDF, 2013). The maquis vegetation starts from the sea level and reaches up to 1000-1200 m. a.s.l. 

(Davis, 1965). A heterogeneous composition of maquis forms a multi-layered vegetation structure in 

the region. The study area hosts many maquis species in diverse physiognomic stages: dense and 

open shrublands (<2m) of Genista acanthoclada and Erica spp.; low tree formations (>5m) of Olea 

europea, Arbutus andrachne, Phillyrea latifolia and Quercus spp. Apart from these dominant species 

other characteristic species include Juniperus, Cotinus, Ceratonia, Cistus, Daphne, Laurus, Myrtus, 

Pistascia and Sarcopoterium spp. 

Material 

Field Survey and Ground Truth Polygon Drawing 

The field survey was carried out to collect the GT reference data in August 2018. Prior to the survey, 

the canopy closure information of the study area was derived from forest management maps 

produced by the GDF (2013). Sparse forests with less than 10% canopy closure were marked and the 

fieldwork was carried out within this boundary (Figure 2b-c). If any maquis species covered more 

than 60% of the patch and with a minimum radius of 10-15 m, then the centre of the vegetation 

cluster was geolocated by GPS and the maquis patch’s radius was recorded for further polygon 

drawing. Habitat and specimen photos were taken at each location. Considering the time and labor 

constraints, we decided to collect a high number of samples that represent all dominant 

formations of the study area instead of only using few samples from a completely random 

design. Kadmon (2004) states that if a geographically biased (i.e. roadside) dataset is relatively 

unbiased as far as it reflects the environmental gradients of the study area, then accurate 

results are achievable. When we plot histograms of elevation as a major environmental 

gradient for the ground truth points (n = 375) and sparse forests, we assume except for the 

highest elevations, our sampling adequately reflects the present environmental heterogeneity 

(Figure 3). 

Following the fieldwork, GT polygons were drawn by visual interpretation by means of RGB 

orthophotos of the year 2013 with 90 cm resolution and the photographs taken during the survey. 

Species classes with samples less than 10 polygons were eliminated from the sample set (e.g. Laurus 

nobilis, Myrtus communis and Cistus sp.). Figure 4 shows the eight different maquis species used in 

the classification scheme. Their abundance and coverage reflect the dominance of each species 

within the studied stands. 

Remote Sensing Data 

Sentinel-2 Level 1C images between 01-01-2016 and 30-05-2019 were acquired from GEE. The 

images more than 20% cloud coverage were eliminated from dataset. Totally 167 distinct days were 

derived for two Sentinel-2 tiles (T35SPA and T35SPB) (Figure 2b). A further cloud mask and 

shadow mask were applied at the pixel level (Chastain et al. 2019). Sentinel-2 bands B2, B3, B4, B6, 

B8, B9, B11, B12 (corresponding to blue, green, red, red edge 2, NIR, water vapour, SWIR1 and 

SWIR 2 respectively) were used in the analysis. 

Ancillary Features 

Apart from RS features, 25 environmental features in total (Soil-1, Geology-1, Bioclimates-19, 

Emberger-1, Topographic-3) were prepared to precisely model the distribution of maquis. This type 
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of environmental features are frequently used in species distribution models (Morin et al., 2007). 

Several studies revealed the usefulness of combining remote sensing features with the environmental 

features at species level vegetation mapping (Zimmermann et al., 2007), especially in larger scales 

where the characteristics of the study area cannot be distinguished by moderate scale RS images 

alone (Engler et al., 2013). In Mediterranean region, many studies reveal the limiting factors of plant 

growth as the precipitation, the soil depth and formation (Di Castri, 1981; Sluiter and De Jong, 

2005). 

Table 1 lists the potential features used in this study. Soil and geology polygons were rasterized and 

other raster layers were resampled to 10 m resolution, which is the highest spatial resolution of 

Sentinel-2. 

Method 

Feature Extraction 

The pixel values of each raster layer were computed for each GT polygon. Since the digestible 

Sentinel-2 library in Level 2A was limited in GEE, we used Level 1C images. These images are 

neither atmospherically nor radiometrically corrected, so a ±3σ outlier removal algorithm was 

applied to remove extreme radiometric effects in the daily time series image dataset. Then, polygon 

spatial means of original image bands (B2, B3, B4, B6, B8, B9, B11, B12) and representative subset 

of Spectral Indices (SI) (Table 2) were computed. Spectral indices are frequently used for vegetation, 

soil and water body mapping and comprise band ratios, where confounding issues such as 

atmospheric effects or soil background reflectance are reduced (Meyer et al., 2019). 

The phenological traits such as leaf senescence, colouring, flowering, etc. of each species might 

enable to filter ideal dates or seasons for remotely sensed data acquisition (Gärtner et al., 2016). This 

is particularly challenging since the focal species are evergreen sclerophylls and some of them 

present similar morphological features and biomass accumulation (Quercus coccifera, Q. infectoria, 

and Phillyrea latifolia). To perceive the reflectance behaviour of the target species and understand 

the subtle differences among each other, the time series of indices are plotted on a monthly basis 

(Figure 5). In this step, after assessing the distributions visually, and considering their relatively 

smaller representations in the GT, we grouped the above three species into a single class named 

“mix”, hence the final classification is based on six maquis species classes. Furthermore, seven 

additional spectral features were calculated (Table 2) to accentuate the phenological differences 

between certain species. In total, 21 features were extracted for each GT polygon: annual median 

values for eight basic spectral bands, annual mean values for six spectral indices, and seven newly 

computed indices inferred from time series graphs of spectral indices. 

Random Forest Classification 

Random forest (RF) (see e.g. Breiman, 2001) is a fast and powerful machine learning algorithm that 

successfully overcomes high dimensionality and multicollinearity, thus intermittently used in both 

regression and classification problems (Colditz et al., 2015; Räsänen et al., 2013). The RF model was 

run in R software (R Core Team, 2017). Major RF tuning parameters have been set to default values 

as suggested by Belgiu and Drăguţ (2016). Such that; mtry (Number of variables randomly sampled 

as candidates at each split) is equal to the square root of the total number of features, and N (number 

of trees to grow) is set at 500. 

Feature Selection 

RF’s variable importance approach is highly beneficial for ranking features, applying stepwise 

approaches, and setting certain thresholds to feature space. By means of these, it is possible to find 
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out (1) respectively correlated variables, (2) explanatory features for the prediction, and (3) to 

optimize the feature space with the minimum number of variables (Genuer et al., 2010). Feature 

selection is an important step for machine learning applications (Kohavi and John 1997). In total, 46 

remote sensing and environmental features are computed. Inherently some of them might be highly 

correlated with each other, so to highlight the indispensable features, feature selection algorithm was 

applied. In this study, we applied a wrapping approach, i.e. Recursive Feature Selection (RFE) as 

described in Gregorutti et al. (2017). RFE uses a backward iteration approach and it is highly capable 

of removing noisy and highly correlated features. The RF classifier is trained and feature ranking is 

computed by permutation importance. As a consecutive step, the least important features are 

eliminated and this recursive process is repeated until all the features contribute significantly to the 

model (Gregorutti et al., 2017). 

Accuracy Assessment 

We applied 10-fold cross-validation to provide an unbiased estimation of RF model performance 

based on the entire sample of the limited GT set. To assess the accuracy of the output classification a 

further independent validation was applied by placing 500 random points within sparse forest stands. 

By visual interpretation we categorized each point by means of orthophotos. However due to the 

limitations in delineating maquis we labelled these points as either trees or shrubs, thus a 

physiognomic ontology was produced (tree and shrub) which is also highly beneficial in 

understanding the dynamics of various vegetation stages. The classification map was also grouped 

namely, shrubs (Genista ssp, Erica ssp, Mix) and trees (Olea europea, Arbutus andrachnea, Pinus 

brutia). The classification map predicted by the model were compared to these independent random 

set and assessed with the accuracy statistics aforementioned above. 

Results 

Classification map 

The species level classification map of the maquis is presented in Figure 6. The most widespread 

species is Genista acanthoclada (34.4%), followed by the “mix” class (26.6%), Erica sp. (15.9%), 

Arbutus andrachne (7.9%) and Olea europaea (3.3%). Although these vegetation types are labeled 

as “sparse Pinus brutia forests” by the foresters, our study reveals that pines only cover 11.8% of the 

masked area. 

Classification Accuracy 

Species Level Classification Accuracy 

Overall accuracy (OA) of the model is 0.78 and Cohen’s kappa coefficient (K) is 0.73 (Table 3). For 

each class, the accuracies are greater than 0.70. The classes Genista acanthoclada and Pinus brutia 

achieved highest accuracies indicating a successful classification. Commission errors are in the range 

of 0.0% to 28%, with the largest error for Pinus brutia and the smallest for Olea europea. 

Physiognomic Classification Accuracy 

The species level classification can be easily adapted into a physiognomic classification which is 

a basic way of describing the vegetation condition. This scheme is useful for various application 

areas in forestry and restoration ecology. Furthermore, with this generalized categorization, 

we produced an independent sample set that enables further validation. To assess map 

accuracy at the physiognomic level, an independent validation set was generated that is based 

on 500 randomly selected points and labelled by image interpretation. Table 4 shows the 

accuracy metrics of this independent validation set on physiognomic level. OA is 0.93 and the K 
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value is 0.86. These results confirm that this classification is highly capable to discriminate the 

physiognomic (shrub-tree) stages of the maquis. 

Explanatory Features 

The RF classification for six species of the maquis enables to assess the power of the predictor 

features. The total number of features used in the final RF model generation is assessed by RFE 

performance. To reduce the effect of fluctuations in the performance of the RF caused by the random 

nature of the algorithm, the model is run 12 times with different seed values and the results are 

averaged. Figure 7 represents the relative contribution of features to the model accuracy. Trend lines 

are depicted on the curve and the first intersection is observed around 20 features. The intersection 

point illustrates that the first 20 features seem to be highly important (steep trend line). Using more 

than 20 features results in an almost horizontal trend line and feature importance even begins to 

decline. 

As for variable importance, spectral indices appear to be the most important features with the blue 

band (B2). Visible (red, green and blue bands), NIR and SWIR spectrum of Sentinel-2 also 

contribute to the model. On the other hand, red edge spectrum is eliminated. With respect to 

characteristics of the evergreen species, the mean annual indices are more descriptive than specific 

seasonal features such as Feat 2, 4 and 1. Among the ancillary variables, geology, soil, BIO19 

(Precipitation of Coldest Quarter), BIO12 (Annual Precipitation) and DEM (elevation) are prominent 

(Figure 8). 

Discussion 

Utility of the Classification Map 

This study presents an algorithm to classify six species of maquis and contributes to a consistent 

solution to the problem of classifying complex woody vegetation in the Mediterranean ecoregion. 

Thus, the output of this research is of great importance and will enable to develop an enhanced 

ecosystem management and policy, in particular SFM at stand level in Turkish Mediterranean 

region. Moreover, the use of freely available and high-quality multi-temporal Sentinel-2 images 

offers new perspectives to discriminate maquis vegetation down to the species level. The spatial 

resolution of the map (10 m) is sufficient to discriminate the composition of most maquis types. 

Although higher spatial resolution might produce even better classification results at the species 

level, the current resolution is absolutely sufficient for forest management units to infer management 

decisions. The potential utility areas of species and physiognomic level maps are suggested in Table 

5. 

RS based classification is more successful when most pixels are pure, i.e., composed of one single 

class only. However, even for tree species classification, it remains challenging to find pixels 

consisting of a single tree species and/or single age class (Fassnacht et al., 2016). Also in our study, 

obtaining pure sample points consisting of a single maquis species was not always feasible due to the 

heterogeneous and inherently mixed maquis vegetation with varying heights. To overcome this 

problem, we focused on patches dominated by a single species (>60% cover of a single type of 

vegetation) and generated target classes accordingly. Although canopy closure for each class is even, 

the height of target species varies significantly for some of the classes. The greater variance occurred 

for oak species (between 1 and 10 m), probably due to their specific management (coppice regime or 

grazing pressure) in the past. Phillyrea latifolia also vary substantially in their height (between 0.6 m 

and 5 m). The vertical leaf area density of those species changed during their life cycle and thus 

might affect classification performance. 
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Another issue is the spectral inter class variability due to the clutter caused by the bare soil or other 

plants underneath the target species (Fassnacht et al., 2016). In our case, presence of bare soil causes 

problems for the classes Genista acanthoclada and Erica spp. However, other maquis plants and 

herbs contributing to the mixture in the sampling locations of other classes (i.e. Arbutus, Olea, 

Quercus etc.) are the major challenge and increase intra-class variability. In order to reduce the 

background signal (clutter) caused by bare soil, we chose sampling locations with canopy closure 

higher than 75%. We tolerated the natural variability caused by species heterogeneity as typical 

characteristics of the Mediterranean region and did not further categorize or eliminate species classes 

to remove this effect. 

Similar to the findings of Manevski et al. (2012) obtained with field spectrometer, VIS and SWIR 

are highly prominent for the maquis species. This is especially evident for Olea europea in our 

study. Similarly Genista and Erica classes are well distinguished (Table 5). 

Classification Accuracy 

Our classification for both species and physiognomic levels are highly accurate. In general, the 

accuracies are higher in biomes which have lower biodiversity (Fassnacht et al., 2016). As 

Mediterranean maquis has high biodiversity, we found it more applicable to compare our results with 

the similar studies conducted in the Mediterranean region. The classification schemes, spectral and 

spatial resolutions of imagery used and classification algorithms vary greatly in previous literature. 

Nevertheless, Table 6 presents a comparison, with an emphasis on the accuracy statistics. 

To increase the accuracy and usefulness of the classification map we recommend three issues 

regarding the sampling set. The acquisition of sampling set is a time and money consuming process 

and a relatively subjective task (Belgiu and Drăguţ, 2016). We collected 382 samples from 11 

different maquis types. However, as aforementioned above, we could not draw polygons for every 

sample point and include that number (382) of training samples in the classification scheme. 

Recording the locations of cluster centres just as points is not a good sampling methodology for the 

Mediterranean region where the spatial heterogeneity is high. For some of the target species visual 

interpretation is hardly possible at the inter-specific level (e.g. between Quercus and Phillyrea, or 

between Erica and Genista). The easiest case of discrimination by photo interpretation is between 

Olea and Arbutus due to different hues of their leaves. Also, the shadows generated by the taller 

trunks of Olea and Arbutus are easily discriminated from shrub formations. 

A further limitation is in the evenness of the remaining samples. RF classifier is less sensitive to 

imbalance in training, noise in the training set or overfitting problems (Belgiu and Drăguţ, 2016). 

However, the distribution of samples within the training set might improve the performance of the 

model. Colditz (2015) suggested that the best accuracy was reached by the generation of area-

proportional allocation of training samples over classes, i.e. more samples allocated for commonly 

occupied classes. On the other hand, Jin et al. (2014) showed that the area-proportional allocation 

reduced the commission error and the equal allocation of classes reduced the omission error for low- 

represented classes. While noting these findings, we again underline the complex vegetation patterns 

in our study area. Given in Figure 4, the widespread species are Genista acanthoclada, Erica sp. and 

the rare ones are Phillyrea latifolia, Q. coccifera and Q. infectoria. On the other hand, due to the 

species community traits, some of them generates wide clusters (Genista acanthoclada, Erica sp.) on 

the other hand for some species it was hard to find even 100 m
2
 coverage (Q. infectoria). We 

followed the area-proportional allocation guides, our sampling scheme reflects the plants’ 

occurrences. 

However, there are several other species such as Laurus nobilis, Myrtus communis, and Pistacia 

terebinthus in the study area but they do not cluster explicitly or show dominance and also they are 

very rare in the study area. Since, we note these species as minorities or odd distributions during the 
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field survey, we dismiss their representation in the sample set. In further studies detection of these 

rare species should be targeted as they have a potential to contribute to the local livelihoods as non-

timber forest products. These shortcomings in the sampling set might be improved with more 

intensive fieldwork. 

Explanatory Features 

Although RF is insensitive to high dimensionality, an iterative backward selection is highly 

recommended (Belgiu and Drăguţ, 2016). With the optimization of feature space, the predictors with 

substantial importance were identified, so we can understand the main drivers of the species 

distribution and prevent the overfitting problem caused by a limited number of samples in relation to 

the number of predictor features, as well as prevent multicollinearity. 

Remote Sensing Features 

The important wavelength regions are VIS and SWIR which explains the reaction of plant pigments 

and water content (Schmidt and Skidmore, 2003; Fassnacht et al., 2016; Manevski et al., 2011). 

Similar to Pu and Liu (2011) and Waser et al. (2011)’s findings, the blue wavelength region is 

remarkable to the construction of the model. This might be related to the lower photosynthesis in the 

blue light. The least important portion of the wavelength is red edge spectrum which is also noted in 

the study of semi-arid woodlands’ tree classification (Peerbhay et al., 2014). 

Grignetti et al. (1997) highlighted the autumn and winter periods as the best seasonal descriptors for 

maquis. On the other hand, Calvão and Palmeirim (2004) recommended the summer period to better 

discriminate between sclerophylls and semi-deciduous scrubs. Our results revealed that the annual 

mean features are more descriptive than specific seasonal descriptors, i.e., Feat 1-7 inferred from 

time series graphs in our case. 

Ancillary features 

In this study, the use of ancillary features substantially increases model performance. Single use of 

spectral features is not able to reflect the high environmental heterogeneity of the study area. These 

findings support Sluiter and De Jong (2005); they also suggested that the spectral confusion in 

heterogeneous vegetation patterns can be overcome by adding ancillary data. The depth and type of 

soil bounds the niche for particular maquis species (e.g. Rundel et al., 2016). Another limitation in 

plant growth is the precipitation (Pausas, 1999). Thus, geology, soil type, annual precipitation 

(BIO12), the precipitation of coldest quarter (BIO19) and elevation appear as important features in 

Figure 8in terms of variable importance. 

Conclusions 

As an important ecological formation, maquis provide substantial services such as soil protection, 

runoff control or the provision of non-timber forest products to Mediterranean communities. 

Therefore, maquis ecosystems should not be ignored in the context of climate change because the 

forest trees are highly prone to climate change and interlinked to land degradation and desertification 

process. Their high biodiversity, various fire and drought prone traits may enhance resilience of 

Mediterranean region. 

In the present study a detailed classification for Mediterranean maquis was developed based on a 

machine learning approach and freely available multi-temporal Sentinel-2 images that meets the 

requirements for a future Sustainable Forest management. The classification approach enabled to 

distinguish between six maquis classes and produced 78% overall accuracy. An additional output of 

the approach was the identification of required spectral indices, spectral bands and environmental 
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factors a successful classification for typical Mediterranean maquis region. Our results demonstrate 

that several prominent maquis species can be successfully discriminated with remote sensing. 

Based on the promising results, we anticipate that increasing the number of samples in low 

represented classes will further improve the accuracy of the classification product. Existing forest 

inventories, focusing only on the presence of a few woody tree species in Turkey, have to be 

improved and adapted by better reflecting the diversity of maquis ecosystems, 

The increasing availability of remote sensing products and the launch of user-friendly data 

downloading and processing tools such as the cloud sourcing platforms (Google Earth Engine) will 

provide a common basis to improve our knowledge on understanding the complex ecosystems and 

will enable us to test the performance of the model in the wider Mediterranean Basin. Also the 

ingestion of Sentinel-2 Level 2A images, when available, into GEE may increase accuracy of species 

classification. 
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Figure 1. Workflow for the classification (Grey rectangle denotes process and rhomb denotes data) 
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Figure 2. The study area and the sampling points within the “sparse forests” a) The location of the 

study area, b) Dark grey polygon: Köyceğiz Forest Management Unit. Red polygons: “sparse forest” 

stands identified in stand management maps. Dashed lines: various protection status (SEPA: 

Specially Environment Protection Area, NP: National Park, WR: Wildlife Reserve. c) White dots: 

sampling points. 
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Figure 3. Histograms of elevation classes for sparse forests (upper) and 375 ground truth points 

(lower). 
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Figure 4. Distribution of ground truth polygons among the eight species classes. 
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Figure 5. NDVI values distribution per month for each of the eight vegetation classes. 
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Figure 6. (left) “Sparse forest” mask; green polygons show stands labelled as “sparse Pinus bruita 

forest”, only orange polygon labelled as “maquis”. (right) Classification representing the dominant 

maquis species and Pinus brutia. 
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Figure 7. Number of features versus overall accuracy (Red line: change in accuracy with the additive 

random features. Dashed lines: the trend in the accuracy change). 
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Figure 8. RF Variable importance of the 20 input features. 
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Table 1. List of ancillary features 

Category Feature Name Data Source Usefulness in vegetation 
mapping 

1/25.000 Soil 
Map 

Soil type Turkey Ministry of 
Agriculture and Forestry 

Sluiter and De Jong, 
2005; Corcoran et al., 
2013 

1/25.000 
Geology Map 

Formation 
category 

General Directorate of 
Mineral Research and 
Exploration 

Sluiter and De Jong, 2005 

Bioclimatic 
features 

Bio1: Bio19  CHELSA bioclimatic 
surfaces (Karger et al., 
2017) 

Zimmermann et al., 2007 

Emberger Index Calculated from 
bioclimatic 
features 

Emberger, 1955 Dufour-Dror and Ertas, 
2004 

Topographic 
Variables 

Elevation (m) 
Slope (°) 
Northness 

ASTER GDEM (NASA, 
2009) 

Sluiter and De Jong, 
2005; Gislason et al., 
2006 

  

Acc
ep

te
d 

M
an

us
cr

ipt

https://www.researchgate.net/scientific-contributions/2085848435_L_Emberger?_sg%5B0%5D=cLDEtSfFXIdGJPwqW4oo4AGr_XgzFTJnv3VJhyP7uWC-OFDm2kTlL_2Cdnk_VW8BPztXSs8.HlE22-NYTk2PF1v5c_2NNemO6XsZ5EolIinQ4GuScEBcNGJmTpKIIUddNK7ex4gwZV9-ZxzGHSo7MSUhNqFz_w&_sg%5B1%5D=VFeGiKRKHav0naW3pmxPGbWUmPqbg5NFBmNED_s8OnQYadpC6Sf_J_uhyxMCEZtXL105NGBToi-u513sqJmXA8Nsb-QFj3g.QeCnFxATiEP9_ucIcO5oPnWS-5CL6XYNq1ar2UPnyp41VhdWeRtvPkNv8b3239zgMw6KbH1Xpv6SiVd3VcHWhg


Table 2. List of spectral indices and re-computed features from SIs to delaminate vegetation classes. 

Spectral 
Indice (SI) 

Formula Reference 

NDVI (𝐵8 − 𝐵4)/(𝐵8 +  𝐵4) Rouse et al., 1974 

NDWI ((𝐵8 − 𝐵11))/((𝐵8 +  𝐵11)) Ceccato et al., 2001 

SAVI ((𝐵8 − 𝐵4) ∗ 1.5)/((𝐵8 +  𝐵4 + 0.5)) Huete, 1988 

EVI2 ((𝐵8 − 𝐵4) ∗ 2.5)/((𝐵8 +  2.4 ∗ 𝐵4
+ 1)) 

Jiang et al., 2008 

GDVI2 (𝐵8 − 𝐵4 )

(𝐵8 + 𝐵4 )
 

Wu, 2014 

GVI 
(Tasselled 
Cap 
vegetation) 

(−0.283 ∗  B2) + (−0.2453 ∗  B3) +
 (−0.5436 ∗  B4) + (0.7243 ∗ B8) +
 (0.0840 ∗ B11) + (−0.18 ∗ B12)  

Thenkabail et al., 2002  

Computed 
Features 

Formula  

Feat1        
          

  

2
 

Inferred from SI monthly 
graphs (e.g. Figure 4) for 
to distinguish species 
phenological differences 

Feat2         
           

  

        
    

 

Feat3         
            

  

        
    

 

Feat4         
           

  

        
    

 

Feat5        
          

   

       
    

 

Feat6         
            

  

        
    

 

Feat7        
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Table 3. Confusion matrix of species classification 

CLASSES Arbutus Erica Genista Mix Olea Pbrut Row Total 

Arbutus 14 0 0 1 0 4 19 

Erica 0 24 3 4 0 0 31 

Genista 0 2 25 2 0 0 29 

Mix 2 1 4 24 0 3 34 

Olea 2 
 

1 1 14 0 18 

Pinus 0 2 1 1 0 21 25 

Column  

Total 
18 29 34 33 14 28 156 

Omission 

Error 
0.26 0.23 0.14 0.29 0.22 0.16  

Comission 

Error 
0.22 0.17 0.26 0.27 0.00 0.28  

Overall Accuracy: 0.78 Cohen’s Kappa: 0.73 
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Table 4. Confusion matrix of the physiognomic classification 

CLASSES Shrub Tree Row Total 

Shrub 287 8 295 

Tree 25 180 205 

Column Total 312 188 500 

Comission Error 0.08 0.04  

Omission Error 0.03 0.12  

Overall Accuracy:0.93 Cohen’s Kappa:0.86 
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Table 5. Potential utility of produced species maps in Mediterranean maquis. 

Utility  Species level map Physiognomic level map 

Monitoring land use land 

cover (LULC) 

X  X  

Monitoring land degradation  X  X  

Landscape restoration X  X  

Vegetation mapping X  X  

Vegetation dynamics X   

Fire management X   

Biomass estimation X  X 

Managing non- timber forest 

products 

X   

Mapping ecosystem services X  X 
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Table 6. Accuracy statistics and classification scheme. We listed only classes related with maquis. 

 Classes (Maquis related 

class labels mentioned) 

Predictors Classification/ 

discrimination 

technique 

Accuracy Reference 

Maquis 

and three other classes 

Aerial 

Photographs 

Object based  OA: 0.83, 

Kappa: 0.77 

Fava et al., 

2016 

Low maquis 

High maquis 

Maquis with open canopy 

forest sp. and other 11 

classes 

Landsat TM 

SPOT 

Maximum 

likelihood 

OA: 0.85 Grignetti 

et al., 

1997 

Species level 

discrimination; 

Ceratonia siliqua, Olea 

europea, Pistacia 

lentiscus, Calicatome 

villosa, Genista 

acanthoclada 

Hyperspectra

l air and 

spaceborn 

sensors / 

Field 

spectometry 

Parametric and 

non-parametric 

tests 

99% 

confidence 

level results 

highlights the 

spectral 

discrimination 

in certain 

wavelengths 

Maneski 

et al., 

2011 

Shrublands, 

Oak Grove and 12 other 

classses 

Landsat TM 

geostatistical 

textural 

features 

 

RF / Maximum 

likelihood 

 

OA: 0.83- 0.92 

 

Rodriguez

- Galiano 

et al., 

2012 

6 dense mattoral classes (3 

of them directly related 

with maquis: scattered 

Pinus, Quercus ilex 

dominant by undergrowth 

species)  

4 middle mattoral classes 

(dominated by Quercus 

cocifera, Erica arborea, 

Cistus spp) 

3 low mattoral and 13 

other classes 

HyMap  

& 

Some 

ancillary 

variables 

Spectral angle 

mapper  

& Ancillary 

data 

classification 

Model 

OA: 0.51- 0.69 

 

Sluiter and 

De Jong, 

2005 
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