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Abstract. Gradient analysis uses ordination methods to study the structure of biotic
communities caused by biotic processes operating in a heterogeneous environment. This
structure has two spatial components: spatial processes within the community create au-
tocorrelation, and the spatial structure of environmental factors creates spatial dependence.
Ordination methods, however, do not make use of spatial information. Spatial alternatives
are available in multivariate geostatistics, but are not compatible with important ordination
methods used in gradient analysis, correspondence analysis and canonical correspondence
analysis (CA, CCA). This paper shows how CA and CCA can be partitioned by distance
(indirect and direct multi-scale ordination) and integrated with geostatistics. A diagnostic
tool enables ecologists to partition ordination results by distance, to distinguish between
components of spatial dependence and of spatial autocorrelation, and to check assumptions
of independent residuals, stationarity, and scale-invariant correlation. The application is
illustrated with a well-known data set of oribatid mites. Empirical chi-square variograms
of individual species, their pair-wise cross variograms, and the variogram of the total inertia
are defined and summarized in a variogram matrix, which leads to a spatial partitioning of
the eigenvalues. The empirical variogram matrix provides a link to coregionalization anal-
ysis that may be used to simultaneously model spatial dependence and spatial autocorre-
lation. This will be useful for answering questions about the organism-specific scale of
response to the environment, the optimal spacing of sampling units, or the scale-dependent
effect of environmental factors.

Key words: canonical correspondence analysis; chi-square distance; gradient analysis; multi-
scale ordination; multivariate geostatistics; residual analysis; scale; stationarity; variogram matrix.

INTRODUCTION

Gradient analysis (Whittaker 1967, ter Braak and
Prentice 1988) aims to explain the differences in species
composition in a biotic community observed at different
sampling locations. These differences are caused either
by internal processes within the community, such as
dispersal and competition (false gradients), or as a re-
sponse to external factors, such as environmental vari-
ation (true gradients; Legendre 1993). Ordination is the
primary quantitative method for studying both types of
structure. Indirect ordination describes intrinsic gradi-
ents in species composition, while direct ordination
identifies compositional gradients in a community as a
response to measured environmental factors (De’ath
1999). The basic methods of indirect and direct ordi-
nation, principal component analysis (PCA) and redun-
dancy analysis (RDA; see Legendre and Legendre 1998
for reviews of PCA and RDA), are used in other sci-
entific areas as well, such as in soil science or remote
sensing. Both PCA and RDA assume a linear relation-
ship among variables. This assumption limits their ap-
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plicability in gradient analysis to short gradients (i.e.,
to data sets with little species turnover between sampling
units). Alternative methods based on correspondence
analysis (CA; see Legendre and Legendre 1998 for a
review) can accommodate a unimodal species response,
and therefore are better suited for the analysis of longer
gradients (e.g., Gauch 1982, Jongman et al. 1995, Le-
gendre and Legendre 1998). As a consequence, com-
munity ecologists often perform indirect ordinations
with CA or direct ordinations with canonical corre-
spondence analysis (CCA; Table 1).

Legendre 1993 argued that the structure of biotic
communities is inherently spatial for two reasons. First,
population dynamics and interspecific interactions op-
erate through individual organisms that exist and in-
teract only within their immediate neighborhood (Til-
man and Kareiva 1997). Such contagious biotic pro-
cesses create ‘‘spatial autocorrelation’’ within the com-
munity (Legendre 1993). Second, physical processes
create spatial structure in environmental factors, which
in turn causes ‘‘spatial dependence’’ in biotic com-
munities (Legendre 1993, Legendre and Legendre
1998). The size of the ecological neighborhood, where-
in organisms interact with other organisms and with
their physical environment, depends on the particular
ecological process, the time period, and the organism’s
mobility or activity (Addicott et al. 1987, Wiens 1989).
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TABLE 1. Overview of methods of indirect and direct ordination, depending on the type of species response to gradients,
and their corresponding method of spatial partitioning (multi-scale ordination).

Method
Short gradient

(linear response model)
Long gradient

(unimodal response model)

Indirect ordination
Direct ordination
Preserved distances
Multi-scale ordination using
Variogram type
Basic element of spatial covariance

PCA
RDA
Euclidean distance
C(h)
ordinary (Euclidean) variogram
gij(a, b) 5 (1/2)(yia 2 yib)(yja 2 yjb)

CA
CCA
chi-square distance
Q2(h)
chi-square variogram
gij(a, b) 5 (N/2)(qia 2 qib)(qja 2 qjb)

FIG. 1. (a) Nonspatial and (b) extended re-
search paradigm of gradient analysis.

Therefore, different processes may create autocorre-
lation and spatial dependence at different scales, de-
pending on the scale of an organism’s response. The
recognition of the spatial nature of biotic communities
requires an extension of the research paradigm of gra-
dient analysis (Fig. 1). The internal structure of the
biotic community (B) and its response to the environ-
ment (E) cannot be fully understood without consid-
ering geographic space (S). Spatial effects in com-
munity structure may occur at more than one scale and
can be direct (i.e., due to the spatial nature of biotic
interactions [autocorrelation]), or indirect (i.e., due to
the spatial structure of the environment [spatial de-
pendence]). Ordination methods, however, are ill
adapted to the spatial paradigm, as they do not make
use of spatial information.

Geostatistics are the standard method to deal with
spatial autocorrelation and spatial dependence. Legen-
dre and Fortin (1989) and Fortin (1999) grouped spatial
statistics for ecological analysis by four objectives. Of
these, three are commonly addressed using geostatis-
tical methods: testing for the presence of spatial au-
tocorrelation (e.g., Moran’s I and Geary’s c); describing
spatial structure (e.g., variograms or correlograms);
and estimation and mapping (e.g., interpolation by
kriging). For the fourth objective of modeling and test-
ing the correlation structure between autocorrelated
data, ecologists are referred to methods developed out-
side of the geostatistical framework, such as the partial
Mantel test or partial CCA (Legendre and Fortin 1989,
Legendre and Legendre 1998, Fortin 1999). However,
geostatistics is more than simple variography and or-

dinary kriging (Rossi et al. 1992), and offers methods
for the modeling of the multivariate correlation of spa-
tially structured variables (e.g., Goovaerts 1999). Par-
ticularly, I want to point out some insights and devel-
opments in multivariate geostatistics that are of high
relevance for community and landscape ecologists but
so far have gone largely unnoticed by the ecological
literature. The first concerns the scale dependence of
the species–environment correlation. In geostatistical
terms, the multivariate correlation structure of a set of
variables is said to be ‘‘intrinsic’’ if it is independent
of the spatial correlation. In order to prevent confusion,
I will use the term ‘‘scale invariant’’ for an intrinsic
correlation structure (and ‘‘scale-dependent’’ correla-
tion for its opposite), and reserve the term ‘‘intrinsic’’
to the context of the stationarity assumption, with
which it is not related (Wackernagel 1998). Hence, if
the species–environment correlation changes with scale
(i.e., with geographic distance), the correlation is scale
dependent, and a global parameter estimate of a cor-
relation or regression coefficient is meaningless. Sec-
ond, regionalized analysis regards an observed phe-
nomenon as the sum of several independent subphe-
nomena acting at different characteristic scales. In a
regionalized PCA, for instance, a set of eigenvalues is
extracted independently for each characteristic scale.
Regionalized versions of PCA and RDA exist under
the names of factorial kriging analysis or coregional-
ization analysis (Matheron 1982, Goovaerts 1992,
1994, Wackernagel 1998; for an application in genetic
ecology see Monestiez and Goulard 1997). Regional-
ized multivariate methods can deal with scale-depen-
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dent correlations, but this comes at a cost of increased
model complexity (Wackernagel 1998). A matrix of
coregionalization, containing fitted variogram and
cross-variogram functions for all variables, needs to be
derived separately for each characteristic scale. The
problems of identifying characteristic scales and fitting
appropriate models are beyond the scope of this paper
and will be dealt with separately. Before the question
of ‘‘how’’ should be addressed, however, one should
answer the question ‘‘when.’’ There is a need for a
diagnostic tool for assessing whether a regionalized
analysis is necessary.

In a recent paper (Wagner 2003), I presented a geo-
statistical version of multi-scale ordination (MSO;
originally defined for blocked-variance techniques by
Noy-Meir and Anderson [1971], and Ver Hoef and
Glenn-Lewin [1989]) and showed how the results of
PCA can be partitioned by distance and summarized
in an empirical variogram matrix. This facilitates the
application of multivariate geostatistical methods in
gradient analysis within a linear framework. An exten-
sion to the CA family of methods is needed to make
geostatistics compatible with a unimodal response
model.

This paper has two goals. The first is to present a
spatial version of CA and CCA that allows their in-
tegration with multivariate geostatistics. This is
achieved by extending indirect multiscale ordination
with PCA to CA and to direct ordination with CCA.
The second aim is to provide a diagnostic tool that
enables ecologists to partition ordination results by dis-
tance, to distinguish between components of spatial
dependence and of spatial autocorrelation, and to check
assumptions of independent residuals, stationarity, and
scale-invariant correlation. The application of the
method is illustrated with a well-known data set of
oribatid mites (Borcard et al. 1992, Borcard and Le-
gendre 1994). A worked example in the Appendix dem-
onstrates the calculations. See the Supplement for an
R library with functions for the spatial partitioning of
ordination results from PCA, RDA, CA, and CCA, in-
cluding a diagnostic plot.

METHODS

Multi-scale ordination with PCA

Let Y be a matrix with elements yia that describe the
observed abundance of each species i ∈ {1, . . . , s} in
each sampling unit a ∈{1, . . . , N} of a spatially ref-
erenced sample of size N, and C the empirical variance–
covariance matrix of Y. Then C can be partitioned into
an empirical variogram matrix (i.e., a series of distance-
dependent matrices C(h), one for each distance class
h [Wagner 2003]). Matrix C is equal to the weighted
sum of the component matrices C(h) of the variogram
matrix, with weights proportional to nh, the number of
pairs of sampling units in each distance class h, where
n 5 Snh 5 N 2:

nhC 5 C(h). (1)O
nh

The sum of the diagonal of C is the total variance
of Y. PCA summarizes the variation in Y by generating
a set of s uncorrelated new variables that are linear
combinations of the old variables. These new variables
(the principal components) form orthogonal axes in the
data space. The eigenvalue lf quantifies how much of
the total variance is represented by PCA axis f. The
eigenvector uf defines the translation between the old
variables and the new variable f.

The geostatistical form of multi-scale ordination uses
the variogram matrix to partition PCA results by dis-
tance (Wagner 2003). A plot of the distance-dependent
variance along PCA axis f reveals the spatial structure
of the multi-species pattern represented by axis f. In
the case of PCA, the same result is obtained by plotting
an empirical variogram of the scores of the sampling
units on axis f.

In geostatistical terms, an empirical variogram
should only be interpreted and a variogram model fitted
to it if the assumption of intrinsic stationarity is met
(see Henley 2001 for a nonmathematical review of sta-
tionarity assumptions). This assumption requires that
the expected value of [yia 2 yi(a 1 h)] be zero for all
vectors h separating any two points in the region of
interest. Unfortunately, no tests of stationarity as-
sumptions are available because the assumption con-
cerns the underlying process and not its realized out-
come, the observed data, and we only have one real-
ization of the data (Myers 1989). However, Henley
(2001) suggests that partial tests for specific compo-
nents of stationarity, such as the absence of trend, might
be constructed successfully.

Spatial definition of correspondence analysis

Correspondence analysis (CA) may be applied to any
set of variables that are measured in the same units and
contain only non-negative values (Legendre and Le-
gendre 1998). Analysis is performed on the residuals
of a model of the independence of species and obser-
vations, such as in a chi-square test of independence
in a two-way contingency table. This relationship with
contingency analysis leads to the fact that an ordination
with CA rotates around a hybrid column–row centroid,
which has sometimes been criticized for lack of eco-
logical meaning. The chi-square distance, which is used
to quantify the relationships among rows and columns,
excludes double zeros so that the method is suitable
for analyzing long gradients with a high degree of spe-
cies turnover. The chi-square distance is appropriate
for modeling symmetric, unimodal species distribu-
tions along an environmental gradient (ter Braak 1985).
However, CA is not necessarily the best method for
analyzing nonlinear relationships, as it has been shown
that species response curves may often be asymmetric
(Oksanen and Minchin 2002). Initially, some algo-
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rithms for CA and related methods provided instable
solutions (Tausch et al. 1995), but this problem has
been solved for all major software packages used in
community analysis (cf., Oksanen and Minchin 1997).
The present description of CA adopts the (stable) ma-
trix definition of Legendre and Legendre (1998).

CA is simply a PCA of transformed abundance val-
ues (see worked example in the Appendix). Instead of
the matrix Y, CA evaluates the matrix Q that describes
the deviance of the observed values from those ex-
pected under the assumption that the species and the
sampling units are independent. The matrix Q contains,
for each species i and sampling unit a, the rescaled
contribution to chi-square, qia (Legendre and Legendre
1998, where Q is referred to as Q̄):

x observed 2 expectediaq 5 5ia Ï f Ï f Ïexpected11 11

f f 2 f f p 2 p pia 11 i1 1a ia i1 1a5 5 (2)
f Ï f f Ïp p11 i1 1a i1 1a

where fi1 is the total frequency of species i, f1a is the
total frequency of all species in sample a, and f11 is
the grand total. The character p denotes a relative fre-
quency, which is the corresponding frequency f divided
by the grand total f11.

CA can be decomposed by distance in a similar way
as PCA. Where PCA performs eigen analysis of the
variance–covariance matrix C, CA performs eigen
analysis of the matrix Q2 5 QTQ, the product of the
transposed matrix QT and Q (Table 1; Legendre and
Legendre 1998).

The sum of the diagonal of Q2 is equal to the sum
of the squared elements of Q, S , and is called the2qia

total inertia. The total inertia plays the same role in
CA as the total variance in PCA. Technically, the inertia
is the sum of squares of the matrix Q, so that it differs
from the total empirical variance of Q by a factor N.
CA returns (s 2 1) axes, as the last eigenvalue, ls, is
always zero.

The matrix Q2 can be re-expressed in terms of the
rescaled chi-square distance between observations. In
Wagner (2003), I defined the basic unit of spatial co-
variance, gij(a, b), for the PCA case as half the product
of the difference between two samples a and b, mea-
sured for two species i and j (Table 1). For the chi-
square case, the basic unit is

N
g (a, b) 5 (q 2 q )(q 2 q ). (3)i j ia ib ja jb2

The following equation defines an empirical chi-
square variogram gi(h) for a species i (i 5 j) or a chi-
square cross variogram gij(h) for two species i and j (i
± j) and distance class h:

N
g (h) 5 (q 2 q )(q 2 q ) (4)Oi j ia ib ja jb2n a,b zh øhh ab

where nh is the number of pairs of observations a and

b in distance class h. Eq. 4 can be used to construct
the distance-dependent matrices Q2(h) of a chi-square
variogram matrix that contains a matrix of type Q2 for
each distance class h.

The spatial definition of the total inertia is

1
2 2q 5 (q 2 q )O O O Oia ia ib2Ni a i a,b

1
5 g (a, b) 5 w g (h) (5)O O O Oi h i2N i a,b i h

where the weight wh 5 nh/n is the proportion of pairs
of observations a and b that falls into distance class h.
The variogram of the total inertia, gQ(h), is

N
g (h) 5 (q 2 q )(q 2 q )O OQ ia ib ja jb2n i a,b zh øhh ab

5 g (h). (6)O i
i

The eigenvalue lf of CA axis f is partitioned by dis-
tance h by multiplying Q2(h) with the eigenvector uf

of axis f:

nhT 2 T 2l 5 u Q u 5 u Q (h)u 5 w l (h). (7)O Of f f f f h fnh h

Contrary to the PCA case, this variance profile of
eigenvalue lf, or chi-square variogram of ordination
axis f, is not equal to a variogram of the site scores on
axis f. This is because the site scores contain a weight-
ing by row totals. As in the PCA case, the geostatistical
interpretation of the empirical variogram matrix Q(h)
depends on the assumption of intrinsic stationarity.

Direct multi-scale ordination with CCA

Problems with nonstationarity are often related to
the influence of some explanatory variable(s) exhib-
iting spatial structure (i.e., they are due to spatial de-
pendence sensu Legendre [1993]). If this trend is re-
moved (e.g., by fitting a regression model), many prob-
lems with spatial autocorrelation can be attenuated.

The heart of direct ordination by CCA is a weighted
multivariate linear regression of the matrix Q on the
centered matrix of explanatory (environmental) vari-
ables, X, with weights proportional to the row totals
of Y (Legendre and Legendre 1998; see worked ex-
ample in the Appendix). The regression decomposes
Q into the matrix of fitted values, Qfit, and the matrix
of residuals, Qres. Two separate ordinations by CA are
performed on Qfit and Qres. The eigenvalues lf of the
two ordinations sum up to the total inertia of Q. The
maximum number of nonzero eigenvalues, that is, the
number of axes, is determined by the number of re-
sponse variables, s, the number of explanatory vari-
ables, m, and the number of observations, N. The num-
ber of canonical axes (or CCA axes) corresponds to
the minimum of (s 2 1), m, and (N 2 1), the number
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of noncanonical axes (or CA axes) to the minimum of
(s 2 1) and (N 2 1) (Legendre and Legendre 1998).

Partial canonical correspondence analysis (pCCA)
can be used to remove the effect of a set of conditioning
variables Z. In a pCCA of Y and X conditioned for Z,
a CCA of Y and X is performed on the residuals of a
CCA of Y and Z. This method has been proposed for
partialling out the spatial component of variation based
on trend surfaces (Borcard et al. 1992, Legendre and
Legendre 1998).

For direct multi-scale ordination, two separate var-
iogram matrices (h) and (h) need to be calculated2 2Q Qfit res

for the fitted values and for the residuals of a regression
of Q on X. Hence, direct multi-scale ordination with
CCA contains the following steps: (1) Perform CCA
on the data. Matrix Q is decomposed into the matrix
of fitted values, Qfit, and the matrix of residuals, Qres.
The matrix UCCA contains the canonical and matrix UCA

the noncanonical eigenvectors. (2) Calculate a vario-
gram matrix (h) from Qfit and multiply it with UCCA

2Qfit

to obtain variance profiles of the canonical eigenvalues
(Eq. 7). (3) Calculate a variogram matrix (h) from2Qres

Qres and multiply it with UCA to obtain variance profiles
of the noncanonical eigenvalues (Eq. 7).

Diagnostic tool

The variance profiles of canonical and noncanonical
eigenvalues, or the chi-square variograms of the or-
dination axes, partition the ordination results by dis-
tance. A plot of the variance profiles against distance
can be used to identify the scales of overlapping and
statistically uncorrelated multi-species patterns repre-
sented by the ordination axes (Wagner 2003).

The variogram of a matrix of type Q can be derived
directly from the squared Euclidean distance between
observations (Eq. 6), thus avoiding the computationally
intensive calculation of a variogram matrix of type
Q2(h). The R library ‘‘mso’’ in the Supplement cal-
culates and plots variograms for different matrices of
type Q as returned by the function ‘‘cca’’ of the ‘‘veg-
an’’ library (information on R is available online).2

Often, it will suffice to characterize the overall spa-
tial structure of the canonical and the noncanonical
portions of variation. Under the assumption that all
relevant factors have been included in the model, the
variogram of the residual inertia Qres describes the total
autocorrelation due to biotic processes, or false gra-
dients, whereas the variogram of the constrained inertia
Qfit contains the spatial dependence due to external fac-
tors, or true gradients. Plotting the variograms of the
total, residual, explained, or conditioned inertia pro-
vides a simple yet powerful diagnostic tool for gradient
analysis. It can be used to check one or more of the
following assumptions related to geostatistical mod-
eling or regression analysis.

2 URL: ^http://www.r-project.org&

Stationarity.—The spatial autocorrelation of a com-
munity, a species, or a group of similar species, may
indicate the spatial scale of internal organization within
the community, but only if the spatial dependence due
to environmental factors is removed (Legendre 1993).
This comes back to the assumption of intrinsic sta-
tionarity as a prerequisite for interpreting an empirical
variogram. While there is no strict test of stationarity
per se, there are some clear contra-indications. If the
variogram of the residual inertia does not (asymptoti-
cally) reach a sill but continues to rise with distance,
there probably is still a spatial trend in the data, which
violates the assumption of (intrinsic) stationarity. In
direct ordination, this may indicate that an important
explanatory factor is missing from the model.

Autocorrelation of residuals.—CCA performs a mul-
tivariate regression analysis. The statistical tests com-
monly performed on regression coefficients are only
valid if the residuals are (spatially) independent. If the
empirical variogram of Qres depends on distance, the
CCA residuals are spatially correlated. This means that
the fitted model of the species–environment relation-
ship should be interpreted with caution because its sta-
tistical significance is unknown.

Scale-dependent correlation structure.—Regression
coefficients are only meaningful if the correlation struc-
ture is scale invariant (i.e., if the species–environment
correlation does not depend on scale). If the PCA axes
of two variables are correlated at any distance, the cor-
relation between the two variables is scale dependent
and the regression model should not be interpreted. The
difference gQ(h) 2 (gQfit(h) 1 gQres(h)) is twice the co-
variance gQcross(h) between Qfit and Qres for distance
class h. Therefore, if the sum of the variograms of Qfit

and of Qres deviates systematically from the variogram
of Q, the overall species–environment correlation de-
pends on scale. The statistical significance of this de-
viation from the null hypothesis of a scale-invariant
correlation structure can be tested by establishing a
point-wise envelope for the variogram of Q (i.e., by
calculating the standard error for the mean of all gQ(a,
b) within each distance class h):

g (h) 6 z SE[g (h)]QQ a

Var[g (a, b z h ø h)]Q ab5 g (h) 6 z (8)Q a ! nh

where za is the critical value of the standard normal
distribution z ; norm(0, 1) for a two-sided test with a
significance level of a. A Bonferroni-type correction
can be applied.

The oribatid mite example

To illustrate the use of the diagnostic tool, I repeated
the analysis by Borcard et al. (1992) of a spatially
referenced data set of oribatid mites (Acari, Oribatei)
on the southern shore of a small bog lake, Lake Geai,
on the territory of the Station de Biologie des Lauren-
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FIG. 2. Spatial partitioning of CA results.
‘‘Total variance’’ refers to the variogram of the
total inertia of Y (matrix Q). Each point of the
variogram represents the sum over all species
of all basic units of spatial covariance (Eq. 3)
averaged over all pairs of observations that fall
into the respective distance class, plotted at the
average geographic distance of the pairs. The
dashed line indicates the global total inertia. A
filled box indicates a significant autocorrelation
of the total inertia for the respective distance
class (Mantel permutation test). The dotted line
corresponds to half the maximum distance be-
tween observations, beyond which the vario-
grams should not be interpreted. The numbers
above the x-axis indicate the number of unique
pairs of observations that fall into each distance
class.

tides of the Université de Montréal. Borcard et al. have
used this data set extensively to illustrate methods for
partialling out the spatial component of ecological var-
iation (Borcard et al. 1992, Borcard and Legendre 1994,
Meot et al. 1998). Readers are referred to these papers
for a complete description of the sampling site and of
the variables, as well as some biological information
about the lake and its oribatid mite community. (The
data set is available online.)3

A total of 70 cores, each 5 cm in diameter and 7 cm
in depth, were extracted from a 10 3 2.6 m plot in the
peat blanket. In the following analyses, I used these
matrices. (1) Matrix Y contained the Napierian loga-
rithm [y 5 ln(yia 1 1)] of the abundances yia of 359ia
species of mites, with a total of 9800 individuals. (2)
The matrix X of environmental variables contained sev-
en dummy variables for substratum (four species of
Sphagnum, ligneous litter, bare peat, interface between
Sphagnum species), three dummy variables for cov-
erage density of the shrub cover (none, a few, many),
two dummy variables for microtopography of the sub-
stratum (blanket and hummock), and two quantitative
variables (density of the substratum in g/L of dry un-
compressed matter, and water content in percent). (3)
Matrix Zxy contained the spatial coordinates zx and zy;
(4) Matrix Z, which defined the cubic trend surface
fitted by Borcard et al. (1992), contained five trans-
formations of the spatial coordinates (zx, zy, zxzy, , and2zy

).3zy

Using the function ‘‘cca’’ of the vegan library in R,
I performed a CA of Y, a CCA of Y and X, and a
partial CCA (pCCA) with Y, X, and Z.

For each matrix of type Q (Xbar in the output of the
‘‘cca’’ function), I calculated an empirical variogram
of the inertia (Eq. 6) with distance classes of 0.75 m

3 URL: ^http://www.fas.umontreal.ca/biol/casgrain/en/labo/
oribates.html&

and breaks at 0.75, 1.5, and so forth. A point-wise
envelope for the variogram of Q was constructed with
za 5 2.9, corresponding to an overall significance level
of a 5 0.05 for 13 two-sided tests.

For CCA and pCCA, a significance test for spatial
autocorrelation of the residual inertia was performed
for each distance class using a Mantel test with 1000
permutations (Legendre and Legendre 1998). In order
to account for the multiple tests for the 13 distance
classes, I set the significance level for the two-sided
test of the Mantel statistic to a 5 0.05/13 5 0.00385.

Calculations, significance tests, and plotting of the
variograms were done with the functions ‘‘mso’’ and
‘‘plot.mso’’ in the R library ‘‘mso’’ in the Supplement,
using the object created by the ‘‘cca’’ function and
matrix Zxy as input. Please note that the functions
‘‘cca’’ and ‘‘rda’’ use X to refer to the matrix of re-
sponse variables (here: Y) and Y to refer to the matrix
of explanatory variables (here: X).

RESULTS

The global results of CCA and pCCA were identical
with those reported by Borcard et al. (1992). Of the
total inertia of 1.164, the environmental variables ex-
plained 44.8% in CCA, but only 13% in pCCA; that
is, after accounting for the cubic trend surface repre-
sented by matrix Z.

Stationarity

The variogram of the original matrix Q (Fig. 2: ‘‘To-
tal variance’’) showed a strong increase of inertia (var-
iance) with distance, indicating the presence of a trend.
This is a violation of the intrinsic stationarity assump-
tion. After accounting for the environmental variables
in X, the variogram of the residual inertia Qres showed
no dependence on distance, except for the smallest dis-
tance class with distances under 0.75 m (Fig. 3: ‘‘Re-
sidual variance’’). Beyond 0.75 m, the residuals of the
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FIG. 3. Spatial partitioning of CCA results.
‘‘CI for total variance’’ is the point-wise en-
velope for the variogram of the total inertia of
Y (matrix Q). ‘‘Residual variance’’ is the var-
iogram of the residual inertia (matrix Qres). ‘‘Ex-
plained plus residual’’ is the sum of ‘‘Explained
variance’’ (variogram of matrix Qfit) and ‘‘Re-
sidual variance.’’ A filled box indicates a sig-
nificant autocorrelation of the residual inertia
for the respective distance class (Mantel per-
mutation test; see Fig. 2 legend).

CCA of Y and X appeared to be spatially independent.
There was no evidence that an important external factor
could be missing from the model.

Spatial independence of regression residuals

The distance dependence of the total inertia (vario-
gram of Q) at larger distances was almost entirely ex-
plained by the environmental variables (Fig. 3); it was
due to spatial dependence rather than spatial autocor-
relation. The residual autocorrelation for the smallest
distance class will cause a slight underestimation of
the error variance. The variance estimate for the first
distance class was 13% below the pooled estimate of
the other distance classes and contributed 5% to the
global estimate. The resulting underestimation of the
error variance by 0.7% will inflate Type 1 errors in the
regression analysis by very little.

Scale-dependent correlation structure

The sum of the variograms of Qfit and Qres (Fig. 3:
‘‘Explained plus residual’’) exceeded the point-wise
envelope of the variogram of the original matrix Q for
the first three distance classes. This suggests that the
species–environment correlation depends on scale and
that a regionalized analysis should be performed. Sim-
ulations showed that the distance at which the curve
intersects with the envelope (;2.5 m in this example)
cannot be interpreted as the scale at which the corre-
lation structure changes.

After accounting for the cubic trend surface defined
by matrix Z, neither the variogram of Qfit nor the var-
iogram of Qres showed any striking distance depen-
dence, although there was evidence of a slight negative
autocorrelation of residuals at a distance around 1.25
m (Fig. 4). The sum of the explained and residual var-
iance did not differ significantly from the variogram of
the original matrix Q. This suggests that the remaining

species–environment correlation is scale invariant and
the regression parameters can be interpreted.

DISCUSSION

This paper shows how correspondence analysis and
canonical correspondence analysis (and redundancy
analysis, by analogy) can be partitioned by distance
(multi-scale ordination) and integrated with geostatis-
tics. The empirical chi-square variogram matrix Q2(h)
is a flexible framework for exploratory spatial analysis.
It contains the empirical chi-square variograms of in-
dividual species (diagonal cells), their pair-wise cross
variograms (off-diagonal cells), as well as the vario-
gram of the total inertia (sum of the diagonal; cf., Wag-
ner 2003). A spatial partitioning lf (h) of each eigen-
value lf can be derived from the variogram matrix by
multiplication with the eigenvector uf. Contrary to the
principal component analysis case, the variance profile
lf (h) of an eigenvalue, or the chi-square variogram of
an ordination axis, is not equal to an ordinary (Eu-
clidean) variogram of the site scores on that axis, be-
cause the site scores contain a weighting by row totals.
Further research is needed to answer the question of
when to use which variogram of a CA or CCA axis.

The variograms of the total, residual, explained, and
conditioned components of inertia, as they result from
CA, CCA, and partial CCA, provide a simple yet pow-
erful tool for characterizing the spatial autocorrelation
and spatial dependence in community data and for
checking important assumptions of geostatistical mod-
eling (stationarity) and regression analysis (indepen-
dence of residuals, scale-invariant correlation struc-
ture). The application to the oribatid mite data illus-
trated how apparent problems with nonstationarity or
autocorrelation of the original community data can be
attenuated by removing the effect of spatial dependence
through direct ordination.
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FIG. 4. Spatial partitioning of pCCA results.
‘‘CI for total variance’’ is the point-wise en-
velope for the variogram of the total inertia of
Y conditioned on Z, ‘‘Explained variance’’ is
the variogram of the inertia of Y constrained by
X after accounting for Z (matrix Qfit), and ‘‘Re-
sidual variance’’ is the variogram of the residual
inertia (matrix Qres). ‘‘Explained plus residual’’
is the sum of ‘‘Explained variance’’ and ‘‘Re-
sidual variance.’’ A filled box indicates a sig-
nificant autocorrelation of the residual inertia
for the respective distance class (Mantel per-
mutation test; see Fig. 2 legend).

In the oribatid mite example, there was an important
inconsistency between the results presented here and
those by Borcard et al. (1992). Borcard found that
12.2% of the total inertia was spatially structured but
could not be explained by the environmental variables.
In the spatial partitioning of CCA results by multi-scale
ordination (MSO), however, spatial autocorrelation ap-
peared to be limited to distances smaller than 0.75 m,
and there was no evidence of any cyclic pattern that
could account for such a large portion of inertia. The
large portion of nonenvironmental spatial structure
identified by Borcard et al. (1992) may partly be due
to a confounding of the effects of space and environ-
ment (Meot et al. 1998).

Multi-scale ordination showed a clear indication of
a scale-dependent correlation structure for the oribatid
mite data. After conditioning on the cubic trend sur-
face, however, the species–environment correlation ap-
peared to be scale invariant. This suggests that Bor-
card’s method may be effective in removing problems
of scale-dependent correlation, although the conditions
under which this is true will need to be specified. A
further question is how to interpret a residual corre-
lation (i.e., what remains and what is lost by partialling
out the spatial variation in both the environmental and
the biotic data).

The spatial information that is summarized in the
empirical chi-square variogram matrix can be used for
answering questions about the organism-specific scale
of response to the environment, the optimal spacing of
sampling units, or the scale-dependent effect of envi-
ronmental factors. The first two questions concern the
residual inertia in Qres, whereas the last question fo-
cuses on Qfit and the underlying regression model.

The rephrasing of RDA and CCA based on regres-
sion (Legendre and Legendre 1998) confronts gradient
analysis with the question of the validity of the fitted

multivariate regression model. This concerns residual
analysis, but also the limitation to a linear regression
model (Makarenkov and Legendre 2002). Even for a
nonspatial analysis, existing software tools that per-
form RDA and CCA should be extended to include a
choice of link functions (which would allow, for in-
stance, logistic or Gaussian regression models) and di-
agnostic plots as customary for an analysis within the
framework of the generalized linear model, GLM. In
addition, the option of a spatial partitioning of regres-
sion or ordination results (MSO) and a diagnostic plot
as presented in this paper would enable ecologists to
evaluate the assumptions of spatial independence of
residuals and a scale-invariant correlation structure and
gain further insights into the data.

One goal of direct MSO may be to remove spatial
dependence, or trend, in order to interpret the residual
spatial pattern in a community as caused by biotic pro-
cesses. This could be done by fitting local (e.g., spher-
ical or exponential models) or periodic (e.g., hole-ef-
fect model) variogram models and combinations there-
of to the residual empirical variogram matrix (see Le-
gendre and Legendre 1998 for an overview of these
models). There is an apparent contradiction of as-
sumptions if one uses regression analysis for trend re-
moval in order to study the spatial autocorrelation of
the residual variance, as regression results are com-
promised by the presence of spatial autocorrelation in
the residuals. The main effect of autocorrelation in the
residuals is that the error variance is underestimated
and the significance tests of the regression coefficients
become too liberal. For an analysis of spatial autocor-
relation, however, one would not be concerned too
much about the significance of the regression coeffi-
cients used to remove trend, as long as one is not going
to interpret the model and its parameters in a statistical
sense. In addition, MSO provides an assessment of the
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underestimation of the error variance. On the other
hand, if the species–environment correlation is scale
dependent and this is not incorporated in the regression
model, the problems may be more severe. Not only will
the parameter estimates be meaningless, but the resid-
uals will contain a nonrandom error component that is
not due to the interactions between organisms but to
their scale-dependent response to the environment.
This may be a more severe threat to the interpretation
of residual autocorrelation than an inflated Type 1 error.

If the main aim is to describe the species–environ-
ment relationship, one might restrict CCA to the larger
distances between observations. This requires identi-
fying a range, or threshold distance, beyond which the
residuals are considered spatially independent. A var-
iogram matrix is then constructed that contains two
matrices, one for distances up to the range and one for
larger distances, and CCA is performed on the second
one. However, the results still need to be checked for
scale dependence in the correlation structure.

True spatial gradient analysis, however, needs to go
further and incorporate both spatial dependence and
spatial autocorrelation into the model. Even more im-
portantly, ordination methods are needed that incor-
porate scale-dependent species–environment correla-
tions. This may be attempted in the framework of fac-
torial kriging analysis, or coregionalization analysis,
where the spatial covariance is modeled as an additive
set of uncorrelated variogram functions defined at char-
acteristic scales. More research on methods, applica-
tions, and software for such a regionalized gradient
analysis is needed.
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APPENDIX

A worked example that demonstrates the calculations is available in ESA’s Electronic Data Archive: Ecological Archives
E085-006-A1.

SUPPLEMENT

An R library ‘‘mso’’ for the spatial partitioning of ordination results from PCA, RDA, CA, and CCA, including a diagnostic
plot, is available in ESA’s Electronic Data Archive: Ecological Archives E085-006-S1.


