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A B S T R A C T   

As topography is a key factor controlling soil genesis and strongly influences physical and chemical soil prop-
erties, terrain attributes are routinely used in digital soil mapping to spatially predict soil properties. Forests on 
flysch sediments along the northern slopes of the Swiss Alps often have a strong microrelief. The dominant soil 
types are Gleysols in depressions and Cambisols on ridges, with large pH variation within short distances. Based 
on the theory of soil development we expected that soil-forming processes driven by micro-scale topographic 
variation shape similar micro-scale spatial patterns of soil properties at different sites within the flysch region. 
Therefore, the main objective of the study was to investigate model extrapolation within flysch regions, which 
has turned out to be difficult on many other geological substrates. At three sites, each of about 2 ha, we first built 
three local models to examine whether a relationship between microtopography and topsoil pH could be inferred 
from high-resolution terrain attributes and pH measurements. Using data from all three sites we then calibrated a 
joint model and examined model extrapolation by calibrating models with data from two sites and predicting pH 
at the third. All models were based on multiple linear regressions that used 0.5 m resolution terrain attributes 
derived by a multiscale approach as explanatory variables. The cross-validated R2 for the local pH models varied 
between 0.56 and 0.77, and the corresponding RMSE between 0.57 and 0.64 pH units. The R2 and RMSE for the 
joint model were 0.60 and 0.76, respectively. The results of the local models suggest that microtopography is a 
dominant soil-forming factor on flysch sediments that triggers soil genesis on a spatial scale from submetre to 
metres. Although the extrapolated models showed a reduced prediction ability with R2 values of 0.25, 0.46 and 
0.53, the selected terrain attributes were relatively similar among the models, which may indicate the common 
driving processes. The results for the joint model suggest that using high-resolution terrain attributes yields a 
fairly accurate spatial prediction of the highly variable topsoil pH in forests on flysch sediments across 
Switzerland.   

1. Introduction 

Forest soils fulfil a multitude of functions contributing to the de-
livery of ecosystem services (Adhikari and Hartemink, 2016). They 
provide habitats for numerous organisms, regulate energy and mass 
flows, including buffering and filtering, and influence the timber yield 
of forests. The assessment to what degree soils can fulfil the different 
soil functions depends on the availability of datasets on biological, 
physical and chemical soil properties underlying the different soil 
functions (Calzolari et al., 2016). 

One of the key soil properties used for assessing soil functions is soil 
pH (Greiner et al., 2017; Shukla et al., 2006). For example, pH plays a 
pivotal role in the decomposition of litter and deadwood to soil organic 
matter, which is a crucial step in carbon and nitrogen cycling and 

depends directly on soil microorganisms (Bani et al., 2018). In turn, soil 
microbial activities and community composition are themselves 
strongly influenced by and feedback on soil pH (Bååth and Anderson, 
2003; Fierer and Jackson, 2006; Rousk et al., 2010): for example, the 
overall phylogenetic diversity of bacteria in acidic soils is distinctly 
lower than in soils with a neutral pH (Lauber et al., 2009). 

Soil pH also influences plant species distribution and diversity, 
which is important because knowledge of potential species distribution 
is a precondition for sustainable forest management and conservation 
under current and future climate. Using a plant species distribution 
model, Coudun et al. (2006) showed that the influence of numerous 
climatic factors on the distribution of Acer campestre in France was 
weaker than the correlation with topsoil pH. Similarly, soil pH was 
found to be the second most important predictor after temperature for 
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modelling plant species distributions in a mountain environment (Buri 
et al., 2017). Moreover, soil pH is known as a primary factor controlling 
plant species richness in arctic tundra ecosystems (Gough et al., 2000), 
in heathland and grassland communities (Roem and Berendse, 2000), in 
tropical rainforests (Crespo-Mendes et al., 2019) and in the temperate 
forests of Switzerland (Wohlgemuth et al., 2008). In turn, it is well 
known that trees largely influence the chemical, physical and biological 
properties of the soil system, including pH, through their physical 
structure and especially their above- and belowground litter inputs 
(Ellenberg et al., 1974; Eviner and Chapin, 2003; Phillips and Marion, 
2004). In a mixed forest stand Finzi et al. (1998) found that changes in 
the distribution and abundance of tree species alter the spatial and 
temporal pattern of soil acidity and cation cycling. 

In recent decades, soil property maps created using digital soil 
mapping (DSM) techniques have become increasingly available and 
have been proven to be useful representations of the main patterns of 
spatial soil variation (Grunwald, 2009; Samuel-Rosa et al., 2015). 
However, most of this predicted soil information operates on scales that 
are too coarse for addressing specific ecological questions, which often 
require information at fine spatial resolutions. A lack of spatially con-
tinuous and numerical soil information at relevant scales is hampering 
the modelling of phenomena such as plant species distributions (Buri 
et al., 2017; Camathias et al., 2013; Falk and Mellert, 2011; Haring 
et al., 2012; Piedallu et al., 2011). In order to assess the spatial dis-
tribution of belowground microbial communities, high-resolution soil 
pH information is required, since the horizontal and vertical patterns of 
these communities change on a scale ranging from decimetres to a few 
metres and correlate with soil pH variation (Ettema and Wardle, 2002; 
Mitchell et al., 2000). 

Terrain attributes (TAs) derived from digital elevation models 
(DEMs) have been used extensively in DSM to associate soil properties 
with topography (e.g. Maynard and Johnson, 2014; McBratney et al., 
2003; Smith et al., 2006). Topography directly affects above- and be-
lowground water flow and transport processes, such as erosion and 
deposition of soil material, including leaching and redistribution of 
nutrients, and influences the soil water balance, soil aeration and en-
ergy fluxes (Behrens et al., 2014; MacMillan and Shary, 2009; Seibert 
et al., 2007). These processes occur at the landscape level but also at 
small scales in the submetre to metre range where microtopography 
influences soil properties over short-distances (Kooijman et al., 2019; 
Pawlik and Kasprzak, 2015; Šamonil et al., 2016). For example, pits and 
mounds may be an important site factor and influence soil development 
(Šamonil et al., 2016; Schaetzl, 1990). Hence, such soil forming pro-
cesses may exhibit a strong scale dependency, operate at distinctive 
spatial scales and may result in distinct spatial patterns of soil proper-
ties (Florinsky, 2000; Grunwald, 2005; Maynard and Johnson, 2014). It 
is therefore necessary to identify and adjust the optimal scale of TAs, 
which is referred to as the “analysis scale”, to match the scale of the soil 
processes, known as the “phenomenon scale” (Dungan et al., 2002; 
Maynard and Johnson, 2014; Miller and Schaetzl, 2014). To achieve 
this, a multiscale approach was introduced (Behrens et al., 2010; 
Grinand et al., 2008; Miller et al., 2015). The approach, which entails 
deriving TAs from a DEM applying local average filters with distinct 
neighbourhood sizes to integrate information on the neighbourhood 
into the processed pixel, omits fine-scale variation (Cavazzi et al., 2013; 
Kim et al., 2012; Liu and Mason, 2013; Smith et al., 2006). Various 
publications have shown that fine-scale TAs (DEM grid size  <  10 m) 
did not improve model performance (Cavazzi et al., 2013; Kim and 
Zheng, 2011; Maynard and Johnson, 2014) and that improvement in 
performance did not offset the extra cost of using more detailed TAs 
(Samuel-Rosa et al., 2015). Kim and Zheng (2011) emphasised that 
because soil is spatially diffusive, edaphic properties (e.g., nutrient 
content, soil pH, contaminants) within a given area or grid cell can be 
transferred to adjacent areas or cells through lateral water flow. Fur-
thermore, too fine-scaled topographic information (< 10 m) might in-
troduce high-frequency noise and does not necessarily improve spatial 

predictions (Cavazzi et al., 2013; Kim and Zheng, 2011; Smith et al., 
2006), especially in areas with a relatively monotonous topography. In 
contrast to these studies, Baltensweiler et al. (2017) found that a very 
high-resolution DEM was required to accurately model topsoil pH from 
hydromorphic soils in a mountainous forest stand with a strong mi-
crotopography. The best model performance was obtained using a DEM 
with a 0.5 m resolution. However, the authors also confirmed the 
findings that too detailed terrain information reduces the correlation 
between TAs and pH, since the model performance was significantly 
lower when the DEM had a resolution of 0.2 m. 

Baltensweiler et al. (2017) also showed that fine-scale spatial var-
iation of topsoil pH was mainly controlled by microtopography. How-
ever, it is not clear whether this finding applied only to their study site 
or whether it is generally valid for areas with similar environmental 
conditions and microtopography. Based on the theory of soil develop-
ment (Dokuchaev, 1883), it can be expected that sites with similar soil- 
forming factors should develop similar soil properties and soil types. 
This is also fundamental in the concept of Homosoil where knowledge 
is transferred from a donor site with lots of soil information to a re-
cipient site with sparse information assuming that both sites have si-
milar soil forming factors (Mallavan et al., 2010; Malone et al., 2016). 
However, it has proved challenging to extrapolate empirical DSM 
models from one site to another because the soil-forming factors are 
rarely identical at two sites (Angelini et al., 2020; Thompson et al., 
2006). Complex anisotropies due to interactions between several soil- 
forming factors can result in different spatial variations in soil proper-
ties (Lagacherie and Voltz, 2000). 

In this regard, the first objective of our study was to ascertain 
whether the findings of Baltensweiler et al. (2017) are valid more 
generally. To do so, using high-resolution TAs we built and applied fine- 
scale DSM models that predict topsoil pH for three study sites. The 
models’ accuracy was investigated, to ascertain how much of the spatial 
variation of pH is explained by microtopography. If the models are able 
to explain a large part of the pH variation on all three sites, then ped-
ogenetic processes induced by other soil-forming factors such as cli-
mate, parent material and vegetation must be fairly constant within the 
sites or be strongly correlated with terrain. Our second objective was to 
evaluate to what degree the models can be extrapolated from one site to 
another. 

We developed and tested the fine-scale pH models on three study 
sites located on the northern slopes of the Swiss Alps covered by a dense 
forest and showing a strong microtopography. The geology at all three 
sites comprises flysch sediments, which are widespread not only in the 
Alps but can also be found in other mountain ranges such as the 
Carpathian Mountains (Kicińska, 2012), the Pyrenees (Aretz, 2016) and 
the Indian Himalayas (Sinha and Upadhyay, 1994). 

2. Materials and methods 

2.1. Study sites 

The three sites are located on the northern slope of the Swiss Alps in 
mountainous landscapes and cover an area of 1.2–2.0 ha (Fig. 1). Their 
climate, geology and topography are similar (Table 1). The parent rock 
comprises flysch sediments consisting of calcareous sandstones alter-
nating with argillite and bentonite schists (Schleppi et al., 1998). All 
sites have a pronounced microtopography with depressions (pits) and 
ridges (mounds). The horizontal extent of these topographical features 
is between one and several metres. The vertical differences between 
depressions and ridges vary between several decimetres and a few 
metres. In depressions, the dominant soil types are Gleysols with high 
soil pH values and a water table close to the surface whereas on ridges 
Cambisols with lower pH values and lower water tables dominate 
(Schleppi et al., 1998). The acidic Cambisols have an organic layer but 
the Gleysols do not. At all three sites the dominant tree species is 
Norway spruce (Picea abies), which grows mainly on the ridges and 
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avoids the permanently waterlogged depressions. The composition of 
the ground vegetation also reflects the microrelief and mainly com-
prises bilberry (Vaccinium myrtillus), mosses and other acidophilic 
herbaceous species on ridges, whereas the depressions are covered by 
herbaceous species with larger leaves, such as marsh marigold (Caltha 
palustris) and alpine adenostyles (Adenostyles alliariae) as well as wood 
horsetail (Equisetum sylvaticum) and rusty sedge (Carex ferruginea). 

2.2. Soil data 

Soil samples were collected: 62 from Alptal (ALP), 62 from Cerniat 
(CER) and 60 from St. Antönien (STA). All sampling points were sur-
veyed with a Leica TCPR 1202 total station. Only at ALP, six sample 
points were georeferenced with a Leica Disto D5 pointfinder. The soil 
samples were collected at the ALP site in May and June 2013, at CER in 
June 2018 and at STA in May 2016. At all three study sites the sampling 
scheme was similar and comprised three stages (Table 2; maps showing 
the sampling scheme see Supplementary Fig. S1). First, to include the 
whole pH range in the soil samples and ensure that both ridges and 
depressions were adequately sampled, the sites were stratified into 
ridges (acidic) and depressions (alkaline, pH  >  7) and soil samples 
were taken from both strata, using convenience sampling, i.e., sampling 
that is guided by practical considerations, such as choosing easily ac-
cessible locations. Second, we randomly selected sampling points and 
third, a regular sampling grid was placed over the study areas to cover 

the spatial extent of the sites. For ALP and STA, the sampling density 
was 0.5 samples per 100 m2, and for CER 0.3. At each sampling point, a 
borehole was drilled with an Edelman soil auger (Eijkelkamp, Giesbeek, 
the Netherlands) to a depth of around 100 cm on average. From the 
excavated drilling cores, morphological soil properties were recorded 
such as the type and thickness of eventual organic horizons, the type 
and extent of redoximorphic features (e.g. iron moulds, mottles and 
anaerobic zones), and the depth range of an eventual brunification. Soil 
samples for pH measurements were taken from the drilling cores at 
depths of 0–10 cm (mineral topsoil) and 20–25 cm at all study sites, and 
additionally at 50–55 cm and 95–100 cm at the CER and STA sites. 
Samples were packed in plastic bags and stored at 3 °C until measure-
ments. Soil pH was measured (in duplicate) potentiometrically with a 
pH electrode (Fisher Scientific, Reinach, Switzerland) in a suspension of 
the field fresh soil in 0.01 M CaCl2 with a soil-to-extract ratio of 1:2 
after 30 min of equilibration with a maximum measurement error of 0.2 
pH units. 

2.3. LiDAR data 

To obtain high-resolution and accurate DEMs, we acquired airborne 
laser scanning (ALS) data for all three sites. Since laser penetration to 
the ground was reduced due to the dense evergreen tree canopy and 
ground vegetation, special flight campaigns were executed to obtain 
dense ground point light detection and ranging (LiDAR) datasets. For 
ALP and STA, the ALS data were collected using a Riegl VZ-1000 
mounted on a helicopter. For CER, we used a Riegl Q1560 mounted on 
an airplane. The flights were carried out just after snowmelt to ensure 
that the vegetation was minimally developed. The ALS point clouds 
were processed using the LAStools software package (Isenburg, 2015). 
To separate the point clouds in ground and vegetation points, we ap-
plied the lasground_new filter, which implements an adaptive densifi-
cation of a triangular irregular network (TIN). This filter function has 
been shown to provide the best results when evaluating different clas-
sification algorithms (Moudrý et al., 2020). The ground point density 
was 6.7 points/m2 for ALP, 6.3 points/m2 for CER and 6.9 points/m2 for 
STA. All three point clouds were triangulated into temporary TINs and 
then converted to rasters, using the blast2dem function of the LAStools. 
The chosen raster cell size was 0.5 m, since this was the optimal re-
solution of the DEM to model the pH for the ALP site (Baltensweiler 
et al., 2017). The vertical and the horizontal accuracies of the DEMs 
were evaluated against ground control points, which were measured 
with a Leica TCPR 1202 total station (accuracy  ±  2 mm). The vertical 
RMSE was 0.15 m for ALP, 0.12 m for CER and 0.14 m for STA. The 
horizontal RMSE was below 0.1 m for all sites. 

2.4. Terrain attributes 

We derived the same set of TAs for all three sites, using Python API 
of ArcGIS (v.10.3, ESRI) and SAGA GIS (v.2.1.2). In all, we created 120 
TAs. Many of these TAs represent the same topographic characteristic 
but were calculated based on different computational methods and/or 
parameters, which might produce slightly different results. The calcu-
lation of the TAs was based on the following main computational 
functions: convexity, curvature, flow accumulation, flow length, flow 
path, slope, specific catchment area, ruggedness, stream power, topo-
graphic position index, topographic wetness index and valley depth. To 
incorporate different spatial scales, we applied 2D convolution filters 
with a Gauss-weighting scheme to smooth the TAs. The filters were 
defined as circles having distinct radii of 3 cells (1.5 m), 6 cells (3 m), 
12 cells (6 m) and 18 cells (9 m). The 120 TAs and the TAs smoothed by 
four different convolution filters resulted in a total of 600 candidate 
predictors 

Fig. 1. Location of the three study sites. The red areas show flysch regions in 
Switzerland. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 1 
Environmental characteristics of the three study sites.       

Alptal (ALP) Cerniat (CER) St. Antönien (STA)  

Elevation [m a.s.l.] 1150 1220 1540 
Slope [degrees] 17 16 15 
Aspect Northwest Southeast Northwest 
Annual precipitation [mm] 2300 2000 2000 
Mean annual temperature [°C] 6 6 4 

Table 2 
Soil sampling scheme of the three study sites. Numbers indicate sample size.       

Alptal (ALP) Cerniat (CER) St. Antönien (STA)  

Stratified ridges 19 14 14 
Stratified depressions 14 14 14 
Regular grid 10 24 22 
Randomly sampled 19 10 10 
Total samples 62 62 60 
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2.5. Model building 

To model the relationship between soil pH and TAs we established 
multiple linear regression (MLR) models using ordinary least squares 
(Ryan, 2008). Overall, seven multiscale MLR models were built, three 
individual local models based on single-site data (ALP, CER, STA), three 
extrapolation models based on data from two sites (ALP_CER, ALP_STA, 
CER_STA) and one joint model based on data from all three sites 
(ALP_CER_STA). To test whether and to what degree the multiscale 
approach improves prediction performance compared to a single-scale 
approach, we also built three local models and a joint model solely 
based on unfiltered TAs with a resolution of 0.5 m. These models are 
henceforth referred to as “single-scale” models. 

All statistical computations were done in R (v3.4.3, R Core Team). 
We applied a rigid variable selection procedure to obtain parsimonious 
MLR models. First, we ran a univariate linear regression model for each 
TA and the corresponding smoothed TAs against the pH target variable 
and ranked each predictor according to the resulting R2. Next, starting 
from the best performing predictor with the highest R2, we iteratively 
removed highly correlated predictors to avoid multi-collinearity. If two 
predictors had Pearson correlation coefficient |r|  >  0.8, the higher- 
ranked predictor was retained in the variable dataset. To obtain par-
simonious MLR models with all terms significant, we further reduced 
preselected predictors by the best subset approach from the R package 
leaps (v3.0, Lumley, 2008). The best model was identified using the 
Bayesian Information Criterion (BIC: Burnham and Anderson, 2004) 
with a maximum of five explanatory variables to avoid overfitting. This 
model-building procedure was applied separately to each of the seven 
multiscale and the four single-scale MLR models. 

Linear regression assumptions were evaluated for normality and 
homogeneity of variance using quantile–quantile (Q-Q), residuals, and 
Cook's distance plots. In addition, a global validation of the model as-
sumptions was performed using the gvlma R package (v1.0.0.2, Pena 
and Slate, 2006). If a model assumption, such as homoscedasticity, was 
violated, we removed the predictor with the lowest model contribution 
from the predictor set (see Section 2.6) and reran the model-building 
process until all model assumptions were accepted. For comparability 
of the regression coefficients in the MLR models we centred (mean = 0) 
and standardized (standard deviation = 1) all TAs prior to modelling. 
Spatial autocorrelation of the residuals was calculated for the local 
models ALP, CER and STA with Moran's I over various lag distances (R 
package ncf v.1.2.8). No statistically significant residual spatial auto-
correlation was found. 

2.6 Model evaluation and variable importance 

The performance of the models was assessed using the R2 and the 
R2

adj, which measure the proportion of variation the models explained. 
Ten-fold cross-validation was used to estimate the predictive power of 
the models and to evaluate the model robustness. To eliminate in-
cidental effects caused by data splitting, the cross-validation procedure 
was repeated 100 times. The mean absolute error (MAE) and the root 
mean squared error (RMSE) were used to measure the prediction ac-
curacy. To quantify the bias, the mean error (ME) was calculated. The 
final model performance (100 times 10-fold cross-validated R2

cv, MEcv, 
RMSEcv, MAEcv) was based on the mean of 100 repetitions of the cross- 
validation. We calculated R2

cv as the squared correlation between the 
predicted and observed values. To check the model performance of the 
joint model for individual sites, we evaluated the goodness-of-fit be-
tween the observed and the predicted values using R2, ME, RMSE and 
MAE. 

To assess the relative importance of each predictor in the MLR 
models, we used the LMG method from the R package relaimpo 
(v2.2–3, Grömping, 2006). The method yields the decompositions of 
model R2 to identify a predictor's contribution on its own and in com-
bination with all other predictors (Grömping, 2015). To test model 

extrapolation, we used the multiscale MLR models calibrated on two 
sites to predict pH at the third site, using the predict function of the R 
stats package (v3.4.3). By doing so, we obtained three models to test if 
microtopography can be used to explain fine-scale spatial variation of 
topsoil pH at a site that is at least 80 km away. To assess the prediction 
performance on the third, independent site, we computed the same 
validation metrics as before and called these R2

ev, MEev, MAEev and 
RMSEev. 

3. Results 

3.1. Soil characteristics 

The measured pH ranges in the mineral topsoil (0–10 cm) were 
3.5–7.0 for ALP, 2.9–6.9 for CER and 2.6–6.1 for STA for all sampling 
points (Fig. 2; for summary statistics see Supplementary Table S1). STA 
clearly showed a lower median pH value than the other two sites. For 
all sites, the pH values in the depressions were considerably higher 
compared to the ridges and differences in soil pH between depressions 
and ridges decreased with soil depth (Supplementary Table S1). Or-
ganic layers were mainly present on the ridges (Supplementary Table 
S2). Similarly, B-horizons, indicating soil brunification, were mainly 
observed on the ridges (Supplementary Table S3). 

3.2. MLR models and selected terrain attributes 

Overall, 18 different types of TAs (Table 3) were used to build the 
seven MLR multiscale models (Supplementary Table S4). Five models 
contained five predictors and two models had four selected by the BIC 
criterion. The predictors used most often were the multi-flow topo-
graphic wetness index (TWI_MFD) and the Melton ruggedness index 
(Ruggedness) – both used five times. The TA “relative slope position” 
was selected four times and the TWIs “TWI_D8” and “TWI_Rho8” were 
each selected three times. Both TWIs were built on single flow direction 
algorithms. We refrained from interpreting the sign of the MLR coeffi-
cients, since in MLR models, each coefficient does not measure the 
overall effect of the corresponding predictor on pH, as would be the 
case in a simple regression model with only one predictor (Ryan, 2008). 

The seven multiscale MLR models contained both unsmoothed and 
smoothed TAs based on all four Gauss filters (Table 4). The Gauss filter 
with the smallest radius (1.5 m) was selected most often: nine times.  
Table 4 also shows the relative contribution of the predictors to the 
model R2. The TA which, when selected, contributed most to the model 
R2 was the multi-flow topographic wetness index “TWI_MFD”: it 

Fig. 2. Boxplots of measured pH in the mineral topsoil (0–10 cm depth) for the 
three study sites Alptal (ALP), Cerniat (CER) and St. Antönien (STA) stratified in 
three groups for each site: all samples, depressions and ridges. Boxplots show 
median, interquartile range (IQR, 25th and 75th percentiles), whisker (1.5 
times IQR) and outliers (dots outside of whiskers). 
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accounted for 29% to 48% of the explained variance. 
The two most frequently selected predictors were “TWI_MFD_g3” 

and “RelSlpPos_g3”, both of which were smoothed with a Gauss filter of 
1.5 m (Fig. 3). In general, the TWI maps and the TWI density plots 
showed similar patterns and distributions for the three study sites. 
However, ALP had larger and more connected areas with high TWI 
values and a few small patches with low ones. In CER, a more hetero-
geneous distribution of low and high TWI values appeared at a smaller 
scale. STA had numerous connected areas of low and high TWI values 
and the highest density of small TWI values. The RelSlpPos maps and 
the corresponding density plots indicated that large parts of ALP had 
low RelSlpPos values and hence that these areas coincided with de-
pressions. In contrast, CER and STA both showed a less distinctive 
distribution of low RelSlpPos values. The peak of large RelSlPos values 
in the density plot of STA coincided with the large ridges. 

3.3. Model performances and maps of predicted pH 

The R2
cv for the multiscale local models ranged from 0.56 for ALP to 

0.77 for CER (Table 5). The RMSEcv was lowest for STA (0.57) and 
highest for CER (0.64). The higher RMSEcv for CER is not surprising, 
since CER showed by far the highest interquartile range (IQR): 2.7 pH 
units (Fig. 2). Although ALP had the lowest IQR (1.4) the RMSEcv was 

almost identical to that for CER. Clearly, ALP showed the weakest re-
lationship between pH and TAs. All models based on two sites had si-
milar R2

cv and somewhat higher RMSEcv than the local models. The 
multiscale joint model had an R2

cv of 0.60 and an RMSEcv of 0.76. The 
relatively small difference between the R2 and the R2

cv showed that the 
models were robust and no overfitting occurred. When evaluating the 
performance measures of the joint model for individual sites, the 
highest R2 was achieved for CER, and the lowest for ALP. 

The R2
ev values of the extrapolated models for ALP, CER and STA 

were 0.25, 0.53 and 0.46, respectively. Compared to the R2
cv of the local 

models, R2
ev decreased by 31% for ALP, 24% for CER and 17% for STA, 

and the RMSEev increased (Table 5). The bias (MEev) for the extra-
polated ALP (CER_STA → ALP) and CER (ALP_STA → CER) models was 
negative, whereas the MEev for the extrapolated STA (ALP_CER → STA) 
model was positive. 

All single-scale models performed worse compared to the corre-
sponding multiscale models. The R2

cv varied between 0.48 and 0.61 
(Supplementary Table S5) and were thus between 8% and 16% lower 
than the R2

cv of the multiscale models. The RMSEcv increased between 
0.05 and 0.17 pH units. The structure of the single-scale MLR models is 
provided in Supplementary Table S6. 

The pH maps of the three local models show considerable differ-
ences (Fig. 4, left). ALP showed high pH values (pH  >  5) over larger 

Table 3 
Description of the 18 types of terrain attributes selected by the MLR models. n = number of times a TA was used in the models.     

Predictors Description n  

TWI_MFD Topographic wetness index computed using the FD8 multiple flow direction algorithm after Freeman (1991) 5 
Ruggedness Melton ruggedness index. Ratio of the upslope catchment height and catchment area based on the single flow direction (Marchi and Dalla Fontana, 2005) 5 
RelSlpPos Relative slope position. Standardised pixel position in the relief with values equal to 0 for depressions and 1 for ridges (Guo et al., 2019) 4 
TWI_D8 Topographic wetness index computed using single flow direction algorithm, which directs flow to the adjacent cell with the steepest downslope gradient 

(O'Callaghan and Mark, 1984) 
3 

TWI_Rho8 Topographic wetness index computed using a single flow direction algorithm which directs flow to a down slope cell. The cell is selected randomly but the 
probability of being selected is proportional to the slope gradient (Fairfield and Leymarie, 1991) 

3 

Catch_slp Average slope (gradient) above the flow path (Boehner and Selige, 2006) 1 
CellBall_D8 Quantifies the number of in- and outflow cells of a specific grid cell with reference to the cells in the immediate neighbourhood, using the D8 flow direction 

algorithm (Conrad, 2007) 
1 

Convexity Ratio of number of cells having positive curvature to the number of all cells inside a circle of 6 m radius (Iwahashi and Pike, 2007) 1 
Curv_cros Cross-sectional curvature after Bauer et al. (1985) 1 
Curv_long Longitudinal curvature after Heerdegen and Beran (1982) 1 
Curv_plan Plan curvature after Heerdegen and Beran (1982) 1 
Curv_max Maximal curvature in all directions (Zevenbergen and Thorne, 1987) 1 
Curv_tan Tangential curvature after Bauer et al. (1985) 1 
Dist2Flow Horizontal distance to single flow direction flow path 1 
Flowpath_MFD Flow path length based on the multiple flow direction algorithm FD8 after Freeman (1991) 1 
Flowpath_Rho8 Flow path length based on the single flow direction algorithm Rho8 (Fairfield and Leymarie, 1991) 1 
MRRTF Multiresolution ridge top flatness index (Gallant and Dowling, 2003) 1 
SlpLength Maximum length of flow up to an interruption cell where the slope is considered to end (Olaya, 2009) 1 

Table 4 
Terrain attributes selected by the seven MLR models and the proportion that a predictor contributed to the model R2. The extension in the predictor name (e.g. _g3) 
refers to the radius (number of cells) applied in the Gauss filter (cell size = 0.5 m). p = number of predictors used in the model. For explanations of the names, see  
Table 3.        

Models Predictors 
p Relative contributions to the R2 of each model  

ALP Curv_tan_g6 Flowpath_MFD_g12 Flowpath_Rho8_g12 Curv_cros Curv_plan 
5 0.40 0.35 0.12 0.08 0.04 
CER RelSlpPos_g3 Dist2Flow Curv_long_g6 Ruggedness_g3 Ruggedness_g12 
5 0.26 0.25 0.24 0.16 0.09 
STA TWI_MFD_g3 Curv_max_g18 Ruggedness_g18 MRRTF_g12  
4 0.48 0.35 0.12 0.05  
ALP_CER TWI_MFD_g6 cellBal_D8_g6 RelSlpPos_g3 TWI_Rho8_g18 TWI_D8_g12 
5 0.29 0.28 0.22 0.11 0.11 
ALP_STA TWI_MFD_g3 TWI_Rho8_g18 RelSlpPos_g6 TWI_D8_g18 Convexity 
5 0.33 0.30 0.19 0.12 0.06 
CER_STA TWI_MFD_g18 Catch_slp_g3 Ruggedness_g3 TWI_Rho8_g18 Ruggedness_g12 
5 0.36 0.35 0.16 0.07 0.06 
ALP_CER_STA TWI_MFD_g3 RelSlpPos_g3 TWI_D8_g6 SlpLength_g6  
4 0.46 0.27 0.14 0.12  
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areas, while CER showed smaller patches of acidic and alkaline areas. In 
contrast, STA had larger areas of low pH values (pH  <  3.5) and only a 
few small patches with pH values above 5. The joint model reasonably 
reflected the local models with respect to the pH pattern (Fig. 4, 
centre). Compared to the ALP site map, the joint ALP map showed more 
pronounced areas with low and high pH values, but the spatial patterns 
coincided. The patterns on the joint CER map were similar to those on 
the CER site map, but there was less fine-scale variability. The joint STA 
map corresponded well with the STA site map, although the joint STA 
map showed greater small-scale variability. The extrapolated models of 
CER (ALP_STA → CER) and STA (ALP_CER → STA) well captured the 
main patterns of the local models but with less pH variability (Fig. 4, 

right). The greatest discrepancy between maps was that between the 
local-model ALP site map and the extrapolated ALP map (CER_STA → 
ALP): on the extrapolated map, alkaline areas were smaller and more 
acidic areas were overrepresented which led to a general under-
estimation. This bias in the extrapolated models is also reflected in 
corresponding maps of CER and STA. CER showed an underestimation, 
while the map of STA overestimated pH values. 

4. Discussion 

4.1. Microtopography explains pH variation 

The model performances of the three local, multiscale models (ALP, 
CER, STA) indicate that the fine-scale variability of pH is shaped to a 
large extent by microtopography. This finding is also supported by the 
pH maps of CER and STA, where the microtopography is reflected in the 
pH patterns. ALP shows a less pronounced pH variability, which can be 
explained by the weaker microtopography. As we expected, other soil 
forming factors, such as climate, organisms and parent material, seem 
to play a minor role or their effects on soil pH were largely correlated 
with topography. Likewise, the performances and the maps of the joint 
model (ALP_CER_STA) and the results of the models based on two sites 
(e.g. ALP_CER, Table 5) indicated that in all three sites, relief-induced 
processes operate similarly and the effects of other soil-forming factors 
are also similar. However, in all models where ALP is used, the ex-
plained variance is lower than in the corresponding models of CER and 
STA. This indicates that ALP has a more site-specific relationship be-
tween TAs and pH or that other soil forming factors have a stronger 
effect on pH compared to the other two sites (e.g. the carbonate content 
of the parent rock or the Ca concentration in the soil water). 

4.2. Predictors and spatial scale 

The large number of computed TAs in combination with a rigid 
selection of variables ensured that the most relevant TAs were found to 
achieve good model performances. It is usually not known in advance 

Fig. 3. Maps and density plots (with median lines) of the two most frequently selected predictors for the three study sites. Left: TWI multi-flow direction 
(TWI_MFD_g3). Right: Relative slope position (RelSlpPos_g3), both smoothed with a Gauss filter of 1.5 m. 

Table 5 
Performance of the multiscale MLR models. The names of the models indicate 
on which site(s) the models were calibrated. An arrow in the name refers to the 
site to which the model was applied. ME = mean error, MAE = mean absolute 
error, RMSE = root mean square error.         

Models R2 R2
adj R2

cv MEcv MAEcv RMSEcv  

ALP  0.64  0.60 0.56 0.00 0.52 0.62 
CER  0.82  0.80 0.77 0.00 0.48 0.64 
STA  0.68  0.66 0.63 0.00 0.47 0.57 
ALP_CER  0.64  0.62 0.60 0.00 0.58 0.74 
ALP_STA  0.67  0.65 0.64 0.00 0.54 0.67 
CER_STA  0.73  0.72 0.70 0.00 0.55 0.68 
ALP_CER_STA  0.62  0.62 0.60 0.00 0.60 0.76 

Joint models on individual sites   R2 ME MAE RMSE 

ALP_CER_STA → ALP   0.48 −0.11 0.58 0.69 
ALP_CER_STA → CER   0.62 −0.09 0.64 0.83 
ALP_CER_STA → STA   0.54 0.20 0.54 0.67 

Extrapolated models   R2
ev MEev MAEev RMSEev 

CER_STA → ALP   0.25 −0.63 0.91 1.09 
ALP_STA → CER   0.53 −0.34 0.76 0.98 
ALP_CER → STA   0.46 0.45 0.70 0.84 
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which specific implementation of a TA with which parameters will yield 
the best results. Therefore, we generated a large pool of TAs with a 
multiscale approach and different algorithms with different parameters 
to calculate various versions of the same TA type, such as the different 
curvature predictors (e.g. plan, profile, cross, max and tangential cur-
vature) or TWIs. In the final multiscale MLR models, three different 
versions of TWIs were selected. TWI_MFD, a multiple flow direction 
algorithm, was the most important TA and contributed by far the most 
to the model performances. The two single flow algorithms TWI_D8 and 
TWI_Rho8 were each selected three times. Although the importance of 
TWI for modelling soil properties has been shown in many DSM studies, 
in most publications only one single algorithm was used to derive TWI 

(e.g. Bishop et al., 2015; Chen et al., 2019; Guo et al., 2019; Miller 
et al., 2015). Our results suggest that different versions of the same TA 
type can improve model performance and therefore should be tested for 
model building. 

Although we computed a large number of predictors, only 18 dif-
ferent types of TAs were included in the seven final MLR models. It has 
previously been shown that typically only a small number of TAs are 
required to achieve good predictions (Behrens et al., 2010). 

All multiscale MLR models performed better compared to the cor-
responding single-scale models. The multiscale models contained un-
smoothed and smoothed TAs, with kernel radii ranging from 1.5 to 9 m. 
This demonstrates the merits of the multiscale approach and is in 

Fig. 4. Maps of mineral topsoil pH (0–10 cm depth) based on local, joint and extrapolated models. Left: Prediction based on local models (ALP, CER, STA). Centre: 
Prediction based on the joint model (ALP_CER_STA). Right: Prediction based on models extrapolated from the other two sites (CER_STA → ALP, ALP_STA → CER, 
ALP_CER → STA). 
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accordance with findings of other studies (Behrens et al., 2014, 2010; 
Levi, 2017; Miller et al., 2015). TAs with the smallest kernel size were 
most often selected in the models, which confirms the findings reported 
in Baltensweiler et al. (2017) that very high resolution DEMs are re-
quired to accurately model topsoil pH in our study regions. CER showed 
the highest fine-scale variability, as evidenced by the chosen filter sizes, 
the variable importance (Table 4) and the final pH maps (Fig. 4, left). In 
contrast, the important TAs for the ALP model tended to be more 
generalised and resulted in a more homogenous pH map. These findings 
are also in line with the field observations made on the study sites: 
whereas ALP is characterised by depressions of large areal extent and 
somewhat smaller ridges, the depressions and ridges in CER are simi-
larly sized and distributed. In STA, two larger ridges dominate and the 
topography of the remaining plot is similar to that of CER. 

4.3. Extrapolation 

The results for explained variance as well as the accuracy of the 
extrapolated models for CER (ALP_STA → CER) and STA (ALP_CER → 
STA) were good, with maps capturing the main pH patterns. By com-
parison, the prediction performance of the extrapolated model for ALP 
(CER_STA → ALP) was lower. Whereas the CER and STA models con-
tained the same type of TAs in the local and in the corresponding ex-
trapolated models (RelSlpPos for CER and TWI_MFD for STA), no 
identical TAs were present in ALP and CER_STA → ALP. This indicates 
that the CER and STA sites are more similar to each other than to ALP, 
which can also be seen in the density plots (Fig. 3). Although similar 
soil-forming processes operate in all three sites, it seems that more site- 
specific relationships between TAs and pH occur, particularly at ALP, or 
that other soil forming factors have a stronger effect on pH compared to 
the other sites. This supports the findings of Chaplot et al. (2003) and 
Angelini et al. (2020), who showed that the prediction performance 
depends largely on the similarity between the calibration and the ex-
trapolation sites. Unlike other studies, which have reported a sub-
stantial drop of performance or found no relationship between the ca-
libration and the extrapolated site (Angelini et al., 2020; Grinand et al., 
2008; Miller et al., 2015; Thompson et al., 2006), the prediction ac-
curacy of the extrapolated models for CER and STA was satisfactory. 
However, extrapolation proved inadvisable for the ALP site. 

4.4. Soil-forming processes 

The pronounced microtopography on the study sites is presumably 
formed by historical and recent tree uprooting events, such as wind-
storms (Valtera and Schaetzl, 2017). Uprooted trees often take with 
them a rootball in which soil is embedded, leaving a pit at the original 
tree microsite and producing a mound near the pit. Trees tend to co-
lonise mounds and ridges instead of pits (Hagedorn et al., 2001) and 
their roots stabilise the mounds and reduce soil erosion. In this way, the 
disturbance regime becomes considerably differentiated and the mi-
crorelief becomes more variable (Valtera and Schaetzl, 2017). The two 
larger ridges that were found in STA probably emerged from flysch 
bedrock of different stability and the resulting susceptibility to erosion. 

A variable microrelief has the potential to influence soil pedogenesis 
by locally modulating the soil water regime, especially in the case of 
wet climate conditions and poorly permeable soils. Flysch sites in the 
northern Swiss Alps generally fulfil these climatic and edaphic pre-
conditions. They have a harsh climate, and on the ALP site, for example, 
clay contents amount to values as high as 45% (Schleppi et al., 1998; 
Zimmermann et al., 2006) with accordingly low soil hydraulic con-
ductivities (van Meerveld et al., 2018). In addition, microtopography 
influence vegetation composition and through this also soil pedogen-
esis. Therefore, microtopography is related to soil order (Gleysols and 
Cambisols) and vegetation. The relationship of topography and vege-
tation to soil properties was first described by Jenny (1941) and defined 
in terms of soil mapping with the scorpan concept developed by  

McBratney et al. (2003). 
On our three study sites, the observed soil redoximorphic features in 

topographic depressions indicated permanently reductive conditions 
with a groundwater level often close to the soil surface. Soil brunifi-
cation was absent in most depressions (Supplementary Table S3) be-
cause of oxygen shortage. The relatively low soil weathering status in 
depressions is also shown by a base saturation of around 99% in the 
topsoil of an intensively studied soil pit in a depression of the ALP site 
(Zimmermann et al., 2006). On carbonate containing flysch bedrock, 
the chemistry of the shallow groundwater is dominated by calcium 
(Kiewiet et al., 2019). In depressions, the groundwater counteracts soil 
acidification by a steady supply of basic cations in the soil solution that 
displace possible protons from the cation exchange complex (Blaser 
et al., 2008). At flysch sites such as ALP, the conditions in depressions 
are too wet for tree growth (Hagedorn et al., 2001). Here, herbaceous 
plant species produce a nutrient-rich, highly degradable and therefore 
not soil-acidifying litter. Thus, in most depressions the humus form was 
always a half-bog without any perennial organic layer (Supplementary 
Table S2). 

On ridges, the groundwater generally does not rise in the topsoil 
layers. Tree roots, which occur mainly on ridges (Hagedorn et al., 
2001), enhance the hydraulic conductivity of the near surface soil 
layers (Lange et al., 2009; van Meerveld et al., 2018) and thus promote 
the drainage of soils in elevated locations. Drainage is further promoted 
by root water uptake as a result of transpiration. For these reasons, soil 
moisture content is expected to be generally lower in soils on ridges 
compared to depressions. On ridges, the absence of calcium rich 
groundwater, sufficient soil aeration and elevated drainage rates lead to 
relatively intensive soil weathering, i.e. brunification (Supplementary 
Table S3). The brown topsoil horizons were distinctly more acidic than 
the topsoils of the Gleysols in depressions (Fig. 2 and Supplementary 
Table S1). The intensive weathering led not only to low pH values but 
also to a depletion of basic cations (Ca, Mg, K) and thus to low base 
saturations in near surface soil layers. For example, base saturation in 
0–30 cm depth of a soil profile on a ridge at the ALP site amounted to 
only 17% (data origin: WSL soil database). Soil acidification on ridges is 
further promoted by humic acids from organic layers that often were 
several cm thick (Supplementary Table S2) forming a mould or mor. 
The formation of organic layers is fostered by poorly degradable litter 
from Norway spruce and from acidophilic Ericaceae (e.g. Vaccinium 
myrtillus). 

In summary, microtopography turned out to be an important soil 
forming factor at our study sites controlling processes such as water 
logging, drainage, acidification, brunification, and humus build-up with 
significant consequences on topsoil pH variation. Moreover, it influ-
ences plant species composition that in turn affects soil pedogenesis. 

5. Conclusions 

The local multiscale MLR models explained a large part of the 
spatial variation of the topsoil pH for all three sites. Microtopographic 
characteristics turned out to be key factors controlling soil pH through 
their effects on soil-forming processes and vegetation. The dominant 
influence of topography on soil formation in the study areas can be well 
explained by pedology. To adapt the “analysis scale” to the “phe-
nomena scale”, TAs have to be derived in the submetre to metre range 
for the heterogeneous topography on flysch sediments. Although the 
extrapolated models showed a reduced prediction accuracy, the se-
lected TAs were similar among these models, indicating their general 
importance for the prevailing soil forming processes. The performance 
measures of the joint model across all and at the individual sites showed 
that in all three sites, similar processes operated at similar spatial 
scales. Whether it is generally possible to accurately predict soil pH for 
flysch regions in the Swiss Alps and beyond needs to be evaluated in 
further research. Also, it would be interesting to investigate if compe-
titive machine learning techniques such as cubist or random forest 
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improve predictive performance in studies involving microscale topo-
graphic variation. However, for this a high-resolution and accurate 
DEM must be available, but this is not easy to obtain for areas where the 
vegetation is dense. LiDAR data for high-resolution DEM construction 
will be available in a few years for the entire flysch area of Switzerland 
allowing to build and test such high-resolution pH maps. These maps 
would greatly improve predictions of potential species distribution and 
biodiversity assessments. 
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