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Abstract. Assessing species establishment risk is an important task used for informing
biosecurity activities aimed at preventing biological invasions. Propagule pressure is a major
contributor to the probability of invading species establishment; however, direct assessment of
numbers of individuals arriving is virtually never possible. Inspections conducted at borders by
biosecurity officials record counts of species (or higher-level taxa) intercepted during inspec-
tions, which can be used as proxies for arrival rates. Such data may therefore be useful for pre-
dicting species establishments, though some species may establish despite never being
intercepted. We present a stochastic process-based model of the arrival–interception–establish-
ment process to predict species establishment risk from interception count data. The model
can be used to estimate the probability of establishment, both for species that were intercepted
and species that had no interceptions during a given observation period. We fit the stochastic
model to data on two insect families, Cerambycidae and Aphididae, that were intercepted and/
or established in the United States or New Zealand. We also explore the effects of variation in
model parameters and the inclusion of an Allee effect in the establishment probability.
Although interception data sets contain much noise due to variation in inspection policy, inter-
ception effort and among-species differences in detectability, our study shows that it is possible
to use such data for predicting establishments and distinguishing differences in establishment
risk profile between taxonomic groups. Our model provides a method for predicting the num-
ber of species that have breached border biosecurity, including both species detected during
inspections but also “unseen arrivals” that have never been intercepted, but have not yet estab-
lished a viable population. These estimates could inform prioritization of different taxonomic
groups, pathways or identification effort in biosecurity programs.

Key words: Aphididae; biosecurity; Cerambycidae; interception; species establishment; stochastic
process.

INTRODUCTION

Many nonnative species cause significant detrimental
economic and ecological impacts (Simberloff et al.
2013). Given current levels of global trade and travel, it
is unrealistic to prevent all invasions, but biosecurity
measures can reduce rates at which species arrive and
establish (Magarey et al. 2009, Leung et al. 2014). Risk
assessments are an important component of such pro-
grams and are carried out to prioritize which species,
pathways, or aspects of the invasion process to target

(Hayes 2003, Andersen et al. 2004, Evans 2010). Invasive
species risk assessment can also facilitate early detection
and eradication by guiding surveillance programs to tar-
get exotic species that have high probabilities of estab-
lishment. Thus, enhanced tools are needed to predict the
relative establishment risk among large groups of poten-
tially damaging species, such as insects.
Invasive species (or group of species) risk assessments

can be complex, taking into account different stages of
invasions (e.g., arrival, establishment, and spread) and
often rely on elicitation of expert knowledge (reviewed in
Leung et al. 2012). At the level of entire groups of spe-
cies, expert elicitation may be of limited value, particu-
larly if the biology is diverse within a group of species, or
unknown. Alternatively, quantitative models enable a
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consistent and repeatable framework that can be applied
over many species, particularly when assumptions and
uncertainty in the assessment are explicitly acknowl-
edged. Predictors of establishment risk include propag-
ule pressure (Brockerhoff et al. 2014), species traits
(Fournier et al. 2019), climate and niche matching (Phil-
lips et al. 2018), previous establishment of related species
(Seebens et al. 2018), association with trade volumes
(Tingley et al. 2018), and the co-occurrence of species in
other regions (Worner et al. 2013). Here, we focus on
propagule pressure, for example, the rate of arrival
events at a country’s border. Propagule pressure has
been shown to be a strong predictor of invasion success
(Lockwood et al. 2005, Simberloff 2009) but is difficult
to directly quantify except for intentional introductions,
for which records of introduction effort often exist.
Species interceptions by biosecurity officials during

inspections at borders (e.g., ports) can be considered a
sample of arrival events. Inspection of imports at ports of
entry is a critical component of biosecurity programs.
Historically, the value of inspection has in part been
attributed to the interception of individuals before they
enter a new environment and establish. However, in prac-
tice, the proportion of individuals that are intercepted at
ports is typically very low, and thus, direct beneficial
effects may be minimal (Ministry of Agriculture and For-
estry 2003, Work et al. 2005, Whyte 2006, Liebhold et al.
2012). There are several purposes for border inspections:
inspections (1) provide information about risks associated
with individual pests or groups of pests that informs other
biosecurity actions, (2) provide information about risks
associated with specific commodities and this also
informs biosecurity activities, (3) monitor the effectiveness
of phytosanitary treatments, (4) incentivize exporters to
reduce invasion risk in exports, and (5) directly identify
infested shipments so that they can be excluded (Epan-
chin-Niell 2017). Here, we focus on the benefit that
inspection data provide in documenting the presence of
species in pathways and, potentially, prediction of future
establishments (Brockerhoff et al. 2014).
Individuals from a range of species arrive in a country at

different rates. Once arrived, a small proportion are inter-
cepted at the border and hence eliminated. Most individu-
als that penetrate the border die without establishing a
population, while a small remainder survive and establish
self-sustaining populations. Some species will establish
without ever being intercepted as interceptions represent
only a small sample of arriving individuals, or they are
intercepted but not identified and consequently not
recorded with their actual identity. For example, larvae of
many insect species are not readily identifiable using mor-
phological characteristics. A realistic model would predict
a non-zero (negligible to low) risk of establishment for
non-intercepted species, with the expected value dependent
on the taxonomic group. To assess the relative risk of dif-
ferent species establishing in a region, previous models
have been fitted to limited groups of species to minimize
the effect of variability among higher-level taxa on model

uncertainty (e.g., Brockerhoff et al. 2006, Brockerhoff et al.
2014, Phillips et al. 2018). This approach assumes that the
species in these groups have only small variation in proba-
bilities of interception and in probabilities of establishment
for a non-intercepted arrival event relative to the variation
in arrival rates. An arrival event in interception data may
represent one or more individuals, since the exact number
is typically not recorded.
In reality, numerous factors affect probability of inter-

ception and probability of establishment per arrival
(Duncan et al. 2014, Saccaggi et al. 2016). The probabil-
ity of interception can vary temporally due to changes in
inspection effort relative to the volume of trade and pas-
senger traffic and the level of phytosanitary measures on
imports. See Saccaggi et al. (2016) for a review of border
biosecurity systems, including how policy and opera-
tional constraints can affect how interception data are
collected. Probability of interception can also vary
among species due to factors such as arrival pathway,
and biological characteristics that influence detection or
identification rates. The probability of establishment
from an individual arrival event will vary among species
due to factors such as climate and niche suitability,
reproductive strategies, behavioral traits, and Allee
effects (Leung et al. 2012).
Several attempts to predict arthropod establishments

based on interceptions have been hampered by low or
variable interception probabilities, as well as by variation
in per arrival establishment probability among species.
For example, the majority of unintentionally introduced
insect species in Austria, Switzerland, the Czech Republic,
and Australia were never intercepted prior to their known
establishment (Roques and Auger-Rozenberg 2006, Caley
et al. 2015). The European and Mediterranean Plant Pro-
tection Organization (EPPO) has implemented a targeted
recording approach that focuses on a predefined list of
species. Such an approach limits the reporting of intercep-
tions prior to establishment, thus biasing the estimate of
propagule pressure and hence the predictive ability of any
interception-based model (Roques and Auger-Rozenberg
2006, Eschen et al. 2015). Similarly, Caley et al. (2015)
observed a poor association between interception and
establishment across the most common insect orders in
Australia, although those species with a higher intercep-
tion rate were more likely to establish. Caley et al. (2015)
attributed low taxonomic resolution of identified species
as a contributing factor to low interception probabilities.
In addition, only establishments occurring over the same
20-yr period as the interceptions were included in the
analysis, whereas establishments are typically detected
after a lag period of several years to several decades. In
contrast, some studies on particular insect groups
(Coleoptera and Formicidae) have shown significant posi-
tive relationships between interceptions and establish-
ments (Brockerhoff et al., 2006, 2014, Haack, 2006,
Bertelsmeier et al., 2018). This may be partly due to most
of these studies combining interception and establishment
data across long time periods and in some cases from
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multiple countries. This increases the interception proba-
bility overall, as well as the likelihood that a species has
established somewhere, which potentially averages out the
biases of individual country data sets. Accounting for
sources of variability in interception and establishment
probabilities can improve model fit. For example, Bacon
et al. (2014) found a positive relationship between inter-
ceptions and establishment rates when they incorporated
additional climate matching, host availability and trade
volume data, contrary to other studies that did not
account for niche or climate suitability (Roques and
Auger-Rozenberg 2006, Eschen et al. 2015).
Several models have been developed that use propag-

ule pressure, in some form, to predict establishment risk
and may account for some of the variation in intercep-
tion probability or per arrival event establishment proba-
bility. In the simplest case, interception probability is
assumed to be one (i.e., all arrivals are recorded), and
per arrival establishment probability is assumed to be
constant (Leung et al. 2004). More complex models have
been suggested to account for variation in per arrival
establishment probability due to environmental hetero-
geneity, demographic stochasticity and Allee effects
(summarized in Duncan et al. 2014). Brockerhoff et al.
(2014) used a SIMEX-based method to account for
interception measurement error and included a model
term to account for an Allee effect. In addition, they
included the effect of “rare” non-intercepted species with
establishment probabilities based on trends in the inter-
cepted species to estimate the number of unseen species.
In this paper, we introduce a stochastic model to pre-

dict establishment risk for an individual species within a
taxonomic group conditional on its interception fre-
quency. Our model explicitly includes terms for both
interception and establishment probability, which allows
exploration of both these sources of variability. As with
previous models, this stochastic model can be applied to
a group of exotic species arriving in one location, or a
single species arriving in multiple locations. Initially, all
sources of variability among species are ignored apart
from their rates of arrival at the border, which are unob-
served variables in the model. The rationale behind this
simplification is that insect species belonging to the same
family tend to share many life-history traits that cause
them to be associated with a common pathway and to
have similar tendencies to successfully establish. We sub-
sequently explore the effects of incorporating variation
in species’ interception and per arrival establishment
probabilities and an Allee effect. We apply the model to
data for two families of insects (Cerambycidae and
Aphididae) and two counties (New Zealand and the
United States) as case studies to show how the model
can be fitted to existing interception and establishment
data and make predictions about biosecurity effective-
ness for different taxonomic groups. Our model furthers
the understanding of the relationship between intercep-
tion and establishment probabilities, which adds to our
ability to predict invasions. We can use the model to

estimate the number of “unseen arrivals” (i.e., species in
a given family that have arrived but have neither been
intercepted nor established), which was not an intrinsic
feature of previous models.

METHODS

Stochastic arrival–interception–establishment model

This model describes the arrival events, interception
events and establishment events for a set of taxonomically
related species, in a given country, over a period of time T
(a glossary of key model terms and notation is provided
in Box 1). Upon arrival, individuals of a species may be
intercepted; but if not intercepted, they may go on to
establish (Fig. 1A). The only directly observable variables
in the model are the number of interceptions, and whether
establishment of a species has been detected. Non-inter-
cepted arrivals are, by definition, not observed. Establish-
ments are typically only observed with a significant time
lag because considerable time is typically required before
a newly established species is discovered (Crooks 2005).
Hence, the main aim of the model is to predict the proba-
bility of establishment from the number of observed inter-
ceptions of a given species.

Box 1

Model term

Unseen
arrivals

Species in a given family that have arrived
but have neither been intercepted nor
established

Arrival event a propagule as defined in Simberloff (2009),
in other words, an arrival of one or more
individuals of a species at the same time
and location

T time period over which interception data are
collected

kj arrival rate of species j, (average number of
arrival events per unit time)

NA number of arrival events of species j over
time T

NI number of intercepted arrival events of
species j over time T

pI probability of an arrival event being
intercepted

pE the per arrival event probability of
establishment, i.e., the conditional
probability of establishment given a non-
intercepted arrival event

NE number of arrival events of species j that
established over time T

PTE or p(n) probability of species j establishing over
time, given n interception events

PEX probability of species j establishing over
time T, given at least one arrival event, but
no interceptions
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Arrival events of species j are assumed to occur as a
Poisson process with fixed rate kj per unit time. Across
the set of species under consideration, the arrival event
rates are assumed to be independently and identically
distributed according to some distribution with proba-
bility density function f(k). Candidate arrival rate distri-
butions include uniform and power law distributions.
Using a uniform arrival distribution allows for some
useful simplified results and given a paucity of data is a
reasonable initial assumption. A power law distribution
is an example of a heavy tailed distribution, which repre-
sents a set of species where the majority have very low
arrival rates, but there is a long tail of species with very
high arrival rates. This property is seen in many commu-
nities of species and in actual interception data (Magur-
ran 2013, Liebhold et al. 2017).
The number of arrival events NA of species j during a

time period T is a Poisson random variable

NA �PoissonðkiTÞ:

Note that this specifies the distribution of NA for a
species with a given arrival rate kj. Because each species
has its own value of kj, drawn from the arrival rate dis-
tribution, the distribution of arrival frequencies over an
ensemble of species will not be Poisson and is likely to
be zero-inflated and right-skewed. Each arrival has
probability pI of being intercepted so the number of
interceptions, NI, of species j during the time period T is
a binomial random variable

NI �BinomialðNA; pIÞ:

Each non-intercepted arrival has probability pE of
founding an established population. Hence, the number

of establishments NE for species j is also a binomial ran-
dom variable

NE �BinomialðNA �NI; pEÞ:

Initially, we assume for simplicity that the per arri-
val interception and establishment probabilities, pI and
pE respectively, are the same for all species in the
group and do not change over time. This ignores
potential sources of variation among species, such as
the strength of Allee effects, and changes in inspection
protocols over time as these are not well quantified
across a broad range of species and time periods. We
investigate the effects of relaxing some of these
assumptions in Model Extensions. The model also
assumes that data on interceptions and establishments
are available for the same time period T. In practice,
this is unlikely, and the consequences of this assump-
tion and practical solutions are discussed in
Appendix S1 and Table 1.
The probability PTE that at least one arrival event for

species j establishes during the time period T is
PTE ¼ p NE [ 0ð Þ ¼ 1� 1� pEð ÞNA�NI . We define a ran-
dom variable

SE �Bernoulli PTEð Þ

where SE = 1 if the species established and SE = 0 if it
did not. We use p(n) to denote P(SE = 1|NI = n), the
probability of species establishment given there were n
interceptions during the time period T. Conditioning on
the species arrival rate k and the number of arrivals NA,
and using Bayes’ theorem (see Appendix S2 for details),
we can write p(n) as

FIG. 1. Schematic diagrams of the stochastic arrival–interception–establishment model. (A) Time series showing arrivals events
(solid dots), interceptions (open dots), and establishments (open dots) of three different species (blue, red, and black). The intercep-
tion and establishments may occur sometime after the initial arrival event. During the observation window shown, the blue species
has five arrivals, none of which establish, three are intercepted, and two are neither intercepted nor established. (B) Venn diagram
showing the five mutually exclusive outcomes for species in a defined set (black box) during a given observation period: (1) did not
arrive, (2) arrived but neither intercepted nor established, (3) arrived and intercepted but not established, (4) arrived and established
but not intercepted, (5) arrived, intercepted, and established. The probability of establishment p(0) for a species that has not been
intercepted is the number of species in area (4) divided by the number of species in areas (1), (2), and (4). The probability of estab-
lishment PEX for a species that has arrived but not been intercepted is the number of species in area (4) divided by the number of
species areas (2) and (4). [Color figure can be viewed at wileyonlinelibrary.com]
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p nð Þ ¼ P SE ¼ 1 andNI ¼ nð Þ
P NI ¼ nð Þ

¼ f kð Þkne�pIkT 1� e�pE 1�pIð ÞkT� �
dk

f kð Þkne�pIkTdk
:

(1)

Eq. 1 requires the estimated distribution of arrivals
rates (estimated from the data, illustrated in this paper
with the power law, or as a very simplified case, the uni-
form distribution), the probability of interception (hy-
pothesized, but to which the sensitivity of the results can
be investigated), and a per arrival probability of estab-
lishment (which we estimated from the data using maxi-
mum likelihood).
It is possible for a species to establish without having

been intercepted. Hence, establishment risk can be pre-
dicted for species with zero interceptions by calculating p
(0). This probability of establishment includes in its
denominator all species in the chosen taxonomic group,
including those that have not arrived during the observa-
tion period (i.e., species with very low arrival rates that
may not arrive during the observation window currently
being modeled, see Fig. 1A, B). If the arrival rate distri-
bution is right-skewed, then there will be many species in
this category. In some circumstances, decision makers
may only be interested in those species that are likely to

have arrived. A more relevant prediction in this case is
the probability of establishment for species that have
arrived at least once during the observation window, but
have not been intercepted, PEX = P(SE = 1|NI = 0 and
NA > 0). Following a similar procedure to that used
above gives

PEX ¼ PðSE ¼ 1 andNI ¼ 0 andNA [ 0Þ
PðNI ¼ 0 andNA [ 0Þ

¼ f kð Þe�pIkT 1� e�pE 1�pIð ÞkT� �
dk

f kð Þ e�pIkT � e�kTð Þdk :

(2)

In the special case where the arrival rate distribution is
uniform, meaning all arrival rates are equally likely,
Eqs. 1, 2 can be simplified to give

p nð Þ ¼ 1� pI
pI þ pE 1� pIð Þ

� �nþ1

(3)

PEX ¼ pE
pI þ pE 1� pIð Þ : (4)

Data and model fitting

We used data from border interceptions and establish-
ments in the United States and New Zealand for

TABLE 1. Model assumptions and their consequences.

Assumption Implementation Reason Consequence

Establishments occurring
over the earlier time period
would have established
again during the
interception data time
period.

All establishment data are
used.

There is a lag between when an
establishment occurs and
when it is reported, which can
be on the order of decades.
This means that the data for
the most recent couple of
decades will underestimate the
number of established species.
Insects that established during
the earlier decades due to
arriving on trade routes would
likely establish again, but “new
establishments” of already
widespread populations are
not likely to be detected or
recorded.

Establishment probability per
arrival will be overestimated,
and hence is overestimated.
An alternative assumption
would be to assume that the
arrivals during the
interception timeframe would
have been arriving at the same
rate over the earlier time
frame, but this would lead to
the same consequence in terms
of the ratio of establishment
probability per arrival and
interception probability per
arrival.

All arrival rates are equally
likely (under the uniform
arrival rate model).

Eqs. 1 and 2 can be
simplified to Eqs. 3 and 4.

This simplification leads to
equations that are much
simpler to fit. This is useful for
a quick evaluation of the
relationship between
probability of establishment
and number of interceptions.

The probability of low arrival
rates is likely underestimated.
This leads to an
overestimation of p(0).

There is no variation
between species in a
taxonomic group in their
per arrival interception
probability or their per
arrival establishment
probability.

The per arrival interception
probability and per arrival
establishment probability
are modeled as constant
within a taxonomic group.

This is a simplifying
assumption as we do not have
the data to fit additional
variables. However, there is
likely to be less variation
among species in the same
taxonomic group, compared
to among distantly related
species.

See Fig. 5.
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Cerambycidae and Aphididae insect families
(Appendix S1, Data S1, and Data S2) to estimate model
parameters. We fitted the Aphididae and Cerambycidae
data sets with the stochastic model using two alternative
arrival rate distributions, but no additional sources of
variability. The additional sources of variability are
explored later on in the model extensions section. For
comparison, two phenomenological models were also
fitted to the data sets.
The three key parameters of the stochastic model are

the mean arrival rate E(k), the interception probability
pI and the per arrival probability of establishment pE.
These three parameters cannot be uniquely identified
from data. For example, a group of species with mean
arrival rate E(k) = 1 and pI = pE = 0.01 will on average
result in practically the same observations as a group
with an E(k) = 10 and pI = pE = 0.001. Therefore, it is
not sensible to attempt to use data to estimate these
model parameters individually. However, provided the
interception probability is small (i.e., pI < 1, which is a
realistic assumption, the model is insensitive to changes
in the value of pI and pE provided E(k)pI and E(k)pE are
fixed. We therefore started by fixing a value for the prob-
ability of interception pI; the sensitivity of this choice is
tested later.
We compared two candidates for the arrival rate dis-

tribution, a uniform distribution and a power law distri-
bution. For the uniform distribution, no fitting was
required because the distribution has no parameters.
This is equivalent to assuming that all arrival rates k ≥ 0
are a priori equally likely. The uniform distribution is
not normalizable over the non-negative real numbers,
but this does not affect model output because the nor-
malization constant appears in both the numerator and
denominator of Eq. 1. We used Eqs. 3 and 4, respec-
tively, to give the probability of species establishment
and the probability of establishment of a species that has
arrived but not been intercepted.
The power law distribution has probability density

function

f ðkÞ ¼ Ck�l; kmin � k

where kmin is the minimum arrival rate, and C is a nor-
malization constant. For observed interception counts n
and a given value of the interception probability pI, we
used estimated arrival rates k = n/(pIT) to fit the expo-
nent µ via a standard maximum likelihood equa-
tion (Newman 2005). We set the minimum arrival rate to
be kmin = 0.01/(pIT), which corresponds to a species that
is intercepted on average once during a time period 100
times longer than the observation period T.
Once the arrival rate distribution was specified, we

estimated the value of the per arrival establishment
probability pE by fitting the model prediction for the
probability of species establishment, p(n), in Eqs. 1 or 3
(for the power law model and the uniform model, respec-
tively) to data using maximum likelihood estimation.

The likelihood of observing a data set x, consisting of
interception counts nj and establishment SEj ε {0,1},
given a per arrival establishment probability pE is given by

ln L xjpEð Þð Þ ¼
X
SEj¼1

lnðpðnjÞÞ þ
X
SEj¼0

lnð1� pðnjÞÞ: (5)

The value of pE that maximizes the likelihood was
found using the fminbnd function in Matlab (The Math-
Works, Inc., Natick, MA, USA). The approximate 95%
confidence interval (CI) for pE was also calculated as the
range of values of pE for which ln(L(x|pE)) ≥ max(ln(L
(x|pE)) � 2 (Hudson 1971).
Species with zero interceptions that did not establish

during the observation period (SE = 0 and NI = 0) are,
by definition, not in the data set. Hence, the species with
zero interceptions that are in the data set have an appar-
ent probability of establishing equal to one. A naive fit-
ting procedure would therefore have resulted in
attempting to make p(0) = 1. To avoid this, we excluded
species with zero interceptions that did establish (SE = 1
and NI = 0) from the data. However, we use this infor-
mation in combination with model results to make infer-
ences about the likely number of unseen arrivals of each
insect family in each country (see Discussion).
The first of the phenomenological models fitted was

the basic arrival–establishment model of Leung et al.
(2004), which only accounts for demographic stochastic-
ity. When applied to actual arrival data, this model is
process based, but when applied to interception data
without adaptation, it becomes phenomenological.
Unlike our stochastic arrival–interception–establishment
model, this model assumes that the number of arrivals
of a species with n interceptions is deterministically
equal to n/pI. Under this assumption, it can be shown
that the probability p(n) of a species with n interceptions
having established is

p nð Þ ¼ 1� rn

where r ¼ 1� pEð Þ
1
pI
�1

� �
: This model is a special case of

the Weibull model used in Leung et al. (2004) and
Brockerhoff et al. (2014) with the shape parameter set to
c = 1. Hereafter, we refer to this as the exponential
model. The maximum likelihood estimate and 95% CI
for the parameter r was found for each data set via
Eq. 5. For any chosen value of pI, the value of pE can be
calculated from r for comparison with the stochastic
model.
Finally, a logistic regression model for the probability

of species establishment was also fitted as a common sta-
tistical model for analyzing binary response data. Mat-
lab code for fitting the four models to the data is
supplied in Data S3.
In order compare how well the models fit the data, we

provide the values of the Akaike information criterion
(AIC) for each model. For the purposes of calculating
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AIC, the number of fitted parameters for the stochastic
model was 1 (pE) and for the exponential model was 1
(r). Although the stochastic model with power law arri-
val rate distribution has one additional parameter (the
power law exponent l), this was fixed using the intercep-
tion count data and the likelihood in Eq. 5 was maxi-
mized over only one parameter (pE).

RESULTS

We fitted the stochastic arrival–interception–establish-
ment model using each of the two candidate arrival rate
distributions and three different assumed values for the
probability of interception pI to the United States and

New Zealand Cerambycidae and Aphididae data sets.
For each model, we report the maximum likelihood esti-
mate and 95% CI for the per arrival probability of estab-
lishment pE, the predicted probability of establishment p
(0) for species with no interceptions, and the predicted
probability of establishment PEX for species that have
arrived at least once but have not been intercepted
(Table 2). Note that the CIs account for variability in
arrival, interception and establishment frequencies asso-
ciated with the stochastic model, but do not allow for
other sources of uncertainty, such as measurement
errors, lag in establishment detection, Allee effects, or
variations in parameters between species or over time.
The stochastic model is compared with two alternative
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FIG. 2. The models calibrated to available data on species interceptions and establishments. (A) Cerambycidae arrivals in the
United States; (B) Cerambycidae arrivals in New Zealand; (C) Aphididae arrivals in the United States; (D) Aphididae arrivals in
New Zealand. Each graph shows the predicted species establishment probability as a function of the number of interceptions, under
various models (see legend). Parameter values: probability of interception (pI) = 0.01; fitted value for probability of establishment
(pE) as shown in Table 2. Probability of establishment was calculated from the data in logarithmic bins (black crosses). [Color figure
can be viewed at wileyonlinelibrary.com]
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models: the exponential model and a logistic regression
model.
Fitted values for the per arrival establishment proba-

bility pE are strongly correlated with the assumed value
for the interception probability pI. This is because, as
explained above, interception count data of the type
used here are insufficient to identify these two parame-
ters independently. Fitted values for pE under the
stochastic model with a uniform arrival rate distribution
are similar to those under the exponential model with
the same assumed value for pI. Under the power law
arrival rate distribution, fitted values for pE are higher.
For Cerambycidae in the USA and New Zealand, the

exponential model and the stochastic model with uni-
form arrival rate distribution provide an almost equally
good fit (difference in AIC < 2). The stochastic model
with power law arrival rate distribution fits slightly less
well (difference in AIC < 4). For Aphididae in the Uni-
ted States and New Zealand, the logistic regression is the
best-fitting model (lowest AIC), followed by the stochas-
tic model with uniform arrival rate distribution. Fig. 2
shows the species establishment probability as a function
of the number of interceptions for each data set. The
shape of these graphs, except for species with very low
(<2) interception counts, is not sensitive to the choice of
value for pI or of arrival rate distribution. The stochastic
models predict non-zero values for the species establish-
ment probability, even for species with zero interceptions

(vertical axes intercepts in Fig. 2, and p(0) in Table 2).
This contrasts with the exponential model, which
assumes that the number of arrivals is directly propor-
tional to the number of interceptions, and therefore that
species with no interceptions cannot have established.
The stochastic model with power law arrival rate distri-
bution predicts that the probability p(0) of a species
establishing without interception is between 0.00008 and
0.00039 for Cerambycidae and between 0.01 and 0.05
for Aphididae. The predicted value of p(0) and the AIC
for the stochastic models are insensitive to the choice of
interception probability pI provided it is less than
approximately 0.1.
The stochastic model predictions for the probability of

establishment PEX for species that have arrived but not
been intercepted can be used to estimate the number of
unseen arrivals. As an accurate value of the interception
probability is rarely available, these results are best used
as relative estimates. Figs. 3 and 4 show PEX as a func-
tion of the probability of interception pI and the per arri-
val probability of establishment pE assuming a uniform
arrival rate distribution, calculated via Eq. 4, or a power
law distribution, calculated via Eq. 2, respectively.
Superimposed on Fig. 3 are curves showing the pre-
dicted value of PEX for the four data sets, as a function
of the assumed value for pI. For Cerambycidae, PEX is
consistently small (≤0.01) both for the United States and
New Zealand, implying that, for every species that has
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FIG. 3. Estimating the number of unseen arrivals using a uniform arrival rate distribution. Probability of establishment PEX
(represented by the color bar) for species that have arrived at least once but not been intercepted during the observation period,
assuming a uniform arrival rate distribution (Eq. 4). If PEX is small, then for every species that has established without being inter-
cepted, there are many more species that have breached border biosecurity but not yet established. Superimposed curves show the
predicted values of PEX for the Cerambycidae data (white) and Aphididae data (red) in the United States (solid) and New Zealand
(dashed), as a function of the assumed value for the probability of interception pI and assuming a uniform arrival rate distribution.
[Color figure can be viewed at wileyonlinelibrary.com]
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established without being intercepted, there are at least
100 unseen species that have arrived. For Aphididae in
the United States, assuming pI is less than approximately
0.2 and assuming a uniform arrival rate, PEX � 0.15,
meaning that for every species that established without
interception, there are about six unseen arrivals. For
New Zealand, PEX � 0.25 meaning that for every spe-
cies that established without interception, there are
about three unseen arrivals. If pI > 0.2, the predicted val-
ues of PEX are higher, meaning the number of unseen
Aphididae species, which have arrived would be lower
than the above estimates.

Stochastic model extensions

The stochastic model can be extended to include vari-
ation among species or an Allee effect. We model varia-
tion among species by drawing the probabilities of
interception pI and establishment pE for each species

independently from beta distributions with shape
parameter a = 0.5. The scale parameter b is chosen to
keep the mean of each distribution the same as the fitted
value shown in Table 2.
We model an Allee effect by making the per arrival

establishment probability pE dependent on the recent
arrivals of conspecifics. Specifically, the probability of
establishment for a single non-intercepted arrival at time
t is either zero if there were no other non-intercepted
arrivals between time t � a and time t, or pE if there was
at least one non-intercepted arrival between time t � a
and time t. The parameter a is a constant specifying the
strength of the Allee effect: the smaller a is, the stronger
the Allee effect and the lower the probability of estab-
lishment, especially for species with low arrival rates.
Fig. 5 shows the model with variation among species

or with an Allee effect, for fixed values of pI and pE, in
the case of a power law arrival rate distribution. Overall,
variation among species tends to decrease the
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FIG. 4. Estimating the number of unseen arrivals using a power law arrival rate distribution. Probability of establishment PEX
(represented by the color bar) for species that have arrived at least once but not been intercepted during the observation period,
assuming a power law arrival rate distribution (Eq. 2). If PEX is small, then for every species that has established without being
intercepted, there are many more species that have breached border biosecurity but not yet established. Superimposed curves show
the predicted values of PEX for the Cerambycidae data (white, A and B) and Aphididae data (red, C and D) in the United States
(solid, A and C) and New Zealand (dashed, B and D), as a function of the assumed value for the probability of interception pI and
assuming a power law arrival rate distribution. [Color figure can be viewed at wileyonlinelibrary.com]
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probability of species establishment for a given intercep-
tion count. This weakens the overall relationship
between interception frequency and risk of establish-
ment, even if there is only variance in one of the two
parameters. Including an Allee effect in the model
decreases the probability of species establishment for a
given value of the per arrival establishment probability
pE. This means that if an Allee effect is present but not
accounted for, pE will be underestimated.

DISCUSSION

Model comparisons

We have developed a process-based, stochastic model
of the arrival, interception and establishment of exotic
species. This is treated as a three-stage process based on
the probabilities of (1) arrival at the border; (2) intercep-
tion by inspectors; and (3) establishment of a viable

population. This approach explicitly acknowledges
uncertainty arising because interceptions represent only
a small sample of all the actual arrival events. The model
outputs the probability of species establishment as a
function of the number of recorded interceptions.
We have fitted the model to data on interception

counts and establishments from the United States and
New Zealand for species in two insect families, Ceram-
bycidae and Aphididae. The stochastic model’s good-
ness-of-fit to the data is comparable to the exponential
model. This model is equivalent to the Weibull (c = 1)
non-Allee model of Leung et al (2004) and infers similar
values for the per arrival probability of establishment.
This contrasts with the logistic regression model, which
lacks the ability to interpret parameters in this way. Our
stochastic model offers two key advantages over the
exponential model. Firstly, the model is process-based in
its construction meaning that model parameters corre-
spond to probabilities of certain classes of events
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FIG. 5. Including variance in the model parameters or an Allee effect decreases the risk of establishment. The effect of including
parameter variation and an Allee effect in the power law arrival rate model for the parameters values predicted by (A, B) the Cer-
ambycidae data and (C< D) the Aphididae data. Parameter values: mean interception probability pI ¼ 0:01; mean per arrival estab-
lishment probability pE is set to the fitted value of pE shown in Table 2; a = 0.01 yr (weak Allee effect), a = 0.001 yr (strong Allee
effect). [Color figure can be viewed at wileyonlinelibrary.com]
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occurring, which are in principle measurable, allowing
for future development. Secondly, because of its process-
based construction, the model can provide predictions
for the probability of species establishing without having
been detected or intercepted at the border. This con-
trasts with the exponential model, which assumes that
the number of arrivals is a deterministic multiple of the
number of interceptions, and hence, species with no
interceptions have zero probability of establishment. Our
model framework is therefore better aligned with actual
interception-establishment data, which contain frequent
instances of species establishing without having been
detected at the border. Model adjustments in Brocker-
hoff et al. (2014) improved the Weibull (Allee inclusive)
model to account for the problem of predicting zero
establishments from zero detections. In that case, num-
bers of non-intercepted species were added using
assumptions based on frequency abundance models
along with a very small frequency of “interception.”
However, our model is the first time that probability of
establishment for non-intercepted species has been
incorporated into a model of the arrival–interception–
establishment process from first principles. In particular,
for the assumption of uniformly distributed arrival rates,
this results in a very simple but effective model for quali-
tative comparisons.
We used the model to explore the effect of the inter-

ception probability and per arrival establishment proba-
bility on the relationship between interception counts
and species establishment risk. The ratio of these proba-
bilities is the main determinant of the shape of the rela-
tionship. We tested two different species arrival rate
distributions: a uniform distribution and a power law
distribution. Direct data on species arrival rates are
rarely available and, in particular, the left-hand tail of
the arrival rate distribution is difficult to estimate
because the majority of species arrive very rarely (Lieb-
hold et al. 2017). Better data on species arrival rates will
improve the quantitative accuracy of model predictions
of establishment risk for a given interception count but
are unlikely to qualitatively change model behavior. This
means that either of the arrival rate distributions can be
used to assess the broad scale relative differences
between taxonomic groups.
While the uniform arrival rate distribution has the

advantage of a simpler fitting process, the distribution of
arrival rates is likely to be right skewed (Liebhold et al.
2017). Many known distributions of species abundances
are right skewed (Magurran 2013), and the power law
distribution fits the interception data better than the uni-
form distribution. This means that the uniform arrival
rate model will overestimate PEX and hence underesti-
mate the number of unseen arrivals. An alternative
option would be to fit the model in a Bayesian frame-
work using simulations and allowing further exploration
of the uncertainty in the model, and we leave this open
for future investigation. Although a Bayesian approach
would have the benefit of simultaneously fitting the

arrival rate distribution and the stochastic arrival–inter-
ception–establishment model, it would be a more com-
putationally expensive method and would not provide
any further analytical insight into the relationship
between interception frequency and probability of estab-
lishment.

Taxonomic group comparisons: Cerambycidae and
Aphididae

The model results (Fig. 2) show that, for Cerambyci-
dae, the establishment likelihood is very low (classified
as 0.001–0.05) for species with small interception counts,
and moderate (classified as 0.3–0.7) for species with high
interception counts (using the likelihood level descrip-
tors as in Australian Department of Agriculture 2014).
The low establishment likelihood for low interception
rates may be explained by Cerambycidae having a small
per arrival establishment probability relative to intercep-
tion probability. These low establishment probabilities
may be caused by Allee effects (Taylor and Hastings
2005, Liebhold and Tobin 2008), or variability in estab-
lishment probability among species (Fig. 4). Establish-
ment probabilities may have been higher if we had used
worldwide establishment status instead of the single
country establishment status, as analyzed in Brockerhoff
et al. (2014). For Aphididae, there is a moderate estab-
lishment likelihood for species with low interception
counts, and a high likelihood (classified as 0.7–1.0) for
species with high interception counts. This could be
explained by a lower ratio of interception probability to
per arrival establishment probability compared to the
Cerambycidae. The interception data analyzed here span
a shorter time period than that over which establishment
data were collected, contributing to the low interception
probability. On the other hand, the more likely primary
reason is that Aphididae tend to have highly efficient
reproductive strategies (i.e., many are parthenogenic),
which contributes to high per arrival establishment
probabilities (Teulon and Stufkens 2002). Using the
model to predict establishment likelihood of Aphididae
species based on interceptions would result in low sensi-
tivity (there would be many species that establish with-
out ever being intercepted), but many of the most
frequently intercepted would establish.
For Cerambycidae, the model predicts a very low

probability of species establishing without interception.
However, for Aphididae, the model predicts a probabil-
ity of establishing without interception over the relevant
observed time period (71 yr in the United States and
18 yr in NZ) of 14% in the United States and 21% in
New Zealand, assuming a uniform arrival rate distribu-
tion. If, however, we assume that the arrival rate distri-
bution is right-skewed and use the power law model,
then the p(0) estimates are much lower. For either model,
these estimates are reasonably robust to varying the
assumed value for the interception probability, but the
interpretation is influenced by the difference in the
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timeframes for the interception data and establishment
data. The corresponding PEX predictions can be used to
estimate the number of “unseen arrivals,” i.e., species
that have breached border biosecurity without being
intercepted but have not yet established. However, these
predictions do depend on the choice of model and the
assumed value of pI (Figs. 3 and 4). The uniform model
tends to give higher PEX predictions compared to the
power law model, but the power law model may be a
more reasonable description of the arrival rate distribu-
tion. For Cerambycidae, the stochastic model consis-
tently predicts that PEX is small (<0.01) although the
exact value depends on the interception probability. This
implies that, for every species that established without
being intercepted, there were hundreds or even thou-
sands of species that arrived unseen, although most of
these species would have arrived very rarely. There were
five non-intercepted established species in the United
States (Data S1). The power law model, with an inter-
ception probability of 0.01, predicts that PEX = 0.00019,
and therefore, an estimated 26,000 unseen species
arrived in the United States, which is higher than the
estimate given in Brockerhoff et al. (2014).
For Aphididae, the uniform model, assuming an

interception probability <0.1, predicts that there were
four to eight unseen arrivals in the United States for
every species that established without interception,
and two to seven in New Zealand. However, these
estimates are sensitive to model assumptions: for
example, if the probability of interception is lower or
if the arrival rate distribution is heavily right skewed,
the predicted number of unseen arrivals would be
higher. Note that while the predicted number of Cer-
ambycidae or Aphididae unseen arrivals depends
strongly on the combination of model assumptions,
the qualitative trend of a higher ratio of the number
of unseen arrivals per non-intercepted established
species for Cerambycidae compared to Aphididae
remains consistent.

Model limitations

Modeling requires assumptions to be made, and the
consequence of those assumptions may be more or less
significant depending on the context in which model pre-
dictions are used. Many of the assumptions made in this
paper do not affect the probability of establishment rela-
tive to other species, which makes the simple-to-use uni-
form arrival rate model suitable for comparing
taxonomic groups. However, as noted, several of the
assumptions result in an overestimation of p(0) and PEX,
including using a uniform arrival rate distribution
instead of a right-skewed distribution and assuming the
establishment timeframe is the same as the (often
shorter) interception timeframe (Table 1). In addition,
arrival rates are likely to change through time, increasing
with trade volume, or decreasing with effective phy-
tosanitary measures. Trying to fit one source of variation

while ignoring all others, in the absence of further data
or controls, may lead to erroneous conclusions.
The model fit to the data could be influenced by varia-

tion in interception probability or by variation in per
arrival event establishment probability among species, or
by variation in Allee effects among species. Unfortu-
nately, there is insufficient data to reliably fit all these
effects. This is illustrated in the fitting of the Allee-inclu-
sive Weibull model in Brockerhoff et al. (2014). Prior to
correcting for measurement error using the SIMEX
method, the Allee parameter (c) absorbs all sources of
variation resulting in a fitted value, which is not biologi-
cally reasonable. Applying the SIMEX correction shifts
the fitted Allee parameter to a more reasonable value.
However, variation in per arrival establishment probabil-
ity, which can influence the Allee parameter fit (Duncan
et al. 2014), is still not explicitly accounted for. The
SIMEX method accounts for some of the variation in
interception probability but requires an estimate of the
error in the interception data. In Brockerhoff et al.
(2014), this estimate comes from the variation between
the United States and New Zealand data sets. However,
this method will miss variation where the two countries
have similar biases, for example, similar pest priorities or
biological characteristics that make some insects easier
to detect than others. Using border interception data
also fails to capture the arrival frequencies for species
arriving on non-human assisted pathways, such as natu-
ral dispersion across land borders into the United States,
and wind-assisted dispersion from Australia into New
Zealand (Close et al. 1978).

Future development and applications

Although useful for qualitative predictions, the data
available to us for this study were inadequate for detailed
modeling and making quantitative predictions with a
high level of certainty. Our stochastic model’s predictive
ability could be improved by including additional infor-
mation in the model to account for sources of variation
in interception probability and individual per arrival
establishment probability. Additional information could
include comprehensive slippage surveys to assess the
effectiveness of current border surveillance (Whyte 2006)
and climate suitability as assessed by environmental dis-
tance metrics (Phillips et al. 2018). Ideally, variation in
interception probability would be controlled and moni-
tored by statistically designed border surveillance pro-
grams such as those discussed in Saccaggi et al. (2016).
Some information already exists about the relationship
between numbers of shipments inspected and the proba-
bility of pest interception (Work et al. 2005), but system-
atically collected estimates for the probability
interception per arrival and its variation across all path-
ways for specific taxonomic groups would enable addi-
tional model refinement. Furthermore, increasing the
intensity or efficiency of inspection could be used to
increase the probability of interception, and our model
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predicts that this would provide greater power in differ-
entiating species with low vs. high probability of estab-
lishment. We acknowledge that increasing interception
probability per arrival may be difficult given the vast
quantity of arriving imports, but an attractive alternative
may be to increase support for diagnostics (pest identifi-
cation) so that more detections can be identified to spe-
cies level. If it is not practical to apply a consistent
statistical sampling methodology over long time periods
(e.g., decades), then well-documented changes in
methodology, and changes in estimates for key parame-
ters, would be useful. Ultimately, models that account
for costs associated with various intensities of inspection
and compare these with benefits of invasion forecasts
could be used to identify optimal intensities of inspec-
tion (Surkov et al. 2008).
Border inspection plays a crucial role in plant biosecu-

rity programs (Magarey et al. 2009). While some of the
benefit of inspection comes from direct prevention of
entry by potentially invading pests, these direct benefits
are likely to be small in most situations because of the
relatively small fraction of arrivals that are actually
intercepted. Indirect benefits of inspection are thought
to be much greater, including the deterrent effect in
which behavior of importers can be changed from
knowledge that discovery of contaminated shipments
could result in refusal, destruction or fines (Springborn
et al. 2016). The other indirect benefit of border inspec-
tions is the information that it provides about pests asso-
ciated with specific shipments (Kenis et al. 2007).
Models, such as those developed here, can be used to
predict probabilities of pest establishment associated
with specific commodity imports and such predictions
are of critical use in risk assessments that guide quaran-
tine policy, including the imposition of phytosanitary
measures. Estimates for the relative number of unseen
arrivals in different taxonomic groups could be com-
bined with risk assessments to inform resource prioriti-
zation by biosecurity officials. Predictions of
establishment probabilities can also help to identify
high-risk pests and direct surveillance efforts accordingly
(Colunga-Garcia et al. 2013).
While the impact component of risk also needs to be

taken into account, the contrasting qualitative behavior
of the relationship between interceptions and establish-
ments for Aphididae and Cerambycidae suggests the fol-
lowing recommendations. If the probability of a species
establishment given no interceptions is relatively high,
and the number of unseen species is also large, as is the
case here for Aphididae, then this means that there will be
little warning from the border about potential new estab-
lishments. A biosecurity manager could then take steps to
increase the overall interception probability in order to be
forewarned or increase general post-border surveillance
and general response plans to be able to respond quickly
to an unknown incursion. It is also possible that the prob-
ability of a species establishment given no interceptions is
high because interception probability is uneven across the

family and some introductory pathways or species are
being under sampled during inspections.
On the other hand, if the number of unseen species is

large, but the probability of a species establishment given
no interceptions is low, as is the case here for Cerambyci-
dae, then it may be better to focus on the known poten-
tially arriving species and look to further knowledge
about what causes the variability in the per arrival estab-
lishment probability among species. This would be rec-
ommended alongside continued collection of
interception data, as changes can occur.
While the models developed here provide considerable

benefit to risk assessments and other practices in the
design of biosecurity strategies, it is likely that more
advanced models could be developed in the future that
would provide more quantitative value when additional
data are available for further parameterization.
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