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ABSTRACT 33 

Green infrastructures within sprawling cities provide essential ecosystem services, increasingly 34 

undermined by environmental stress. The main objective in this study was to relate the allocation 35 

patterns of NaCl contaminants to injury within foliage of lime trees mechanistically and distinguish 36 

between the effects of salt and other environmental stressors. Using field material representative of 37 

salt contamination levels in the street greenery of Riga, Latvia, the contribution of salt contaminants 38 

to structural and ultrastructural injury was analyzed, combining different microscopy techniques. On 39 

severely salt-polluted and dystrophic soils, the foliage of street lime trees showed foliar 40 

concentrations of Na/Cl up to 13600/16750 mg kg-1 but a still balanced nutrient content. The salt 41 

contaminants were allocated to all leaf blade tissues and accumulated in priority within mesophyll 42 

vacuoles, changing the vacuolar ionic composition at the expense of especially K and Ca. The size of 43 

mesophyll cells and vacuoles was increased as a function of NaCl concentration, suggesting impeded 44 

transpiration stream. In parallel, the cytoplasm showed degenerative changes, suggesting indirect 45 

stress effects. Hence, the lime trees in Riga showed tolerance to the dystrophic environmental 46 

conditions enhanced by salt pollution but their leaf physiology appeared directly impacted by the 47 

accumulation of contaminants within foliage. 48 
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INTRODUCTION 54 

During the winter season, different chemical and abrasive materials are being spread for de-icing road 55 

and sidewalk pavement, with cheap sodium chloride (NaCl) most commonly used (Dobson, 1991, 56 

Cunningham et al., 2008, Fayun et al., 2015, Ordóñez-Barona et al., 2018, Dmuchowski et al., 2019). 57 

Alone, moistened or mixed with sand, the amounts of NaCl reach 19.6 tons per lane km in New York 58 

State (1.1 million tons year-1, Cunningham et al., 2008), more than 200’000 tons in Poland (Marosz, 59 

2011), 16’000-31’500 tons in Edmonton (Equiza et al., 2017), 2 kg m-2 in Denmark (Pedersen et al., 60 

2000) and 4.06 kg m-2 in Riga (Cekstere et al., 2008) annually. Such high amounts cause substantial 61 

environmental contamination by leaching and uptake in the surrounding soil and vegetation during 62 

the subsequent vegetation seasons (Pedersen et al., 2000, Bryson, Barker 2002; Ordóñez-Barona et 63 

al., 2018, Nikolaeva et al., 2019). The contaminants absorbed by roots and translocated to foliage 64 

cause leaf necrosis, crown defoliation, twig dieback and street tree decay (Dobson, 1991, Bryson, 65 

Barker, 2002, Paludan-Müller et al., 2002, Cekstere et al., 2008, Dmuchowski et al., 2014, Milewska-66 

Hendel et al., 2017). In turn, the important ecosystem services provided by street trees, such as cooling 67 

of urban climate, mitigation of air pollution, reduction of street runoff or promotion of biodiversity 68 

can be seriously affected (Moser et al., 2015, Nowak et al., 2017; Bouraoui et al., 2019). 69 

In street greeneries, NaCl contamination affects the whole urban ecosystem. In the soil compartment, 70 

Na accumulation destroys the soil aggregates, thus reducing the soil porosity and promoting puddling 71 

in the case of fine-textured soils (Marschner, Marschner, 2012; Bryson, Barker, 2002). The effects 72 

on soil chemistry include the 1) degradation of soil organic matter, 2) increase in soil pH, 3) 73 

dislodging of cations within absorption complexes, 4) leaching of nitrates as a consequence of 74 

enhanced nitrification rates or 5) enhanced bioavailabilty of metal contaminants in roadside 75 

soils(Cunningham et al., 2008; Dmuchowski et al. 2014; Eimers et al., 2015; Willmert et al., 2018). 76 

Directly or indirectly, the soil salinization can depress the biological processes and alter the microbial 77 
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communities in the rhizosphere (Ke et al., 2013). Tree lines planted on salt-contaminated soils can 78 

suffer under osmotic and ionic stress (Munns, Tester, 2008), similar to ‘physiological drought stress’ 79 

(Dobson, 1991), which can reduce the leaf gas exchanges and growth rates (James et al., 2006, 80 

Munns, Tester, 2008, Cekstere et al., 2015). Within leaf tissues, the accumulation of salt ions can 81 

impair several enzymatic activities, inhibit membrane functions, promote nutrient imbalance, 82 

decrease chlorophyll concentration, and significantly affect essential physiological activities 83 

(Muszynska et al., 2014; Negrão et al., 2017). Molecular responses and tolerance mechanisms have 84 

been extensively investigated and reviewed (Munns, Tester, 2008; Polle, Chen, 2015; Flowers et al., 85 

2015; Munns et al., 2016; Wu et al., 2018). Structurally, various studies, so far not yet 86 

comprehensively reviewed, have reported about cellular responses such as enhanced oxidative stress 87 

(Hernandez et al., 1995; Benzarti et al., 2012) and numerous alterations in cytoplasm and e.g. 88 

chloroplast or mitochondria (Naidoo et al., 2011; Yamane et al., 2012; Ivanova et al., 2016). However, 89 

quantitative evidence relating the levels of NaCl contamination to structural injury is still largely 90 

missing and the mechanisms of NaCl toxicity in foliage thus remain partly elusive (Munns, Tester, 91 

2008). Moreover, most reports illustrating microscopic injury miss microlocalisation evidence, 92 

complicating the distinction between direct and indirect effects by salt contaminants. 93 

Adaptations to elevated salinity show similarities with those in the case of infertile soils (Chapin, 94 

1980). They may have evolved in the framework of exclusion or inclusion strategies, the latter 95 

conferring lower tolerance to chronic salt stress (Chen et al., 2018). Tolerance mechanisms in 96 

includers may encompass vacuolar allocation of contaminants whilst keeping a high K+/Na+ ratio, 97 

allocation to non-photosynthetic tissues, leaf succulence or translocation to older foliage organs 98 

(Ottow et al., 2005; Flowers et al., 2015; Polle, Chen, 2015; Wu et al., 2018). Safe allocation of salt 99 

contaminants is thus crucially important with a view to salt tolerance in salt includers (Polle, Chen, 100 

2015; Munns et al., 2016). Given their high mobility however, the microlocalisation of Na+ and Cl- 101 
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ions within tissues and cells is demanding methodologically (Frey, Zierold, 2003; Wu, Becker, 2012) 102 

and still limited evidence is so far available. The latter has been obtained applying various 103 

microscopical techniques, but control evidence for excluding dislodging artefacts is generally 104 

missing.  105 

After characterizing the extent of soil pollution by salt contaminants (Cekstere, Osvalde, 2013) or the 106 

toxic impact of high salt concentration in foliage (Cekstere et al., 2008), the present study has focused 107 

on mechanistic aspects of chronic salt stress in foliage of urban lime trees (Tilia spp.) in the street 108 

greenery of Riga, Latvia. Its main objectives included to 1) relate the allocation of salt contaminants 109 

within leaf tissues and cell compartments to injury at cell, tissue and whole leaf level, 2) identify the 110 

most characteristic symptoms and cellular responses to salt stress and 3) distinguish direct and 111 

indirect salt stress effects from those by other environmental factors. We had the following working 112 

hypotheses: 1) by changing the nutrient balance in the soil, the de-icing salt contaminants cause 113 

nutrient imbalance within foliage of street trees; 2) the salt contaminants are primarily allocated to 114 

safe storage compartments, including the epidermis at leaf (2a) and vacuole at cell (2b) level; 3) salt 115 

accumulation in leaves causes specific structural changes relating to storage (3a) and toxicity (3b). 116 

Using 8 street sites forming a gradient of foliage contamination representative of the salt pollution in 117 

Riga’s street greenery (Cekstere et al., 2008), we 1) characterized the soil and foliage chemistry, 2) 118 

analyzed the distribution of salt contaminants and main nutrients within foliar tissues and cells and 119 

3) quantified structural and ultrastructural markers of salt stress within assimilating tissues. 120 

 121 

MATERIAL AND METHODS 122 

Study sites and sampling 123 

Riga, Latvia (Fig. 1) is located within the boreo-nemoral climate zone (56.9489° N, 24.1064° E) and 124 

the percentage area of green infrastructures inside of Riga’s historic center amounts to 8% 125 
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(Nikodemus et al., 2003). During winter, most precipitations (123 mm) fall in the form of snow and, 126 

given the 89 days per year with freezing temperatures (Table S1), mostly cheap NaCl salts are 127 

extensively used for deicing the street pavement (Table 1). Soils in Riga’s downtown have evolved 128 

from Baltic Ice Lake sandy deposits and show a primarily sandy texture (>85% sand, 1-12% silt, <5% 129 

clay). Those supporting street lines of trees are weakly structured, compacted, highly heterogeneous 130 

with low to medium proportions of anthropogenic artefacts and they show a low biological activity 131 

with a maximum of 6.5% organic matter in the topsoil (Bouraoui et al., 2019), overall typical for 132 

anthroposoils (IUSS Working Group WRB, 2014). In addition, salt sludge splashing and salt-133 

contaminated snow heap melting at the foot of trees cause salt pollution more than 20 times higher 134 

than away from pavement, especially by the end of winter (Cekstere et al., 2008; Cekstere, Osvalde, 135 

2013). Given the high heterogeneity of latter contamination in the soils of Riga’s downtown, even 136 

within the same street section, peak Na/Cl concentrations in March can thus range between 132-137 

1568/26-745 mg kg-1, decreasing then during the vegetation season and away from pavement. Air 138 

pollution forms another environmental issue in Riga’s downtown, with still increasing levels of 139 

NO2/NO/O3/CO/PM10 (Anonymous, 2014). 140 

For studying salt pollution and its effects in Riga’s street greenery, seven street sites with salt 141 

contamination levels in Tilia x vulgaris’ foliage representative of the full range of Na and Cl 142 

concentrations measured at downtown roadside sites were selected (Cekstere, Osvalde, 2013). Two 143 

sites showed slight (about 900 mg kg-1), two others medium (about 4500 mg kg-1) and the last three 144 

severe (about 9000 mg kg-1) foliar accumulation of salt contaminants (Fig. 1). Additionally, an eighth 145 

site in a National Botanical Garden (NBG) 20 km southeast of Riga was added to the sampling list 146 

(uncontaminated site). The selected street sites were planted with 5 to 20 Tilia x vulgaris trees, 9.4 + 147 

0.2 m high (range: 8.1 – 11.2 m) and around 100-year-old (approximate age range: 90-110; NBG site: 148 

18.7 + 0.4 m high trees, range: 18.0 – 19.1 m, older than 110 years). At each site, three trees with 149 
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similar crown condition were randomly selected. By the end of vegetation season, soil and foliage 150 

material were collected with a view to characterize the 1) nutrient and salt contamination spectrum, 151 

2) foliar allocation of salt contaminants and 3) structural responses in foliage.  152 

For the analysis of soil chemistry, three 0.3 L soil cores were extracted on September 12 2014 from 153 

the topsoil (0-35cm) at 0.5-1.5 m distance from the stem of each selected roadside and NBG tree and 154 

thoroughly mixed prior to transfer to the laboratory. For the chemical and structural assessments in 155 

foliage, one unshaded branch per street or NBG tree, about 50 cm long, with around 60-70 leaves and 156 

located at 3-5 m high in the lower part of crown canopy, was pole-pruned on September 16, 2014. 157 

The average percentage area of necrosis per leaf was estimated visually in the field and the scores 158 

attributed to one out of 6 leaf injury classes (asymptomatic: 0%, starting injury: 1-5%, moderate 159 

injury: 6-15%, intermediate injury: 16-30%, severe injury; 31-50%, very severe injury: 51-100%). 160 

About 50 leaves were gathered for chemical analysis whereas disks 10 mm in diameter were excised 161 

from green tissues next to the leaf rim and apart main central vein in the 2nd or 3rd leaf from branch 162 

apex, with a view to microscopy assessments and given the location of salt injury (Fig. 2). These 163 

samples were immediately fixed using 2.5% EM- or LM-grade glutaraldehyde, buffered at pH 7.0 164 

with 0.067 M Soerensen phosphate buffer. Back to the laboratory, they were fully evacuated prior to 165 

storage in renewed fixing solution at 4 °C, waiting for further processing.  166 

With a view to the microlocalisation of salt contaminants within leaf tissues and cells, the remaining 167 

branch material was stored in a cooler and transferred on the same day to the Centre for Microscopy 168 

and Image Analysis (ZMB) of the University of Zurich, Switzerland. On the following two days, 2 169 

mm disk samples excised at the aforementioned leaf center and rim location (Fig. 2) were fixed by 170 

means of high-pressure freezing (HPF) in liquid nitrogen (LN2) using a LEICA EM HPM 100 (Leica 171 

Microsystems), after 10 min evacuation in 1-Hexadecene 92% and insertion in 3 mm Al sample 172 

carrier (0.2 mm recess). The fixed leaf samples were stored in LN2 until further processing. 173 
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 174 

Assessment of nutrients and salt contaminants in the soil and foliage 175 

The concentration of nutrients and contaminants in the harvested soil and foliage samples was 176 

measured at the Laboratory of Plant Mineral Nutrition in Latvia. In the case of soil samples and for a 177 

majority of elements (N, P, K, Ca, Mg, S, Fe, Mn, Zn, Cu, Mo, B, Na), the air-dried and 2 mm-sieved 178 

soil samples were extracted using 1:5 (v/v) soil:1 M HCl extracting mixtures for 1 hour (Osvalde, 179 

2011). P, S and Mo were separated from other elements by oxidizing 100 ml extracts with hot conc. 180 

HNO3, H2O2 and HClO4 and dissolving the retrieved salts in diluted HCl (Rinkis et al., 1987). The 181 

concentration of Ca, Mg, Fe, Cu Zn and Mn was determined by means of atomic absorption 182 

spectroscopy, using an acetylene-air flame atomizer (Perkin Elmer Aanalyst 700; Rinkis et al., 1987; 183 

Motsara, Roy, 2008). That of P, Mo, N, and B was estimated by colorimetry, using molybdenum blue 184 

in acid-reduced medium (P), thiocyanate in acid-reduced medium (Mo), Nessler’s reagent in alkaline 185 

medium after modified Kjeldal digestion (N), hinalizarine in sulfuric acid medium (B), whereas S 186 

was measured by turbidimetry after adding BaCl2, using a JENWAY 6300 spectrophotometer 187 

(Barloworld Scientific Ltd., Gransmore Green Felstad, Dunmow, Essex, UK). The concentration of 188 

K and Na was measured by flame photometry using a JENWAY PFPJ photometer (Jenway Ltd, 189 

Gransmore Green, Felsted Dunmow, Essex, UK). Estimates of Cl were obtained by AgNO3 titration 190 

after distilled water extraction All analyses were performed in triplicates.  191 

For estimates of mineral nutrients and contaminants in the foliage of lime trees, the harvested leaf 192 

samples were washed in distilled water, dried 24 hours at +60 oC, and ground to powder using a 193 

laboratory mill (IKA, A11 basic, Germany). Nutrients and contaminants were extracted by dry-ashing 194 

the milled samples using concentrated HNO3 vapors and dissolving the mineral fraction in either 3% 195 

HCl (P, K, Ca, Mg, Fe, Mn, Zn, Cu, Mo, B, Na) or distilled water (Cl). In the case of N and S, the 196 

milled samples were wet-digested in either conc. H2SO4 (N; modified Kjeldahl method) or conc. 197 
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HNO3 and HClO4 (S). All elements were analyzed using the same procedures as in the case of soil 198 

samples. 199 

 200 

Allocation of salt contaminants to leaf tissues 201 

The high mobility of salt ions within plant tissues (Mengel, Kirkby, 2001; White, Broadley, 2001; Li 202 

et al., 2017) and lack of fresh material (Rokebul Anower et al., 2017) formed challenging constraints 203 

with regard to salt microlocalisation free of dislodging artefacts. Using a freeze substitution procedure 204 

(Wu, Becker, 2012) and with visualization and mapping of 23Na+ and 35Cl- ions using a Focused Ion 205 

Beam-Secondary Ion Mass Spectrometer (FIB-SIMS) microscope, dislodging of Na and Cl 206 

contaminants from the vacuole to cytosol and cell wall compartments was observed (Fig. S1A, B 207 

versus 4I, J). As a consequence, we sectioned the deeply frozen sample-carrier sandwiches directly, 208 

focusing on the leaf rim samples and using a Leica EM FC6 ultra-cryo-microtome at ScopeM, -150 209 

°C cooling and LN2 flushing. Given the unrecoverable sections and distortion artefacts of stepwise 210 

freeze-dried block sample (Fig. S1C, D versus 6A-C), full cryo-conditions were also required with a 211 

view to visualizing and mapping the salt contaminants and leaf nutrients. Therefore and prior to 212 

observation, the planed samples transferred in LN2 to the UMR Silva-Silvatech Microscopy platform 213 

in Champenoux, France, were coated with 1.5 nm Pt (-120 °C, 2.5E-2 mbar Ar plasma) and the ice 214 

contamination freeze-etched (30 min, -85 °C, 2.7E-6 mbar), using an EM VCT100 vacuum cryo 215 

shutter (LEICA, UK) and an EM ACE600 double sputter coater. The samples were then transferred 216 

to a cryo- Focused Electron Gun Scanning Electron Microscope (cryo-FEGSEM; SIGMA HD VP, 217 

ZEISS, Germany) equipped with a High Definition Back Scattered Electron Detector (HDBSD) and 218 

an Energy Dispersive Spectrometer (X-MaxN EDS – SDD 80mm²; Oxford-Instruments, UK) 219 

interfaced to the SEM by the INCA software (Oxford–Instruments, UK). Element maps and line scans 220 

of salt contaminants and nutrients were obtained at – 160 °C, using magnifications of 1.35 or 4.5 kX 221 
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and 20 keV acceleration voltages (30-35° take off angle, 9 mm work distance, 200 µs dwell time, 30 222 

frames and 1500 s measurement time). The smooth and homogeneous material structure of samples 223 

allowed us the quantification of contaminants and main nutrients within the vacuolar compartment. 224 

At two randomly selected leaf blade transects per sample, point measurements were performed within 225 

the vacuole of one cell per tissue (10 kV HT, 30 s measurement time). The range of electron 226 

penetration in such conditions can be estimated to 2-3 µm (Huang, van Steveninck, 1989). The 227 

spectrometer was calibrated with reference to calcium standardization before micro-analysis. The half 228 

quantitative nutrient mass percent composition (weight %) of vacuolar sap was estimated on the basis 229 

of deconvoluted spectra for each element (INCA-XPP matrix deconvolution). The estimates per 230 

tissue type in the two investigated leaf blade transects were averaged. 231 

 232 

Structural changes at tissue and cell level in foliage 233 

Structural changes within foliar tissues and cells were investigated by means of widefield light (LM) 234 

and transmitted electron microscopy (TEM) at WSL and ZMB in Switzerland. For LM, the leaf 235 

material was dehydrated with 2-methoxyethanol (3 changes), ethanol, n-propanol, n-butanol (Feder 236 

and O’Brien 1968) and embedded in Technovit 7100 (Kulzer HistoTechnik). Semi thin sections (1.5 237 

µm thick) were cut using a Reichert UltraCut S ultramicrotome, stained in 1% acid fuchsine and 238 

0.05% toluidine blue in acetate buffer pH 4.4 (Feder and O’Brien, 1968) and mounted in DPX. The 239 

sections were observed using the 5x-100x objectives of a Leica microscope Leitz DMRB and 240 

photographed using the INFINITY 2-1R camera and Lumenera Infinity Analyze (release 6.4) 241 

software (Lumenera Corp., Ottawa, Canada). Based on the differential diagnosis of salt versus other 242 

types of biotic and abiotic injury (Fink, 1999; Günthardt-Goerg et al., 2007), salt accumulation 243 

markers (cell size and form) were measured in palisade parenchyma. 244 
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For TEM, the leaf samples were post-fixed in buffered 2% OsO4, dehydrated by a series of graded 245 

ethanol, infiltrated by a series of graded propylene oxide/Epon 812 mixture (with DDSA, NMA and 246 

DMP hardener) and embedded in Epon. Ultra-thin sections (70 nm) were cut using the 247 

aforementioned ultramicrotome, mounted on copper grids and stained using saturated uranyl acetate 248 

in 50 % ethanol and lead citrate (Reynolds procedure). Sections were observed using a Philips CM12 249 

transmission electron microscope (TEM) and micrographs taken using the Gatan Microscopy Suite 250 

Software (Gatan Inc., Pleasanton, USA). Selecting a subsample of 5 sites spanning over the whole 251 

contamination range, changes in the frequency, size and shape of cellular structures responsive to salt 252 

accumulation were quantified by stereology (Toth, 1982; Kubínová, 1994), using medially-sectioned 253 

palisade cells, a 0.5 µm grid size and the ImageJ software (https://imagej.nih.gov/ij/).  254 

 255 

Statistical analysis 256 

Differences between site averages of macro- and micronutrient concentrations in the foliage and soil 257 

samples from 8 sampled sites were tested by means of one-way ANOVA - checking data and residuals 258 

distribution normality and homogeneity of variance - followed by Tukey (HSD) post-hoc tests, using 259 

the Statistica 7.0 software (Statsoft Inc., Tulsa Ok). After standardization of Na and Cl data, the causal 260 

role of NaCl accumulation in foliage (fixed-effect factor) regarding the univariate changes in leaf 261 

nutrients and structural parameters was tested by means of linear mixed effects model (LMEM), using 262 

the lme4 package (Bates et al. 2015) of R software, version 3.4.2 (R Core Team 2017). The individual 263 

tree formed the statistical unit whilst the site effect was treated as a random factor. Given their 264 

correlation, separate models for Na and Cl factors were calculated [dependent variable ~ salt 265 

parameter_scaled+(1|Site)]. For each model, the marginal R2 was calculated using the r2glmm 266 

package (Jaeger, 2017) of R. The correlations between structural changes, salt concentration in 267 

foliage and leaf injury were investigated by means of Pearson’s correlations, also using the 268 



      
 

13 
 

aforementioned Statistica software, after variable normalization. Finally, the multivariate responses 269 

of palisade parenchyma cells to salt contamination in foliage was tested by means of redundancy 270 

analysis (RDA), using the vegan package (Oksanen, et al., 2017) of R and main structural size and 271 

shape variables. The dependent matrix included structural data from the aforementioned five sites 272 

subsample used for quantitative TEM, the explanatory variables consisted of foliage concentration of 273 

salt contaminants (Na, Cl), whilst leaf injury and the study site centroids were passively projected in 274 

the hyperspace determined by the RDA axes. 275 

 276 

RESULTS 277 

Salt contamination and mineral nutrition in the soil rooting zone and tree foliage 278 

In 2014 by the end of vegetation season, the root zone soil in Riga’s street lines showed sizable but 279 

very variable salt contamination (Table 1). In comparison to the unpolluted NBG site, the highest 280 

NaCl concentrations in the soil were observed at sites with slight foliage contamination. With 281 

28.69/6.69 times more Na/Cl on average than at NBG, soil pollution thus exceeded that found in the 282 

case of severe (13.45/2.49 times higher than at NGB) and intermediate (4.54/3.21 times higher than 283 

at NGB) foliage contamination. At the end of summer, there was thus little agreement in the salt 284 

contamination levels of soil versus foliage, with no significant correlation between the Na or Cl 285 

concentration of two compartments(results not shown). Irrespective of the NaCl soil pollution, the 286 

nutrient supply for street trees was dystrophic because of imbalances in several mineral elements. All 287 

sites (including NBG) showed low levels of N, with regard to the sufficiency range in the case of 288 

deciduous trees (Table 2). The soil concentration of K, S and B also showed frequent suboptimal 289 

levels. In contrast, that of other elements sometimes exceeded the tree requirements. This was 290 

especially the case of Ca and Mg, which led to high soil pH at sites showing the largest exceedances 291 

(Valdemara, Barona, Gertrudes and Aspazijas). Elevated metal concentrations (Fe, Zn, Cu) appeared 292 
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in priority related to the urban location of study sites. 293 

The sub-optimal site conditions were only partly reflected by the foliar chemistry. Compared to 294 

foliage samples from the unpolluted NBG site, exceedances in the average Na/Cl concentration in 295 

2014 amounted to 10.41/6.24 at the slightly, 52.40/11.39 at the moderately and 93.02/12.19 at the 296 

severely polluted sites (Table 1). However, the foliage versus root zone soil of studied trees showed 297 

less nutrient imbalances on average, noteworthy with regard to N, S and B (soil concentration below 298 

the sufficiency range) or Ca, Mg, Zn or Cu (soil concentrations showing exceedances; Table 3 versus 299 

Table 2). Some elements locally in excess in the root zone soil (Mn) showed, nevertheless, frequent 300 

deficiencies in the foliage, particularly at sites with high soil pH. In the case of K and similar to 301 

observations in the root zone soil, the deficiencies in foliage were frequent, especially at the salt-302 

contaminated sites. In a direct or indirect way, the elevated salt levels in foliage played a driving role 303 

regarding the observed foliar concentrations of several nutrients (Table 4A). The foliar concentration 304 

of Ca thus dropped in response to higher accumulation of Na and Cl in foliage, whilst that of K, Mo 305 

increased with higher Cl – but not Na – contamination (Fig. 3, Table 4A). Foliar salt accumulation 306 

also led to increased Zn levels, whereas the relationship may be rather correlative than causal. 307 

 308 

Allocation of salt contaminants to tissue and cell storage compartments in foliage 309 

Within the 1-2 mm-long leaf rim samples visualized in cryo-microscopy and whatever the sampling 310 

site, at least Cl (NBG) or both salt ions (Riga’s sites) showed a homogeneous distribution in all leaf 311 

blade tissues (Fig. 4A-C). At leaf level, the allocation was similar to that of K but showed differences 312 

with that of e.g. Ca (Ca-oxalate crystals and preferential epidermis location) or Si (cell wall location; 313 

results not shown). The increase in Na and Cl count frequency with higher foliar contamination of 314 

salts formed the main inter-site difference observed during the microanalytical assessments (Fig. 4D-315 

F). At cell level (Fig. 4G-K), Na and Cl were found within vacuolar compartments, thus closely 316 
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matching the allocation of K (Fig. 4I-J vs. K). Salt accumulation caused a change in the ionic 317 

composition of cell vacuoles from all leaf blade tissues within leaf rim segments (Fig. 5). In 318 

mesophyll, the Na/Cl mass fraction at salt contaminated sites reached 3.98/7.29% (palisade 319 

parenchyma) and 3.72/8.04% (spongy parenchyma), thus 4.63 and 12.28 times higher in the case of 320 

Cl than at the NBG site (NBG Na concentrations below the detection limit). In epidermis (E), it 321 

amounted to 3.98/4.30% (upper E) and 3.60/4.97% (lower E), thus 1.21 and 8.42 times more in the 322 

case of Cl than at NBG. The mesophyll in leaf rim samples thus showed higher NaCl accumulation 323 

than epidermis. In parallel with the accumulation of salt, the vacuolar compartments within all tissues 324 

showed a marked decrease of nutrients mass fractions (Fig. 5). Especially that of K in mesophyll and 325 

Ca>K in lower epidermis were lowered. 326 

 327 

Structural responses to salt accumulation in foliage 328 

As indicated by significant correlation with both Na (P<0.001, r=0.79) and Cl (P=0.0007, r=0.67), 329 

the leaves of lime trees from Riga’s street greeneries showed a higher percentage area in the form of 330 

necrotic leaf rims (Fig. 2) with increasing salt accumulation. However, the LMEM models were not 331 

significant (Table 4B). In parts of leaves still asymptomatic, structural changes clearly distinct from 332 

those by biotic injury – noteworthy aphids (Bouraoui et al., 2019) - were observed in the leaf 333 

mesophyll (Fig. 6) and epidermis (Fig. S2). The most striking symptom of salt accumulation was an 334 

increase in the percentage area of vacuome (Fig. 6D-F), with one large vacuole filling most of cell 335 

volume in samples with highest contamination (Fig. 6I, J). Given the ontological progress in 336 

epidermis by the time of sampling and random sectioning of spongy parenchyma cells, this marker 337 

was primarily visible in palisade parenchyma. Other palisade cell structures were increasingly 338 

condensed and degenerated (Fig. 6G-J, L, M). At subcellular level, the vacuoles showed intense 339 

autophagic activity and contained many inclusions as well as multivesicular bodies (Fig. 6I, J, L, M). 340 
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Large plastoglobules, protruding towards and being extruded into the vacuole (Fig. 6L, M), had 341 

developed inside of chloroplasts. In the epidermis, mostly degenerative changes including the a) 342 

higher condensation of nuclear material (Fig. S2B, E), b) increase in size and frequency of 343 

plastoglobules within leucoplasts (Fig. S2F, G) or c) larger autophagic activity and frequency of 344 

multivesicular bodies were observed.  345 

The LMEM models in combination with salt microlocalisation data confirmed the direct or indirect 346 

implication of subcellular accumulations of Na/Cl, with respect to the observed structural changes. 347 

The increase in the vacuole size was linearly related to Na/Cl concentration at leaf level (Fig. 7B, E; 348 

Table 4C) and the vacuolar allocation of contaminants indicated a direct salt accumulation effect (Fig. 349 

4I, J). Given missing salt contaminants in cytoplasm (Fìg. 4I, J), the observed cell size increase with 350 

higher foliar salt concentrations (Fig. 7A, D; Table 4C) should be driven by that of vacuome, which 351 

was also confirmed by 1) the correlation between vacuome and cell size (P=0.03, r=0.57) and 2) 352 

concomitant thinning and degeneration of cytoplasmic strands (Fig. 6F, L, M), as a consequence of 353 

autophagic activity (Fig. 6I, J, L, M). As indicated by non-significant models for the cell circularity 354 

(Table 4C), the cell size increased both periclinally and anticlinally. Missing cytoplasmic 355 

accumulation of salt contaminants, the observed increase in the size of chloroplasts (Cl only) and 356 

plastoglobules (Na only) implied an indirect driving effect of salt contaminants (Fig. 7C, F; Table 357 

4C). Only the models calculated using leaf rim data were significant; regarding those calculated on 358 

the basis of leaf center measurements, the cross-sectional area of palisade cells formed the best 359 

responsive estimate, increasing marginally (P=0.054; Cl) or as a tendency (P=0.088; Na) with rising 360 

salt accumulation in foliage. 361 

Considering the cell responses in the palisade parenchyma from leaf rim samples globally, the salt 362 

contamination matrix (Na and Cl foliar concentrations) in the RDA model explained 78.12 % of 363 

observed variation in the structural markers from descriptor matrix (P=0.001; Fig. 8). However, only 364 
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the first RDA axis (77.49 %) was significant (P=0.001). The two explanatory variables showed 365 

balanced contributions. The vacuole size (VS in Fig. 8) was the structural parameter most strongly 366 

contributing to RDA axis 1. The site centroids showed a distribution along first axis reflecting the 367 

gradient of average salt contamination in foliage. The passively projected macroscopic leaf injury 368 

parameter (Injury), which was significantly correlated with both Na and Cl (P < 0.001 and 0.002), 369 

showed a positive correlation tendency with RDA first axis (P=0.073). 370 

 371 

DISCUSSION 372 

Salt contamination and mineral nutrition in the soil rooting zone and tree foliage 373 

Given sampling by the end of vegetation season, the levels of salt contamination measured in the soil 374 

of Riga’s street sites in September were consistent with the long-term trends and seasonal patterns of 375 

soil pollution (Cekstere, Osvalde, 2013). The eight times-lower pollution levels of Cl versus Na could 376 

relate to chemical mobility and non-reactivity of Cl- anions with soil adsorption complexes, causing 377 

rapid leaching (White, Broadley, 2001). The Na+/Cl- pollution levels were similar to those also 378 

recorded in September at Opole (330/170 mg kg-1, Czerniawska-Kusza et al., 2004) or in Ontario 379 

(Na+: 51-115 mg kg-1, Eimers et al., 2015) but inferior to those reported for the same season in 380 

Warsaw (2392/3599 mg dm-3, Dmuchowski et al., 2014). They were also lower than those measured 381 

in spring in Riga (724/129 mg kg-1, Cekstere, Osvalde, 2013), Toronto (Na+: 450-600 mg kg-1, 382 

Ordóñez-Barona et al., 2018), Moscow (517.5/480 mg kg-1, Nikolaeva et al., 2019) and Northeastern 383 

China (352–513/577–2,353 mg kg-1, Fayun et al., 2015). In this one-year study, the contamination 384 

levels of NaCl in the soil versus lime tree foliage measured in September showed poor agreement, 385 

contrasting with earlier findings in Riga and other cities (Cekstere et al., 2008; Dmuchowski et al., 386 

2014; Ordóñez-Barona et al., 2018). Besides the longer-term NaCl dynamic within tree organs, the 387 

discrepancy between concomitant salt leaching in the soil versus accumulation in foliage during the 388 
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vegetation season may form the main causal factor.  389 

In addition to salt pollution, the soil conditions of street lines of lime trees were dystrophic in several 390 

other instances, with especially an alkaline pH and nutrient levels of N, K, S and B often below and 391 

those of Ca, Mg, Fe Zn, Cu above the sufficiency range. The main causal factors may include 1) the 392 

mostly sandy bedrock (Bouraoui et al., 2019), 2) N leaching and denitrification as frequently observed 393 

in urban conditions (Scharenbroch, Lloyd, 2004) and 3) building debris and materials (e.g., dolomite 394 

chips) from road construction and tree bed surface typical of anthroposoils, enhancing the Ca, Mg 395 

content and promoting alkalization (Jim, 1998; Oleksyn et al., 2007; Cekstere, Osvalde, 2013; 396 

Dmuchowski et al., 2019). The low K concentrations, below those measured in Seville (Ruiz-Cortés 397 

et al., 2005) and Moscow (Nikolaeva et al., 2019), were still higher than those recorded in Poznan 398 

(Oleksyn et al., 2007). The enhancement of Fe, Zn and Cu soil content at street versus NBG sites 399 

reflected the busy urban traffic (Jim, 1998; Dmuchowski et al., 2014, Nikolaeva et al., 2019). 400 

Dystrophy trends can be worsened by salt pollution, with Na+ dislodging e.g. NH4+, K+, Ca2+ or Mg2+ 401 

cations within the soil adsorption complexes (Dobson, 1991, Bryson, Barker, 2002, Eimers et al., 402 

2015). However, the enhanced salt concentrations did not affect the physical structure of Riga’s sandy 403 

soils (Bouraoui et al., 2019). The dystrophic soil conditions in 2014 showed good agreement with 404 

previous surveys (Čekstere, 2011; Cekstere, Osvalde, 2013).  405 

With foliar concentrations of Na+/Cl- up to 13600/16750 mg kg-1, the salt accumulation within Riga’s 406 

lime tree foliage reached values similar to those of major macro-nutrients. Hence a main reason for 407 

the reported salt sensitivity in the Tilia genus (Dobson, 1991; Dmuchowski et al., 2013; Sera, 2017) 408 

appears to be its poorly developed salt exclusion strategies (Munns, Tester, 2008; Chen et al., 2018). 409 

This finding is corroborated by those on other lime tree species (e.g Tilia cordata and T. ‘Euchlora’) 410 

showing NaCl accumulation levels higher than in other salt-sensitive (e.g. Fagus sylvatica or -tolerant 411 

(e.g. Quercus rubra, Gleditsia tria-canthos) ornamentals Paludan-Müller et al., 2002; Dmuchowski 412 
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et al., 2013). Foliar injury threshold (1-5 % necrosis percentage area) ranging between 660-413 

3100/3000-7570 mg kg-1 Na+/Cl-, in good agreement with previous findings (Čekstere, 2011), 414 

indicated higher sensitivity in Riga’s lime trees versus other Tilia genus (Kopinga, van den Burg, 415 

1995) or salt-tolerant species (Dmuchowski et al., 2019). Such intra- and interspecific variation in 416 

salt sensitivity is of interest, with a view to selecting better-tolerant ornamentals for street greeneries. 417 

Despite the strongly dystrophic nutritional conditions and poorly structured soil substrate of Riga’s 418 

street greeneries, the nutrient balance within T. x vulgaris foliage remained astonishingly well 419 

conserved. Even within infertile habitats (Chapin, 1980), the adapted plants generally achieve 420 

sustainable mineral nutrition and the Tilia genus shows a particularly large tolerance with regard to 421 

the soil type and site conditions (Radoglou et al., 2008). The sufficient (Zn) or excessive (Fe, Cu) 422 

foliar concentrations of anthropogenically-enhanced metal content in the soil were in good agreement 423 

with findings in other cities (Baycu et al., 2006; Dmuchowski et al., 2014). Mn deficiency in foliage 424 

despite a sufficient soil supply - similar to other cases of salt pollution (Dmuchowski et al., 2014), 425 

may relate to oxidation to Mn4+ forms hardly available for plants in neutral to slightly alkaline soil 426 

conditions (Marschner, Marschner, 2012). Foliar K deficiency could result from 1) low K content in 427 

sandy soils, 2) dislodging from the soil adsorption complexes by Na+ or 3) seasonal changes (Mengel, 428 

Kirbby, 2001). Hence, the missing negative/even paradoxically positive correlation between K and 429 

Na/Cl concentration, despite the Na+-K+ antagonism observed otherwise at tissue and cell level, may 430 

relate to complex and interfering salt, nutrient and foliage dynamics. In the case of less limited Ca 431 

supply, with opposite accumulation dynamic in foliage as compared to K (Marschner, Marschner, 432 

2012), the negative correlation with both Na and Cl foliar concentrations were consistent with 433 

findings at tissue and cell level. 434 

 435 

Allocation of salt contaminants to tissues and cell storage compartments in foliage 436 
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The artefact-free microlocalization of NaCl contaminants within their vacuolar sinks, 1) similar to 437 

findings in studies also using cryo-microscopy (Dérue et al., 2006; James et al., 2006), 2) consistent 438 

with microscopic injury and 3) in agreement with prevailing opinion (Apse, Blumwald, 2007; Jabeen 439 

et al., 2014; Munns et al., 2016), was conditioned to sample preparation and observation in full cryo-440 

conditions. The high salt accumulation levels, superior in mesophyll than epidermis, suggested NaCl 441 

importation alongside apoplastic (epidermis) as well as symplastic (mesophyll) routes (Meidner, 442 

1975; Leigh, Tomos, 1993; Buckley, 2015). Superior mesophyll versus epidermis allocation has also 443 

been found in Aster tripolium (Perera et al., 1997) but contrasted with findings in cultivars of durum 444 

wheat and barley (Leigh, Tomos, 1993; James et al., 2006). A reverse accumulation pattern was even 445 

observed in barley or halophytic Atriplex spongiosa (Fricke et al., 1996; Storey et al., in McCully et 446 

al., 2010). Massive NaCl allocation to stress-sensitive mesophyll suggested weak salt management at 447 

tissue level, partially explaining the reported salt stress sensitivity of lime trees. The distribution of 448 

contaminants and rate of vacuolar filling, as observed within leaf rim samples next to necrosis, 449 

exemplified situations at the far end of salt accumulation gradients within leaves. The occurrence of 450 

latter gradients was confirmed by the 1) less significant models, relating salt concentrations to 451 

microscopic changes in the leaf center versus rim samples, or 2) thickness of leaf rim necrosis varying 452 

as a function of salt concentration, similar to boron accumulation and injury patterns (Rees et al., 453 

2011).  454 

The Na+ and Cl- contaminants showed a distribution at tissue level and microlocalization within cells 455 

similar to several mobile nutrients but a reverse dynamic. Whilst K is the main inorganic osmoticum 456 

in plant vacuoles, it may increasingly share this role with NaCl in saline conditions or in the case of 457 

a low K+ supply (Kronzucker, Britto, 2011; Ahmad, Maathuis, 2014; Ivanova et al., 2016), probably 458 

because of the similar Na and K physico-chemistry (Benito et al., 2014). Though the Na+, K+ cell 459 

transporters are mostly ion-specific (Apse, Blumwald, 2007; Ahmad, Maathuis, 2014; Benito et al., 460 
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2014), concomitant increase of Na+ and decrease of K+ concentrations, as in the case of Riga’s lime 461 

tree foliage, is usually observed in saline conditions (Munns et al., 2016). Steady K+ concentrations 462 

and higher K+:Na+ ratios in tolerant halophytes (Perera et al., 1997; McCully et al., 2010) let thus 463 

appear the patent mechanistic link between K+ and NaCl dynamic within mesophyll vacuoles as 464 

another characteristic trait of salt sensitivity in lime tree (Dobson, 1991; Cekstere et al., 2008). In 465 

epidermis, especially Ca2+ but also Mg2+ formed the main cationic osmotica whilst K+ played a minor 466 

role, in likely relation to ontological aging (Fricke et al., 1996). Similar to mesophyll, NaCl 467 

accumulation caused a drop in the concentration of inorganic osmotica, similar to observations in 468 

barley (Fricke et al., 1996) and, in this case, in line with chemical measurements at leaf level.  469 

Besides a marked decrease of all detected nutrient mass fractions within vacuoles and replacement 470 

by Na+ and Cl- ions, salt accumulation within mesophyll and epidermis tissues could also change the 471 

osmotic homeostasis. Higher vacuolar osmolarity in foliage of Riga’s polluted versus NBG sites was 472 

suggested by the 1) higher NaCl concentrations at leaf level, 2) higher cumulated mass percentages 473 

of vacuolar ions, 3) salt-driven increase in the vacuole and cell size and 4) increased autophagic 474 

reactions. Leaves show osmotic adjustments as a function of NaCl exposure and osmotic pressure 475 

variation in the nutrient solution (Ottow et al., 2005). More vacuolar osmolytes can reduce osmotic 476 

stress as a consequence of increased salt concentration in the soil solution (Munns et al., 2016; Polle, 477 

Chen, 2015) and thus alleviate physiological drought stress (Dobson, 1991). 478 

 479 

Structural responses to salt accumulation in foliage 480 

Notwithstanding concomitant Mn and K deficiency and likely physiological drought stress, the 481 

visible and microscopic injuries in lime tree foliage from salt-polluted street lines of Riga could be 482 

attributed to the sole effects of salt stress. Visible injury was similar to that reported in lime trees or 483 

other broadleaved species from Warsaw (Dmuchowski et al., 2013), Opole (Czerniawska-Kusza et 484 
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al., 2004), London (Gibbs, Palmer, 1994) or coastal ecosystems under salt stress (Vollenweider, 485 

Günthardt-Goerg, 2005). Symptoms appeared partly similar to those resulting from drought stress or 486 

K deficiency but clearly distinct from Mn deficiency injury (Vollenweider, Günthardt-Goerg, 2005; 487 

Hartmann et al., 2007; Papadakis et al., 2007). However, several microscopic traits (i.e. cell 488 

hypertrophy / normal chloroplastic grana stacks / ubiquitous starch grains) clearly excluded any 489 

significant contribution to injuries by environmental constraints other than salt stress (Fink, 1999; 490 

Vollenweider et al., 2016). Moreover, changes in the foliar concentration of Na/Cl explained 491 

79%/65% of variation in the necrosis percentage area within leaves. 492 

The salt-driven increase in the vacuole/cell size and microscopic injury in cytoplasm were indicative 493 

of sink adjustments and degenerative responses. Larger vacuome and cells form structural hallmarks 494 

of so-called leaf succulence trait within salt-exposed foliage (Ottow et al., 2005; Benzarti et al., 2014; 495 

Polle, Chen, 2015). By contrast with healthy succulent plants however (e.g. Kondo et al., 1998) and 496 

as indicated by LMEM and RDA models, larges vacuoles in lime tree mesophyll did not appear for 497 

ontological reasons but resulted from phenotypic adjustments to increasing salt accumulation. 498 

Moreover, they were associated to a syndrome of typical but unspecific degenerative traits in adjacent 499 

cytoplasm (i.e. cytoplasm and organelle condensation / autophagic activity / plastoglobule size 500 

increase and extrusion into vacuoles). Indeed, most of these injuries are being observed not only in 501 

the case of salt (Hernandez et al., 1995; Naidoo et al., 2011; Yamane et al., 2012; Ivanova et al., 2016) 502 

but also ozone (Vollenweider et al., 2019) or drought stress (Fink, 1999; Vollenweider et al., 2016) 503 

or with ontological senescence (Mikkelsen, Jorgensen, 1996; Inada et al., 1998). Similar to latter 504 

studies, they indicated an acceleration of cell senescence (ACS; Günthardt-Goerg, Vollenweider, 505 

2007). The lack of more specific e.g. swelling of chloroplastic thylakoids (Fink, 1999), as commonly 506 

observed during experimental salt exposure (Hernandez et al., 1995; Guan et al., 2013; Bejaoui et al., 507 
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2016), may relate to the primarily vacuolar allocation of salt contaminants. Acclimated halophytes 508 

from saline environments can also miss this trait (Naidoo et al., 2011). 509 

The drawback of higher vacuolar osmolarity, caused by steady NaCl accumulation, may comprise 510 

impeded leaf conductance, leading in turn to observed ACS in synergy with disturbed hormonal 511 

balance. Mesophyll succulence-like, as a consequence of concomitant NaCl accumulation and 512 

autophagy, may decrease leaf conductance by reducing the circadian variation of cell volume and 513 

water exchanges (Canny, Huang, 2006) driven by evapotranspiration and causing diel changes in the 514 

leaf thickness (Westhoff et al., 2009; Ehrenberger et al., 2012). Within epidermis and together with 515 

K+, NO3
- and malate2-, Cl- is one of the main osmolytes which fluctuations actuate guard cell/vacuome 516 

size variation and stomatal opening (Daloso et al., 2017). Interestingly in some adapted halophytes, 517 

better salt-tolerance appear to be conferred by the lower NaCl and steady K+ concentration to be 518 

found in guard versus epidermal neighbor cells (Perera et al., 1997; McCully et al., 2010). 519 

Furthermore, Cl- > Na+ are abscisic acid inducers, the main hormone regulator of stomatal closure 520 

(Geilfus et al., 2018) and lower stomatal conductance forms an ecophysiological hallmark of salt 521 

stress (Munns, Tester, 2008). Lowered stomatal conductance is consistent with enhanced senescence, 522 

as indicated by the aforementioned ACS responses (Bond, 2000, Munns, Tester, 2008; Daszkowska-523 

Golec, Szarejko, 2013). Farther, it can enhance photoinhibition and photo-oxidative stress, especially 524 

in high light environment as in the outer tree canopy or at many saline habitats (Foyer et al., 1994; 525 

Suzuki et al., 2012). Enhanced oxidative stress is another consequence and hallmark of salt 526 

accumulation in foliage (Hernandez et al., 1995; Benzarti et al., 2014; Polle, Chen, 2015), and its 527 

structural markers (Günthardt-Goerg, Vollenweider, 2007; Moura et al., 2018) show many 528 

similarities with those observed in lime tree foliage. 529 

 530 

CONCLUSIONS 531 
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On dystrophic anthroposoils and in increasingly warming-up and polluted urban environment of e.g. 532 

Riga’s street greeneries, the large environmental tolerance of also culturally important lime tree 533 

ornamentals makes them especially suited with regard to effective ecosystem services direly needed. 534 

The studied Tilia x vulgaris in Riga’s street greeneries remediated essential nutrient deficiencies (N, 535 

S, B) or tolerated them (K, Mn) rather well, similar to the anthropogenically-enhanced metals (Fe, 536 

Cu). Their observed sensitivity to salt contamination appears to relate to 1) poor or missing exclusion 537 

uptake strategies leading to superior foliage concentration than in similarly or more tolerant 538 

ornamentals, 2) missing allocation management, with massive salt accumulation in stress-prone 539 

mesophyll and 3) substitution of K+ by Na+ in vacuoles, at least of mesophyll and possibly guard cell 540 

sinks. These sensitivity traits can provide improvement targets with a view to selecting more tolerant 541 

Tilia species and cultivars. Findings in this study led us to only partially validate our working 542 

hypotheses. Nutrient deficiencies in foliage primarily related to other soil pollution (Mn) or bedrock 543 

(K) issues, with salt pollution playing a lesser role (rejection of Hyp. 1). Within foliage, the allocation 544 

of salt contaminants primarily to mesophyll vacuoles was stress-prone at tissue (rejection of Hyp. 2a) 545 

but safe at cell (validation of Hyp. 2b) level. Structural changes in relation to storage (vacuole and 546 

cell size increase) and toxicity (ACS symptoms) reactions to foliar accumulation of salt contaminants 547 

were characteristic but not specific (partial validation of Hyp. 3). Altogether, they suggested 548 

hindrance of circadian cell size variation and evapotranspiration because of salt osmotic effects, then 549 

indirectly enhancing photoinhibition and photo-oxidative stress and promoting ACS. Direct 550 

interference by salt contamination on the water exchanges between the foliar tissues and atmosphere 551 

form a so far less frequently considered stress mechanism, which contribution to the still partly 552 

elusive NaCl toxicity in tree foliage may be of significant importance. 553 

 554 

SUPPLEMENTARY MATERIAL 555 
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Table S1. Seasonal and annual climate conditions in Riga during the 2010-2016 reference period. 556 

Fig. S1. Element mapping by means of compact FIB-Tof-SIMS performed during the 557 

microlocalisation trials.  558 

Fig. S2. Structural effects of salt contamination in the upper epidermis cells of Tilia x vulgaris foliage. 559 

 560 
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 858 

 859 

Table 1. Na and Cl contamination levels (average ± SE, range) in Tilia x vulgaris’ root zone and foliage from trees in the four severity 860 

classes of foliar contamination 861 

 Contamination level 

Contaminant Unpolluted (NBG) Slight Intermediate Severe 

Nasoil (mg kg-1) 13.30±0.30, 12.75-13.75 373.08±158.28, 27.81-940.80 60.39±10.51, 28.06-89.04 178.87±73.20, 34.86-712.50 

Cl soil (mg kg-1) 6.48±0.36, 6.12-7.21 43.4±16.31, 11.62-115.20 20.78±1.73, 15.84-26.88 16.16±3.16, 9.20-39.90 

Na leaf (mg kg-1) 86.00±7.57, 72-98 895.00±476.89, 118-3100 4506.67±534.41, 2660-6600 8000.00±793.03, 6600-13600 

Clleaf (mg kg-1) 760.00±120.97, 530-940 4743.33±643.31 3000-7570 8655.00±1168.30, 5000-11500 9265.56±1340.18, 3000-16750 

 862 

863 
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Table 2. Macro/micronutrient content and pHKCl of soils in the rooting zone of Tilia x vulgaris trees from the selected street line sites of 864 

Riga’s street greenery (September 16, 2014). The sites are arranged in the Table according to the increasing salt contamination in foliage. 865 

The values (mean + SE, N=3) below (…..) and above (     .) the sufficiency range for deciduous trees are outlined. For elements showing 866 

significantly different values between sites (one-way ANOVA, P < 0.05), the significant contrasts between sites are specified using 867 

different letters (Tukey’s post-hoc test, P < 0.05) 868 

 
NBG Meierovica 2 Valdemara Meierovica 1 Barona Hanzas Gertrudes Aspazijas Sufficiency range* 

N (mg kg-1) 39.8±2.1 c 34.0±1.5 c 9.7±0.2 a 47.9±6.3 c 28.0±2.2 b 39.9±3.7 c 27.2±6.8 b 46.6±4.4 c >60 

P (mg kg-1) 364.1±9.0 b 340.6±25.7 b 279.4±7.1 a 425.6±39.8 bc 204.5±31.6 a 476.4±12.9 bc 429.2±51.6 bc 504.0±44.4 c 200-500 

K (mg kg-1) 172.0±8.2 b 143.8±9.5 b 120.9±10.5 b 173.7±21.7 b 215.4±17.4 c 77.3±0.8 a 159.2±18.7 b 129.0±17.1 b 150-300 

Ca (mg kg-1) 6048±395 a 4679±298 a 22951±358 c 8374±712 ab 35606±2354 d 13081±921 b 25127±799 c 11517±723 b 2400-5000 

Mg (mg kg-1) 2280±281 a 1625±193 a 5612±151 b 2862±371 a 24270±1739 c 3658±73 ab 3585±799 ab 2091±201 a 300-800 

S (mg kg-1) 14.3±0.6 a 11.9±0.4 a 16.1±2.5 a 13.7±0.4 a 18.3±0.6 a 22.0±0.3 ab 30.5±9.2 b 13.3±1.0 a 20-60 

  
 

 
  

 
 

  
Fe (mg kg-1) 712±34 a 1675±110 b 1017±3 a 2467±452 b 3249±606 b 2796±173 b 1299±160 a 3177±502 b 600-2500 

Mn (mg kg-1) 92.0±3.1 a 87.3±13.0 a 84.9±3.0 a 109.8±22.2 a 230.0±16.9 c 162.7±4.4 b 116.8±11.3 a 110.2±31.1 a 30-150 

Zn (mg kg-1) 7.3±0.4 a 20.9±2.3 b 62.9±1.1 c 41.6±7.2 c 221.2±29.8 d 211.1±100.3 d 119.0±23.8 d 199.7±55.3 d 10-60 

Cu (mg kg-1) 2.5±0.0 a 11.6±1.6 b 75.5±5.2 d 60.4±10.4 d 67.5±11.4 d 24.3±1.0 c 23.9±4.1 c 74.2±37.0 cd 2.5-15.0 

Mo (mg kg-1) 0.04±0.00 a 0.06±0.01 ab 0.04±0.01 a 0.08±0.00 b 0.03±0.00 a 0.11±0.01 c 0.06±0.01 ab 0.06±0.00 ab 0.03-0.20 

B (mg kg-1) 0.14±0.03 a 0.22±0.03 a 0.09±0.00 a 0.36±0.07 b 0.25±0.10 a 0.47±0.06 b 0.21±0.07 a 0.49±0.19 b 0.4-1.5 
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pHKCl 6.76±0.02 a 6.77±0.06 a 7.21±0.01 b 6.75±0.06 a 7.16±0.08 b 6.64±0.01 a 7.29±0.08 b 6.86±0.06 a 5.4-6.8 

* According to Nollendorfs (unpublished compilation), Bergmann (1988), Čekstere (2011), Čekstere and Osvalde (2013) and Cekstere et 869 

al. (2016)  870 
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Table 3. Macro and micronutrient content in foliage of Tilia x vulgaris trees from the selected street line sites of Riga’s street greenery 871 

(September 16, 2014). The sites are arranged in the Table according to the increasing salt contamination in foliage. The values (mean + SE, 872 

N=3) below the (…..) and above (     .) the sufficiency range for deciduous trees are outlined. For elements showing significantly different 873 

values between sites (one-way ANOVA, P < 0.05), the significant contrasts between sites are specified using different letters (Tukey’s 874 

post-hoc test, P < 0.05) 875 

 
NBG Meierovica 2 Valdemara Meierovica 1 Barona Hanzas Gertrudes Aspazijas 

 

Sufficiency 

range* 

N (%) 1.91±0.08 a 1.94±0.10 a 2.03±0.05 a 2.04±0.18 a 2.15±0.09 a 1.86±0.06 a 2.15±0.14 a 1.98±0.11 a 
 

1.5-2.8 

P (%) 0.23±0.00 a 0.30±0.00 b 0.22±0.00 a 0.31±0.03 ab 0.30±0.03 b 0.23±0.03 a 0.18±0.01 a 0.25±0.01 ab 0.15-0.40 

K (%) 0.93±0.08 bc 1.33±0.06 c 0.89±0.19 b 0.43±0.05 a 1.18±0.29 cb 0.32±0.01 a 0.66±0.06 b 1.05±0.24 bc 
 

1.0-2.0 

Ca (%) 1.85±0.08 b 2.03±0.08 b 1.55±0.07 a 1.97±0.14 b 1.47±0.13 a 1.55±0.07 a 1.47±0.16 a 1.19±0.09 a 
 

1.0-2.0 

Mg (%) 0.41±0.04 a 0.54±0.04 ab 0.39±0.04 a 0.73±0.10 b 0.38±0.02 a 0.45±0.06 a 0.43±0.07 a 0.33±0.02 a 
 

0.2-0.6 

S (%) 0.14±0.00 a 0.15±0.01 a 0.15±0.01 a 0.14±0.01 a 0.15±0.00 a 0.14±0.01 a 0.12±0.02 a 0.14±0.00 a 
 

0.12-0.35 

           

Fe (mg kg-1) 122.00±9.87 a 493.33±40.55 cd 433.33±46.67 c 366.67±17.64bc   520.00±69.28 d  446.67±40.55 cd 293.33±24.04 b  553.33±26.67 d 
 

80-300 

Mn (mg kg-1) 17.53±2.27 a 27.33±1.76 b 18.27±1.44 a 16.13±0.82 a 22.00±1.15 a 28.67±0.67 b 24.33±6.17 ab 23.33±0.67 a 
 

25-100 

Zn (mg kg-1) 15.73±0.81 a 21.33±0.67 ab 23.33±2.40 ab 20.67±0.67 a 25.33±3.53 b 28.67±1.76 b 26.67±0.67 b 27.33±0.67 b 
 

20-50 

Cu (mg kg-1) 6.20±0.12 a 15.07±1.44 b 44.67±6.67 c 10.20±0.61 b 14.40±1.40 b 12.73±1.22 b 12.27±0.35 b 14.87±0.87 b 
 

6.0-15 

Mo (mg kg-1) 0.37±0.04 a 0.91±0.10 b 0.78±0.06 b 1.67±0.44 c 1.90±0.30 c 1.32±0.27 c 0.60±0.06 ab 1.65±0.23 c 
 

0.2-2.0 
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B (mg kg-1) 23.00±2.89 ab 22.33±1.67 a 24.67±1.76 ab 27.00±1.53 b 25.33±1.20 ab 23.33±2.73 ab 20.33±1.76 a 16.67±0.88 a 
 

20-60 

* According to Nollendorfs (unpublished compilation), Bergmann (1988), Čekstere (2011) and Cekstere et al. (2016) 876 
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Table 4. Main effects of Na and Cl accumulation on plant nutrients (A), leaf injury (B) and cell 877 

structure (C) within foliage of Tilia x vulgaris trees from the street greenery of Riga. Within LMEM 878 

models, the site was treated as a random factor. The significant models for LMEM and Pearson 879 

correlation coefficients (p≤0.05) are outlined using bold characters. The “Estimate” values provide 880 

indication on Na, Cl factor positive or negative effect (n=24 for plant nutrients, leaf injury and LM; 881 

n=15 for TEM). 882 

 883 

Parameter Na, leaves    Cl, leaves     

 Estimate t-value p R2 r  Estimate t-value p R2 r 

 A Plant nutrients  

N -0.008 -0.183 0.859 0.002 0.18  0.008 0.190 0.853 0.002 0.16 

P 0.001 0.025 0.981 <0.001 0.13  0.010 0.881 0.388 0.076 0.20 

K -0.111 -1.087 0.293 0.121 -0.41  0.263 2.991 0.007 0.486 0.21 

Ca -0.183 -2.995 0.011 0.482 -0.62  -0.151 -2.421 0.026 0.374 -0.48 

Mg -0.341 -0.927 0.367 0.092 -0.12  -0.004 -0.127 0.900 0.002 0.01 

S -0.006 -1.805 0.101 0.218 -0.27  -0.001 -0.105 0.918 <0.001 -0.05 

Fe 35.912 1.166 0.256 0.151 0.38  78.397 3.323 0.003 0.542 0.70 

Mn 0.771 0.527 0.607 0.028 0.15  0.548 0.388 0.703 0.014 0.34 

Zn 2.901 3.288 0.009 0.485 0.72  3.382 4.028 <0.001 0.623 0.82 

Cu -0.014 -0.006 0.995 <0.001 0.19  3.820 2.210 0.040 0.308 0.37 

Mo 0.272 1.857 0.081 0.283 0.55  0.319 2.552 0.024 0.370 0.65 

B -1.910 -2.011 0.068 0.277 -0.17  -0.968 -0.988 0.340 0.080 -0.16 

B Leaf 

injury 4.130 1.466 0.159 0.194 0.79  0.593 0.238 0.815 0.005 0.67 

C Cell structure 



      
 

44 
 

 Leaf centre, pP cells, LM  

Area 37.610 1.868 0.088 0.243 0.36  39.686 2.125 0.054 0.270 0.43 

Perimeter 4.900 1.470 0.168 0.171 0.30  4.481 1.383 0.188 0.146 0.29 

Length 2.172 1.402 0.186 0.161 0.30  2.035 1.359 0.195 0.144 0.29 

Width 0.191 0.594 0.558 0.022 0.12  0.205 0.640 0.529 0.025 0.15 

Circularity 0.002 0.150 0.882 0.003 0.05  0.011 0.948 0.356 0.080 0.28 

 
Leaf rim, pP cells, LM 

 

Area 45.821 4.359 0.001 0.622 0.75  40.778 3.629 0.003 0.534 0.69 

Perimeter 6.898 2.415 0.037 0.321 0.48  7.032 2.574 0.025 0.335 0.50 

Length 3.042 2.168 0.054 0.288 0.43  2.818 2.053 0.062 0.254 0.41 

Width 0.706 2.390 0.026 0.263 0.47  0.881 3.224 0.004 0.394 0.57 

Circularity -0.001 -0.124 0.904 0.001 -0.06  0.002 0.201 0.844 0.003 0.01 

 
Leaf rim, TEM 

 

Vac size 5.781 2.504 0.027 0.621 0.78  5.985 2.613 0.026 0.629 0.84 

Chl size 0.234  2.161 0.062 0.514 0.63  0.228 2.783 0.022 0.631 0.70 

Pl density 0.557 0.469 0.659 0.033 0.17  -2.249 -0.217 0.840 0.008 0.01 

Pl size 1.963 3.624 0.005 0.757 0.74  1.219 1.984 0.116 0.419 0.61 

Abbreviations: LM – light microscopy; TEM – transmission electron microscopy; r – Pearson correlation 884 

coefficient; pP – palisade parenchyma; Vac size – percentage area of largest vacuole within pP cells; Chl size 885 

– percentage area of chloroplasts within pP cells; Pl density – plastoglobule frequency per chloroplast; Pl 886 

size – percentage area of plastoglobules within chloroplasts.  887 

  888 

  889 



      
 

45 
 

 890 

Table S1. Average seasonal and yearly climate conditions between 2010 and 2016 in Riga, Latvia. 891 

The weather station was located in the centre of Riga, about 20 m above ground level on a building roof at 892 

the University of Latvia. Source: Latvian Environment, Geology and Meteorology Centre 893 

(state limited liability) 894 

Parameter 

Winter 

(DJF) 

Spring 

(MAM) 

Summer 

(JJA) 

Autumn 

(SON) Annual 

Mean precipitation (mm) 123 127 266 173 690 

Mean temperature (o C) -2.2 7.6 18.5 8.4 8.1 

Mean daily minimum (o C) -5.3 3.2 13.9 5.4 4.3 

Mean daily maximum (o C) -0.1 11.7 22.8 11.2 11.4 

Days with average temperature 

below freezing 59 20 0 10 89 

 895 

  896 
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CAPTIONS 897 

Fig. 1. Location of and level of salt contamination at the study sites. 898 

Fig. 2. Visible injury by salt stress within foliage and at a street site from Riga’s street greenery 899 

(Meierovica 1; September 16, 2014). For microscopy assessments, leaf center (light green) and rim 900 

(teal blue) disks were excised apart the main center vein and next to salt-triggered necrosis, within 901 

still green foliar tissues.   902 

Fig. 3. Principal changes in the concentration of macro- and micronutrients, as a function of Na and 903 

Cl accumulation within foliage of trees at the study sites. The data points represent site averages (+ 904 

SE). Statistics refer to linear mixed effects models (LMEM). Solid lines and shaded areas indicate 905 

significant (P≤0.05) linear regressions and 95% confidence intervals. 906 

Fig. 4. Tissue-(A-C) and cell-level (H-K) allocation of salt contaminants (Na, Cl) and some macro-907 

nutrients (K, Ca) within leaf rim samples of Tilia x vulgaris leaves from moderately (B Meierovica 908 

1) and strongly (C, H-K Aspazijas) contaminated versus control site (A NBG) in the street greenery 909 

of Riga. D-G Element spectra obtained for the element maps (D for A, E for B, F for C, G for H-K). 910 

The salt contaminants were found within all leaf blade tissues. At cell level, they primarily 911 

accumulated within vacuoles (v) and were missed within cell walls (cw). Other structures: uE – upper 912 

epidermis, pP – palisade parenchyma, sP – spongy parenchyma, lE – lower epidermis. The whitish 913 

globular structures represent ice contamination. Average foliar concentrations of Na/Cl: 914 

86±8/760±121 mg kg-1 (NBG, A, D), 4020±739/7333±1746 mg kg-1 (Meierovica 1, B, E), 915 

9733±1964/13917±2022 mg kg-1 (Aspazijas, C, F-H). Technical specifications: High pressure frozen 916 

leaf samples planed by cryo-ultramicrotomy and examined using a cryo-FEG-SEM in high-vacuum 917 

cryo-mode (– 160 °C) at acceleration voltage of 20 kV, magnification of 1350x (A-F) and 4500x (G-918 

K), 9 mm working distance, HDBSD detectors for imaging and X-ray Energy Spectrometer for micro-919 

analysis; element spectra and maps obtained by scanning during 1500 s (200 µs dwell time); 920 
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measurements cumulated over 30 frames and mapped at 512 x 384 ppi resolution (each point in 921 

elementary map representing the total number of counts for the element during mapping); element 922 

maps overlaid on HDBSD images; scale of spectra: 71517 cps.  923 

Fig. 5. Nutrient content (mass percentages) of vacuolar medium within leaf rim samples of Tilia x 924 

vulgaris leaves from salt contaminated sites (average foliar concentrations of Na/Cl at Meierovica 1, 925 

Gertrudes, Aspazijas: 4020±739/7333±1746, 7067±677/7083±682, 9733±1964/13917±2022 mg kg-926 

1. The values represent averages per tissue (+ SE) of measurements performed along two transect 927 

through the leaf blade, in one leaf sample per site (N = 3). The insert graph shows the vacuolar nutrient 928 

content at the asymptomatic NBG site (average foliar concentrations of Na/Cl: 86±8/760±121 mg kg-929 

1). Abbreviations: uE – upper epidermis, pP – palisade parenchyma, sP – spongy parenchyma, lE – 930 

lower epidermis. Technical specifications: High-pressure-frozen leaf samples planed by cryo-931 

ultramicrotomy and examined using a cryo-FEG-SEM in cryo-mode at acceleration voltage of 10 kV 932 

and magnification of 2200x (260 pA of current, 9.5 mm working distance). Collection of EDS spectra 933 

by each measurement point during 30 s. Half-quantitative nutrient mass percent composition (weight 934 

%) of vacuolar sap estimated on the basis of deconvoluted spectrum of each element (XPP 935 

deconvolution).  936 

Fig. 6. Structural effects of salt contamination in symptomatic leaves of Tilia x vulgaris from 937 

moderately (B, E, H, L) and strongly (C, F, I, J, M) contaminated sites in the street greenery of Riga. 938 

Asymptomatic leaves from NBG (A, D, G, K). Samples from the leaf center (A-F) and leaf rim region 939 

(G-M). In pP cells of symptomatic leaves, salt contamination caused an increase in the cell size driven 940 

by that of vacuome, with one large vacuole containing many vesicular inclusions (* in H-J) filling 941 

most of cell volume finally (v; E, F, H-J). The cytoplasm showed degenerative changes (# in M) and 942 

an increase of autophagic vesicles (av). The chloroplasts (ch; L, M) were also degenerated, with 943 

larger plastoglobules (pl; E, F, L, M) protruding and being expelled (&) into the vacuole. Other 944 
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structures: lE: lower epidermis, m: mitochondria, mvb: multivesicular body, n: nucleus, pP: palisade 945 

parenchyma, sP: spongy parenchyma, st: starch, ta: tannin body, uE: upper epidermis. Average foliar 946 

concentrations of Na/Cl: 86±8/760±121 mg kg-1 (A, D, G, K), 4020±739/7333±1746 mg kg-1 (B, E, 947 

H, L), 9733±1964/13917±2022 mg kg-1 (C, F, I, J, M). Technical specifications: A-F: 1.5 µm semi-948 

thin cuttings stained with toluidine blue and acid fuchsine and observed in diascopic light microscopy; 949 

G-M: 75 nm ultra-thin sections stained with uranyl acetate and lead citrate, and observed in TEM.  950 

Fig. 7. Structural responses within palisade cells of leaf rim samples, as a function of Na and Cl 951 

accumulation within foliage of trees at the study sites. The data points represent site averages (+ SE). 952 

Statistics refer to linear mixed effects models (LMEM). Solid lines and shaded areas indicate 953 

significant (P≤0.05) linear regressions and 95% confidence intervals. Abbreviations: pP: palisade 954 

parenchyma, Pl size: percentage area of plastoglobules within chloroplasts. Vacuole size: percentage 955 

area of largest vacuole within pP cells. 956 

Fig. 8. Multivariate structural responses to salt contamination in palisade parenchyma of leaf rim 957 

samples - RDA models. Correlation biplot based on a redundancy analysis of the structural data 958 

measured in mesophyll, showing the relationship between markers of salt injury (response variables, 959 

black arrows) and salt concentration in foliage (Na, Cl explanatory variables; blue arrows). The leaf 960 

injury (i.e. percentage area of leaf showing necrosis, light blue arrow) was passively projected, as a 961 

supplementary variable. Altogether, the first and second canonical axis explained 78.12% of total 962 

variance in the mesophyll structure dataset, whilst only the first axis was significant (P < 0.001). The 963 

color of each tree score shows the average Na-contamination within lime tree foliage at the five 964 

sampling sites (■ 86 + 7 mg kg-1, ■ 895 + 477 mg kg-1, ■ 4507 + 534 mg kg-1, ■ 8000 + 793 mg kg-965 

1; N = 3 trees per site), with each site centroid indicated by a cross and label. Abbreviations for the 966 

descriptor variables: ChS chloroplast size, CS cell size, circ Cell circularity, PlD plastoglobule 967 

density, PlS plastoglobule size, VS vacuome size.  968 
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 969 

Fig. 1. 970 
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Fig. 2.  974 
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Fig. 3.    978 
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Fig. 4.  980 
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Fig. 5.     982 
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Fig. 6. 984 
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Fig. 7.   986 
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Fig. 8. 989 
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