
This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process, which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1002/EAP.2194
 This article is protected by copyright. All rights reserved

DR. REBECCA  TURNER (Orcid ID : 0000-0002-7885-3092)

Article type      : Articles

Running Head: Establishment risk process-based model

Considering unseen arrivals in predictions of establishment risk based on border biosecurity 

interceptions

Rebecca Turner1,2,7, Michael J. Plank2,3, Eckehard Brockerhoff1,4, Stephen Pawson1, Andrew 

Liebhold5,6, Alex James2,3

1. Scion (New Zealand Forest Research Institute), Christchurch 8440, PO Box 29237, New

Zealand

2. Te Pūnaha Matatini, a New Zealand Centre of Research Excellence

3. School of Mathematics and Statistics, University of Canterbury, Christchurch, New

Zealand

4. Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

5. USDA Forest Service Northern Research Station, Morgantown, WV 26505, USA

6. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00

Praha 6 – Suchdol, Czech Republic

7.  Corresponding Author. E-mail: Rebecca.Turner@scionresearch.com

A
cc

ep
te

d 
A

rt
ic

le
This document is the accepted manuscript version of the following article: 
Turner, R., Plank, M. J., Brockerhoff, E., Pawson, S., Liebhold, A., & James, A. 
(2020). Considering unseen arrivals in predictions of establishment risk based on 
border biosecurity interceptions. Ecological Applications. 
https://doi.org/10.1002/eap.2194

https://doi.org/10.1002/EAP.2194
https://doi.org/10.1002/EAP.2194
https://doi.org/10.1002/EAP.2194
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feap.2194&domain=pdf&date_stamp=2020-06-10


This article is protected by copyright. All rights reserved

Abstract 

Assessing species establishment risk is an important task used for informing biosecurity activities 

aimed at preventing biological invasions. Propagule pressure is a major contributor to the 

probability of invading species establishment; however, direct assessment of numbers of 

individuals arriving is virtually never possible. Inspections conducted at borders by biosecurity 

officials record counts of species (or higher-level taxa) intercepted during inspections which can 

be used as proxies for arrival rates. Such data may therefore be useful for predicting species 

establishments, though some species may establish despite never being intercepted. We present a 

stochastic process-based model of the arrival-interception-establishment process to predict species 

establishment risk from interception count data. The model can be used to estimate the probability 

of establishment, both for species that were intercepted and species that had no interceptions 

during a given observation period. We fit the stochastic model to data on two insect families, 

Cerambycidae and Aphididae, that were intercepted and/or established in the USA or New 

Zealand. We also explore the effects of variation in model parameters and the inclusion of an 

Allee effect in the establishment probability. Although interception data sets contain much noise 

due to variation in inspection policy, interception effort and among-species differences in 

detectability, our study shows that it is possible to use such data for predicting establishments and 

distinguishing differences in establishment risk profile between taxonomic groups. Our model 

provides a method for predicting the number of species that have breached border biosecurity, 

including both species detected during inspections but also “unseen arrivals” that have never been 

intercepted, but have not yet established a viable population. These estimates could inform 

prioritization of different taxonomic groups, pathways or identification effort in biosecurity 

programs. 

Keywords: Aphididae; Cerambycidae; species establishment; stochastic process; interception; 

biosecurity. 
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Introduction

Many non-native species cause significant detrimental economic and ecological impacts 

(Simberloff et al., 2013). Given current levels of global trade and travel, it is unrealistic to prevent 

all invasions, but biosecurity measures can reduce rates at which species arrive and establish 

(Magarey et al., 2009; Leung et al., 2014). Risk assessments are an important component of such 

programs and are carried out to prioritize which species, pathways, or aspects of the invasion 

process to target (Hayes, 2003; Andersen et al., 2004; Evans, 2010). Invasive species risk 

assessment can also facilitate early detection and eradication by guiding surveillance programs to 

target exotic species that have high probabilities of establishment. Thus, enhanced tools are 

needed to predict the relative establishment risk amongst large groups of potentially damaging 

species, such as insects. 

Invasive species (or group of species) risk assessments can be complex, taking into account 

different stages of invasions (e.g., arrival, establishment and spread) and often rely on elicitation 

of expert knowledge (reviewed in Leung et al., 2012). At the level of entire groups of species, 

expert elicitation may be of limited value, particularly if the biology is diverse within a group of 

species, or unknown. Alternatively, quantitative models enable a consistent and repeatable 

framework that can be applied over many species, particularly when assumptions and uncertainty 

in the assessment are explicitly acknowledged. Predictors of establishment risk include propagule 

pressure (Brockerhoff et al., 2014), species traits (Fournier et al., 2019), climate and niche 

matching (Phillips et al., 2018), previous establishment of related species (Seebens et al., 2018), 

association with trade volumes (Tingley et al., 2018), and the co-occurrence of species in other 

regions (Worner et al., 2013). Here, we focus on propagule pressure, for example, the rate of 

arrival events at a country’s border. Propagule pressure has been shown to be a strong predictor of 

invasion success (Lockwood et al., 2005; Simberloff, 2009) but is difficult to directly quantify 

except for intentional introductions, for which records of introduction effort often exist. 

Species interceptions by biosecurity officials during inspections at borders (e.g., ports) can be 

considered a sample of arrival events. Inspection of imports at ports of entry is a critical 

component of biosecurity programs. Historically, the value of inspection has in part been 

attributed to the interception of individuals before they enter a new environment and establish. 

However, in practice, the proportion of individuals that are intercepted at ports is typically very A
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low, thus direct beneficial effects may be minimal (Ministry of Agriculture and Forestry, 2003; 

Work et al. 2005; Whyte, 2006; Liebhold et al., 2012). There are several purposes for border 

inspections: Inspections 1) provide information about risks associated with individual pests or 

groups of pests that informs other biosecurity actions, 2) provide information about risks 

associated with specific commodities and this also informs biosecurity activities, 3) monitor the 

effectiveness of phytosanitary treatments, 4) incentivize exporters to reduce invasion risk in 

exports, and 5) directly identify infested shipments so that they can be excluded (Epanchin-Niell, 

2017). Here we focus on the benefit that inspection data it provide in documenting the presence of 

species in pathways and, potentially, prediction of future establishments (Brockerhoff et al., 2014).

Individuals from a range of species arrive in a country at different rates. Once arrived, a small 

proportion are intercepted at the border and hence eliminated. Most individuals that penetrate the 

border die without establishing a population, whilst a small remainder survive and establish self-

sustaining populations. Some species will establish without ever being intercepted as interceptions 

represent only a small sample of arriving individuals, or they are intercepted but not identified and 

consequently not recorded with their actual identity. For example, larvae of many insect species 

are not readily identifiable using morphological characteristics. A realistic model would predict a 

non-zero (negligible to low) risk of establishment for non-intercepted species, with the expected 

value dependent on the taxonomic group. To assess the relative risk of different species 

establishing in a region, previous models have been fitted to limited groups of species to minimize 

the effect of variability among higher-level taxa on model uncertainty (e.g. Brockerhoff et al., 

2006; Brockerhoff et al., 2014; Phillips et al., 2018). This approach assumes that the species in 

these groups have only small variation in probabilities of interception and in probabilities of 

establishment for a non-intercepted arrival event relative to the variation in arrival rates. An arrival 

event in interception data may represent one or more individuals, since the exact number is 

typically not recorded.

In reality, numerous factors affect probability of interception and probability of establishment per 

arrival (Duncan et al., 2014; Saccaggi et al., 2016). The probability of interception can vary 

temporally due to changes in inspection effort relative to the volume of trade and passenger traffic 

and the level of phytosanitary measures on imports. See Saccaggi et al. (2016) for a review of 

border biosecurity systems, including how policy and operational constraints can affect how 

interception data are collected. Probability of interception can also vary among species due to A
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factors such as arrival pathway, and biological characteristics that influence detection or 

identification rates. The probability of establishment from an individual arrival event will vary 

among species due to factors such as climate and niche suitability, reproductive strategies, 

behavioral traits, and Allee effects (Leung et al., 2012). 

Several attempts to predict arthropod establishments based on interceptions have been hampered 

by low or variable interception probabilities, as well as by variation in per arrival establishment 

probability among species. For example, the majority of unintentionally introduced insect species 

in Austria, Switzerland, the Czech Republic, and Australia were never intercepted prior to their 

known establishment (Roques & Auger‐Rozenberg, 2006; Caley et al., 2015). The European and 

Mediterranean Plant Protection Organization (EPPO) has implemented a targeted recording 

approach that focuses on a predefined list of species. Such an approach limits the reporting of 

interceptions prior to establishment, thus biasing the estimate of propagule pressure and hence the 

predictive ability of any interception-based model (Roques & Auger‐Rozenberg, 2006; Eschen et 

al., 2015). Similarly, Caley et al. (2015) observed a poor association between interception and 

establishment across the most common insect orders in Australia, although those species with a 

higher interception rate were more likely to establish. Caley et al. (2015) attributed low taxonomic 

resolution of identified species as a contributing factor to low interception probabilities. In 

addition, only establishments occurring over the same 20-year period as the interceptions were 

included in the analysis, whereas establishments are typically detected after a lag period of several 

years to several decades. In contrast, some studies on particular insect groups (Coleoptera and 

Formicidae) have shown significant positive relationships between interceptions and 

establishments (Brockerhoff et al., 2006; Haack, 2006; Brockerhoff et al., 2014; Bertelsmeier et 

al., 2018). This may be partly due to most of these studies combining interception and 

establishment data across long time periods and in some cases from multiple countries. This 

increases the interception probability overall, as well as the likelihood that a species has 

established somewhere, which potentially averages out the biases of individual country data sets. 

Accounting for sources of variability in interception and establishment probabilities can improve 

model fit. For example, Bacon et al. (2014) found a positive relationship between interceptions 

and establishment rates when they incorporated additional climate matching, host availability and 

trade volume data, contrary to other studies that did not account for niche or climate suitability 

(Roques & Auger‐Rozenberg, 2006; Eschen et al., 2015). A
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Several models have been developed that use propagule pressure, in some form, to predict 

establishment risk and may account for some of the variation in interception probability or per 

arrival event establishment probability. In the simplest case, interception probability is assumed to 

be one (i.e., all arrivals are recorded), and per arrival establishment probability is assumed to be 

constant (Leung et al., 2004). More complex models have been suggested to account for variation 

in per arrival establishment probability due to environmental heterogeneity, demographic 

stochasticity and Allee effects (summarised in Duncan et al., 2014). Brockerhoff et al. (2014) used 

a SIMEX-based method to account for interception measurement error and included a model term 

to account for an Allee effect. In addition, they included the effect of “rare” non-intercepted 

species with establishment probabilities based on trends in the intercepted species to estimate the 

number of unseen species.

In this paper, we introduce a stochastic model to predict establishment risk for an individual 

species within a taxonomic group conditional on its interception frequency. Our model explicitly 

includes terms for both interception and establishment probability, which allows exploration of 

both these sources of variability. As with previous models, this stochastic model can be applied to 

a group of exotic species arriving in one location, or a single species arriving in multiple locations. 

Initially, all sources of variability among species are ignored apart from their rates of arrival at the 

border, which are unobserved variables in the model. The rationale behind this simplification is 

that insect species belonging to the same family tend to share many life-history traits that cause 

them to be associated with a common pathway and to have similar tendencies to successfully 

establish. We subsequently explore the effects of incorporating variation in species’ interception 

and per arrival establishment probabilities and an Allee effect. We apply the model to data for two 

families of insects (Cerambycidae and Aphididae) and two counties (New Zealand and the USA) 

as case studies to show how the model can be fitted to existing interception and establishment data 

and make predictions about biosecurity effectiveness for different taxonomic groups. Our model 

furthers the understanding of the relationship between interception and establishment probabilities, 

which adds to our ability to predict invasions. We can use the model to estimate the number of 

“unseen arrivals” (i.e., species in a given family that have arrived but have neither been 

intercepted nor established), which was not an intrinsic feature of previous models.

MethodsA
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Stochastic arrival-interception-establishment model

This model describes the arrival events, interception events and establishment events for a set of 

taxonomically related species, in a given country, over a period of time  (a glossary of key model 𝑇

terms and notation is provided in Box 1). Upon arrival, individuals of a species may be 

intercepted; but if not intercepted, they may go on to establish (Figure 1a). The only directly 

observable variables in the model are the number of interceptions, and whether establishment of a 

species has been detected. Non-intercepted arrivals are, by definition, not observed. 

Establishments are typically only observed with a significant time lag because considerable time is 

typically required before a newly established species is discovered (Crooks, 2005). Hence, the 

main aim of the model is to predict the probability of establishment from the number of observed 

interceptions of a given species. 

Arrival events of species are assumed to occur as a Poisson process with fixed rate  per unit 𝑗 𝜆𝑗

time. Across the set of species under consideration, the arrival event rates are assumed to be 

independently and identically distributed according to some distribution with probability density 

function  Candidate arrival rate distributions include uniform and power law distributions. 𝑓(𝜆).

Using a uniform arrival distribution allows for some useful simplified results and given a paucity 

of data, is a reasonable initial assumption. A power law distribution is an example of a heavy 

tailed distribution, which represents a set of species where the majority have very low arrival rates, 

but there is a long tail of species with very high arrival rates. This property is seen in many 

communities of species and in actual interception data (Magurran, 2013; Liebhold et al., 2017). 

The number of arrival events  of species  during a time period  is a Poisson random variable:𝑁𝐴 𝑗 𝑇

𝑁𝐴~Poisson(𝜆𝑗𝑇).

Note that this specifies the distribution of  for a species with a given arrival rate . Because 𝑁𝐴 𝜆𝑗

each species has its own value of , drawn from the arrival rate distribution, the distribution of 𝜆𝑗

arrival frequencies over an ensemble of species will not be Poisson and is likely to be zero-inflated 

and right-skewed. Each arrival has probability  of being intercepted so the number of 𝑝𝐼

interceptions,  of species  during the time period  is a Binomial random variable: 𝑁𝐼, 𝑗 𝑇

𝑁𝐼~Binomial(𝑁𝐴,𝑝𝐼).A
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Each non-intercepted arrival has probability  of founding an established population. Hence the 𝑝𝐸

number of establishments  for species  is also a Binomial random variable: 𝑁𝐸 𝑗

𝑁𝐸~Binomial(𝑁𝐴 ― 𝑁𝐼,𝑝𝐸).

Initially, we assume for simplicity that the per arrival interception and establishment probabilities, 

 and  respectively, are the same for all species in the group and do not change over time. This 𝑝𝐼 𝑝𝐸

ignores potential sources of variation among species, such as the strength of Allee effects, and 

changes in inspection protocols over time as these are not well quantified across a broad range of 

species and time periods. We investigate the effects of relaxing some of these assumptions in the 

Model Extensions section below. The model also assumes that data on interceptions and 

establishments are available for the same time period . In practice, this is unlikely, and the 𝑇

consequences of this assumption and practical solutions are discussed in Appendix S1 and Table 

1. 

The probability  that at least one arrival event for species  establishes during the time period  𝑃𝑇𝐸 𝑗 𝑇

is . We define a random variable𝑃𝑇𝐸 = 𝑝(𝑁𝐸 > 0) = 1 ― (1 ― 𝑝𝐸)𝑁𝐴 ― 𝑁𝐼

𝑆𝐸~Bernoulli(𝑃𝑇𝐸),

where  if the species established and  if it did not. We use  to denote 𝑆𝐸 = 1 𝑆𝐸 = 0 𝑝(𝑛) 𝑃

, the probability of species establishment given there were  interceptions (𝑆𝐸 = 1 │ 𝑁𝐼 = 𝑛) 𝑛

during the time period . Conditioning on the species arrival rate  and the number of arrivals , 𝑇 𝜆 𝑁𝐴

and using Bayes’ theorem (see Appendix S2 for details), we can write  as𝑝(𝑛)

𝑝(𝑛) =
𝑃(𝑆𝐸 = 1 & 𝑁𝐼 = 𝑛)

𝑃(𝑁𝐼 = 𝑛) =
∫𝑓(𝜆)𝜆𝑛𝑒 ― 𝑝𝐼𝜆𝑇(1 ― 𝑒 ― 𝑝𝐸(1 ― 𝑝𝐼)𝜆𝑇)𝑑𝜆

∫𝑓(𝜆)𝜆𝑛𝑒 ― 𝑝𝐼𝜆𝑇𝑑𝜆
.                 (1)

Equation (Eq) 1 requires the estimated distribution of arrivals rates (estimated from the data, 

illustrated in this paper with the power law, or as a very simplified case, the uniform distribution), 

the probability of interception (hypothesized, but to which the sensitivity of the results can be 

investigated), and a per arrival probability of establishment (which we estimated from the data 

using maximum likelihood).A
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It is possible for a species to establish without having been intercepted. Hence, establishment risk 

can be predicted for species with zero interceptions by calculating .This probability of 𝑝(0)

establishment includes in its denominator all species in the chosen taxonomic group, including 

those that have not arrived during the observation period (i.e. species with very low arrival rates 

that may not arrive during the observation window currently being modelled, see Fig. 1a and Fig. 

1b). If the arrival rate distribution is right-skewed then there will be many species in this category. 

In some circumstances, decision makers may only be interested in those species that are likely to 

have arrived. A more relevant prediction in this case is the probability of establishment for species 

that have arrived at least once during the observation window, but have not been intercepted, 𝑃𝐸𝑋

. Following a similar procedure to that used above gives = 𝑃(𝑆𝐸 = 1 | 𝑁𝐼 = 0 & 𝑁𝐴 > 0)

𝑃𝐸𝑋 =
𝑃(𝑆𝐸 = 1 & 𝑁𝐼 = 0 & 𝑁𝐴 > 0)

𝑃(𝑁𝐼 = 0 & 𝑁𝐴 > 0) =
∫𝑓(𝜆)𝑒 ― 𝑝𝐼𝜆𝑇(1 ― 𝑒 ― 𝑝𝐸(1 ― 𝑝𝐼)𝜆𝑇)𝑑𝜆

∫𝑓(𝜆)(𝑒 ― 𝑝𝐼𝜆𝑇 ― 𝑒 ―𝜆𝑇 )𝑑𝜆
             (2)

In the special case where the arrival rate distribution is uniform, meaning all arrival rates are 

equally likely, Eq. (1) and (2) can be simplified to give 

𝑝(𝑛) = 1 ― ( 𝑝𝐼

𝑝𝐼 + 𝑝𝐸(1 ― 𝑝𝐼))𝑛 + 1

,                                  (3)  

𝑃𝐸𝑋 =
𝑝𝐸

𝑝𝐼 + 𝑝𝐸(1 ― 𝑝𝐼)
.                                                     (4)

Data and model fitting

We used data from border interceptions and establishments in the USA and New Zealand for 

Cerambycidae and Aphididae insect families (Appendix S1, DataS1, and DataS2) to estimate 

model parameters. We fitted the Aphididae and Cerambycidae data sets with the stochastic model 

using two alternative arrival rate distributions, but no additional sources of variability. The 

additional sources of variability are explored later on in the model extensions section. For 

comparison, two phenomenological models (see below) were also fitted to the data sets.
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The three key parameters of the stochastic model are the mean arrival rate , the interception 𝐸(𝜆)

probability  and the per arrival probability of establishment . These three parameters cannot 𝑝𝐼 𝑝𝐸

be uniquely identified from data. For example, a group of species with mean arrival rate  𝐸(𝜆) = 1

and  will on average result in practically the same observations as a group with a 𝑝𝐼 = 𝑝𝐸 = 0.01 𝐸

 and . Therefore, it is not sensible to attempt to use data to estimate these (𝜆) = 10 𝑝𝐼 = 𝑝𝐸 = 0.001

model parameters individually. However, provided the interception probability is small (i.e. 𝑝𝐼

, which is a realistic assumption, the model is insensitive to changes in the value of   and ≪ 1) 𝑝𝐼

  provided  and  are fixed. We therefore started by fixing a value for the 𝑝𝐸 𝐸(𝜆)𝑝𝐼 𝐸(𝜆)𝑝𝐸

probability of interception ; the sensitivity of this choice is tested later. 𝑝𝐼

We compared two candidates for the arrival rate distribution, a uniform distribution and a power 

law distribution. For the uniform distribution, no fitting was required because the distribution has 

no parameters. This is equivalent to assuming that all arrival rates  are a priori equally likely. 𝜆 ≥ 0

The uniform distribution is not normalisable over the non-negative real numbers, but this does not 

affect model output because the normalisation constant appears in both the numerator and 

denominator of Eq. (1). We used Eq. (3) and (4) respectively to give the probability of species 

establishment and the probability of establishment of a species that has arrived but not been 

intercepted. 

The power law distribution has probability density function 

𝑓(𝜆) = 𝐶𝜆 ―𝜇,               𝜆min ≤ 𝜆,

where  is the minimum arrival rate, and  is a normalisation constant. For observed 𝜆min 𝐶

interception counts  and a given value of the interception probability , we used estimated 𝑛 𝑝𝐼

arrival rates  to fit the exponent µ via a standard maximum likelihood equation 𝜆 = 𝑛/(𝑝𝐼 𝑇)

(Newman, 2005). We set the minimum arrival rate to be , which corresponds to 𝜆min = 0.01/(𝑝𝐼 𝑇)

a species that is intercepted on average once during a time period 100 times longer than the 

observation period T.

Once the arrival rate distribution was specified, we estimated the value of the per arrival 

establishment probability  by fitting the model prediction for the probability of species 𝑝𝐸

establishment, , in Eq. (1) or (3) (for the power law model and the uniform model 𝑝(𝑛)A
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respectively) to data using maximum likelihood estimation. The likelihood of observing a data set 

, consisting of interception counts  and establishment , given a per arrival 𝑥 𝑛𝑗 𝑆𝐸𝑗 ∈ {0,1}

establishment probability  is given by 𝑝𝐸

ln (𝐿(𝑥│𝑝𝐸)) = ∑
𝑆𝐸𝑗 = 1

ln (𝑝(𝑛𝑗)) + ∑
𝑆𝐸𝑗 = 0

ln (1 ― 𝑝(𝑛𝑗))                    (5)

The value of  that maximises the likelihood was found using the fminbnd function in Matlab®️ 𝑝𝐸

2019b. The approximate 95% confidence interval (CI) for  was also calculated as the range of 𝑝𝐸

values of  for which  (Hudson, 1971). 𝑝𝐸 ln (𝐿(𝑥|𝑝𝐸)) ≥ max(ln (𝐿(𝑥|𝑝𝐸)) ― 2

Species with zero interceptions that did not establish during the observation period (𝑆𝐸 = 0 & 𝑁𝐼

) are, by definition, not in the data set. Hence, the species with zero interceptions that are in = 0

the data set have an apparent probability of establishing equal to one. A naive fitting procedure 

would therefore have resulted in attempting to make . To avoid this, we excluded species 𝑝(0) = 1

with zero interceptions that did establish ( ) from the data. However, we use this 𝑆𝐸 = 1 & 𝑁𝐼 = 0

information in combination with model results to make inferences about the likely number of 

unseen arrivals of each insect family in each country (see Discussion).

The first of the phenomenological models fitted was the basic arrival-establishment model of 

Leung et al. (2004), which only accounts for demographic stochasticity. When applied to actual 

arrival data this model is process-based, but when applied to interception data without adaptation 

it becomes phenomenological. Unlike our stochastic arrival-interception-establishment model, this 

model assumes that the number of arrivals of a species with  interceptions is deterministically 𝑛

equal to . Under this assumption, it can be shown that the probability  of a species with  𝑛/𝑝𝐼 𝑝(𝑛) 𝑛

interceptions having established is

𝑝(𝑛) = 1 ― 𝑟𝑛.

where  This model is a special case of the Weibull model used in Leung et al. 𝑟 = (1 ― 𝑝𝐸)
(

1
𝑝𝐼

― 1)
.

(2004) and Brockerhoff et al. (2014) with the shape parameter set to . Hereafter, we refer to 𝑐 = 1

this as the exponential model. The maximum likelihood estimate and 95% CI for the parameter  𝑟
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was found for each data set via Eq. (5). For any chosen value of , the value of  can be 𝑝𝐼 𝑝𝐸

calculated from r for comparison with the stochastic model. 

Finally, a logistic regression model for the probability of species establishment was also fitted as a 

common statistical model for analyzing binary response data. Matlab® code for fitting the four 

models to the data is supplied in Data S3.

In order compare how well the models fit the data, we provide the values of the Akaike 

information criterion (AIC) for each model. For the purposes of calculating AIC, the number of 

fitted parameters for the stochastic model was one ( ) and for the exponential model was one ( ). 𝑝𝐸 𝑟

Although the stochastic model with power law arrival rate distribution has one additional 

parameter (the power law exponent ), this was fixed using the interception count data and the 𝜇

likelihood in Eq. (5) was maximized over only one parameter ( ).𝑝𝐸

Results

We fitted the stochastic arrival-interception-establishment model using each of the two candidate 

arrival rate distributions and three different assumed values for the probability of interception  to 𝑝𝐼

the USA and New Zealand Cerambycidae and Aphididae data sets. For each model, we report the 

maximum likelihood estimate and 95% CI for the per arrival probability of establishment , the 𝑝𝐸

predicted probability of establishment  for species with no interceptions, and the predicted 𝑝(0)

probability of establishment  for species that have arrived at least once but have not been 𝑃𝐸𝑋

intercepted (Table 2). Note that the CIs account for variability in arrival, interception and 

establishment frequencies associated with the stochastic model, but do not allow for other sources 

of uncertainty, such as measurement errors, lag in establishment detection, Allee effects, or 

variations in parameters between species or over time. The stochastic model is compared with two 

alternative models: the exponential model and a logistic regression model. 

Fitted values for the per arrival establishment probability  are strongly correlated with the 𝑝𝐸

assumed value for the interception probability . This is because, as explained above, interception 𝑝𝐼

count data of the type used here are insufficient to identify these two parameters independently. 

Fitted values for  under the stochastic model with a uniform arrival rate distribution are similar 𝑝𝐸A
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to those under the exponential model with the same assumed value for   Under the power law 𝑝𝐼.

arrival rate distribution, fitted values for  are higher. 𝑝𝐸

For Cerambycidae in the USA and New Zealand, the exponential model and the stochastic model 

with uniform arrival rate distribution provide an almost equally good fit (difference in AIC<2). 

The stochastic model with power law arrival rate distribution fits slightly less well (difference in 

AIC<4).  For Aphididae in the USA and New Zealand, the logistic regression is the best-fitting 

model (lowest AIC), followed by the stochastic model with uniform arrival rate distribution. 

Figure 2 shows the species establishment probability as a function of the number of interceptions 

for each data set. The shape of these graphs, except for species with very low (< 2) interception 

counts, is not sensitive to the choice of value for  or of arrival rate distribution. The stochastic 𝑝𝐼

models predict non-zero values for the species establishment probability, even for species with 

zero interceptions (vertical axes intercepts in Fig. 2., and  in Table 2). This contrasts with the 𝑝(0)

exponential model, which assumes that the number of arrivals is directly proportional to the 

number of interceptions, and therefore that species with no interceptions cannot have established. 

The stochastic model with power law arrival rate distribution predicts that the probability  of 𝑝(0)

a species establishing without interception is between 0.00008 and 0.00039 for Cerambycidae and 

between 0.01 and 0.05 for Aphididae. The predicted value of  and the AIC for the stochastic 𝑝(0)

models are insensitive to the choice of interception probability  provided it is less than 𝑝𝐼

approximately 0.1. 

The stochastic model predictions for the probability of establishment  for species that have 𝑃𝐸𝑋

arrived but not been intercepted can be used to estimate the number of unseen arrivals. As an 

accurate value of the interception probability is rarely available, these results are best used as 

relative estimates. Figure 3 and Figure 4 shows  as a function of the probability of interception 𝑃𝐸𝑋

 and the per arrival probability of establishment  assuming a uniform arrival rate distribution, 𝑝𝐼 𝑝𝐸

calculated via Eq. (4), or a power law distribution, calculated via Eq. (2) respectively. 

Superimposed on Fig. 3 are curves showing the predicted value of  for the four data sets, as a 𝑃𝐸𝑋

function of the assumed value for . For Cerambycidae,  is consistently small ( 0.01) both 𝑝𝐼 𝑃𝐸𝑋 ≤

for the USA and New Zealand, implying that, for every species that has established without being 

intercepted, there are at least 100 unseen species which have arrived. For Aphididae in the USA, 

assuming  is less than approximately 0.2 and assuming a uniform arrival rate, , 𝑝𝐼 𝑃𝐸𝑋 ≈ 0.15A
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meaning that for every species that established without interception, there are about six unseen 

arrivals. For New Zealand, , meaning that for every species that established without 𝑃𝐸𝑋 ≈ 0.25

interception, there are about three unseen arrivals. If  is greater than 0.2, the predicted values of 𝑝𝐼

 are higher, meaning the number of unseen Aphididae species which have arrived would be 𝑃𝐸𝑋

lower than the above estimates. 

Stochastic model extensions

The stochastic model can be extended to include variation among species or an Allee effect. We 

model variation among species by drawing the probabilities of interception  and establishment 𝑝𝐼

 for each species independently from beta distributions with shape parameter . The scale 𝑝𝐸 𝛼 = 0.5

parameter  is chosen to keep the mean of each distribution the same as the fitted value shown in 𝛽

Table 2.

We model an Allee effect by making the per arrival establishment probability  dependent on the 𝑝𝐸

recent arrivals of conspecifics. Specifically, the probability of establishment for a single non-

intercepted arrival at time  is either zero if there were no other non-intercepted arrivals between 𝑡

time  and time , or  if there was at least one non-intercepted arrival between time  𝑡 ― 𝑎 𝑡 𝑝𝐸 𝑡 ― 𝑎

and time . The parameter  is a constant specifying the strength of the Allee effect: the smaller  𝑡 𝑎 𝑎

is, the stronger the Allee effect and the lower the probability of establishment, especially for 

species with low arrival rates. 

Figure 5 shows the model with variation among species or with an Allee effect, for fixed values of 

 and , in the case of a power law arrival rate distribution. Overall, variation among species 𝑝𝐼 𝑝𝐸

tends to decrease the probability of species establishment for a given interception count. This 

weakens the overall relationship between interception frequency and risk of establishment, even if 

there is only variance in one of the two parameters. Including an Allee effect in the model 

decreases the probability of species establishment for a given value of the per arrival establishment 

probability . This means that if an Allee effect is present but not accounted for,  will be 𝑝𝐸 𝑝𝐸

underestimated.
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Discussion

Model comparisons

We have developed a process-based, stochastic model of the arrival, interception and 

establishment of exotic species. This is treated as a three-stage process based on the probabilities 

of: (1) arrival at the border; (2) interception by inspectors; (3) establishment of a viable 

population. This approach explicitly acknowledges uncertainty arising because interceptions 

represent only a small sample of all the actual arrival events. The model outputs the probability of 

species establishment as a function of the number of recorded interceptions. 

We have fitted the model to data on interception counts and establishments from the USA and 

New Zealand for species in two insect families, Cerambycidae and Aphididae. The stochastic 

model’s goodness-of-fit to the data is comparable to the exponential model. This model is 

equivalent to the Weibull  non-Allee model of Leung et al (2004) and infers similar values (𝑐 = 1)

for the per arrival probability of establishment. This contrasts with the logistic regression model 

which lacks the ability to interpret parameters in this way. Our stochastic model offers two key 

advantages over the exponential model. Firstly, the model is process-based in its construction 

meaning that model parameters correspond to probabilities of certain classes of events occurring, 

which are in principle measurable, allowing for future development. Secondly, because of its 

process-based construction, the model can provide predictions for the probability of species 

establishing without having been detected or intercepted at the border. This contrasts with the 

exponential model, which assumes that the number of arrivals is a deterministic multiple of the 

number of interceptions, and hence species with no interceptions have zero probability of 

establishment. Our model framework is therefore better aligned with actual interception-

establishment data, which contain frequent instances of species establishing without having been 

detected at the border. Model adjustments in Brockerhoff et al. (2014) improved the Weibull 

(Allee inclusive) model to account for the problem of predicting zero establishments from zero 

detections. In that case, numbers of non-intercepted species were added using assumptions based 

on frequency abundance models along with a very small frequency of ‘interception’. However, our 

model is the first time that probability of establishment for non-intercepted species has been 

incorporated into a model of the arrival-interception-establishment process from first principles. In A
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particular, for the assumption of uniformly distributed arrival rates, this results in a very simple 

but effective model for qualitative comparisons.

We used the model to explore the effect of the interception probability and per arrival 

establishment probability on the relationship between interception counts and species 

establishment risk. The ratio of these probabilities is the main determinant of the shape of the 

relationship. We tested two different species arrival rate distributions: a uniform distribution and a 

power law distribution. Direct data on species arrival rates are rarely available and, in particular, 

the left-hand tail of the arrival rate distribution is difficult to estimate because the majority of 

species arrive very rarely (Liebhold et al., 2017). Better data on species arrival rates will improve 

the quantitative accuracy of model predictions of establishment risk for a given interception count 

but are unlikely to qualitatively change model behavior. This means that either of the arrival rate 

distributions can be used to assess the broad scale relative differences between taxonomic groups.

While the uniform arrival rate distribution has the advantage of a simpler fitting process, the 

distribution of arrival rates is likely to be right-skewed (Liebhold et al., 2017). Many known 

distributions of species abundances are right-skewed (Magurran, 2013), and the power law 

distribution fits the interception data better than the uniform distribution. This means that the 

uniform arrival rate model will overestimate  and hence underestimate the number of unseen 𝑃𝐸𝑋

arrivals. An alternative option would be to fit the model in a Bayesian framework using 

simulations and allowing further exploration of the uncertainty in the model, and we leave this 

open for future investigation. Although a Bayesian approach would have the benefit of 

simultaneously fitting the arrival rate distribution and the stochastic arrival-interception-

establishment model, it would be a more computationally expensive method and would not 

provide any further analytical insight into the relationship between interception frequency and 

probability of establishment. 

Taxonomic group comparisons: Cerambycidae and Aphididae

The model results (Fig. 2) show that, for Cerambycidae, the establishment likelihood is very low 

(classified as 0.001-0.05) for species with small interception counts, and moderate (classified as 

0.3-0.7) for species with high interception counts (using the likelihood level descriptors as in 

Australian Department of Agriculture, 2014). The low establishment likelihood for low A
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interception rates may be explained by Cerambycidae having a small per arrival establishment 

probability relative to interception probability. These low establishment probabilities may be 

caused by Allee effects (Taylor & Hastings, 2005; Liebhold & Tobin, 2008), or variability in 

establishment probability among species (Fig. 4). Establishment probabilities may have been 

higher if we had used worldwide establishment status instead of the single country establishment 

status, as analyzed in Brockerhoff et al. (2014). For Aphididae, there is a moderate establishment 

likelihood for species with low interception counts, and a high likelihood (classified as 0.7-1) for 

species with high interception counts. This could be explained by a lower ratio of interception 

probability to per arrival establishment probability compared to the Cerambycidae. The 

interception data analyzed here span a shorter time period than that over which establishment data 

were collected, contributing to the low interception probability. On the other hand, the more likely 

primary reason is that Aphididae tend to have highly efficient reproductive strategies (i.e., many 

are parthenogenic), which contributes to high per arrival establishment probabilities (Teulon & 

Stufkens, 2002). Using the model to predict establishment likelihood of Aphididae species based 

on interceptions would result in low sensitivity (there would be many species which establish 

without ever being intercepted), but many of the most frequently intercepted would establish. 

For Cerambycidae, the model predicts a very low probability of species establishing without 

interception. However, for Aphididae, the model predicts a probability of establishing without 

interception over the relevant observed time period, (71 years in the USA, and 18 years in NZ) of 

14% in the USA and 21% in New Zealand, assuming a uniform arrival rate distribution. If, 

however, we assume that the arrival rate distribution is right-skewed and use the power law model 

then the  estimates are much lower. For either model, these estimates are reasonably robust to 𝑝(0)

varying the assumed value for the interception probability, but the interpretation is influenced by 

the difference in the timeframes for the interception data and establishment data. The 

corresponding  predictions can be used to estimate the number of “unseen arrivals”, i.e. species 𝑃𝐸𝑋

that have breached border biosecurity without being intercepted but have not yet established. 

However, these predictions do depend on the choice of model and the assumed value of  (Figure 𝑝𝐼

3 and Figure 4). The uniform model tends to give higher  predictions compared to the power 𝑃𝐸𝑋

law model, but the power law model may be a more reasonable description of the arrival rate 

distribution. For Cerambycidae, the stochastic model consistently predicts that  is small (𝑃𝐸𝑋

) although the exact value depends on the interception probability. This implies that, for < 0.01A
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every species that established without being intercepted, there were hundreds or even thousands of 

species that arrived unseen, although most of these species would have arrived very rarely. There 

were five non-intercepted established species in the USA (DataS1). The power law model, with an 

interception probability of 0.01, predicts that  and therefore an estimated 26,000 𝑃𝐸𝑋 = 0.00019

unseen species arrived in the USA, which is higher than the estimate given in Brockerhoff et al. 

(2014). 

For Aphididae, the uniform model, assuming an interception probability , predicts that there < 0.1

were four to eight unseen arrivals in the USA for every species that established without 

interception, and two to seven in New Zealand. However, these estimates are sensitive to model 

assumptions: for example, if the probability of interception is lower or if the arrival rate 

distribution is heavily right-skewed, the predicted number of unseen arrivals would be higher. 

Note that while the predicted number of Cerambycidae or Aphididae unseen arrivals depends 

strongly on the combination of model assumptions, the qualitative trend of a higher ratio of the 

number of unseen arrivals per non-intercepted established species for Cerambycidae compared to 

Aphididae remains consistent.

Model limitations

Modelling requires assumptions to be made, and the consequence of those assumptions may be 

more or less significant depending on the context in which model predictions are used. Many of 

the assumptions made in this paper do not affect the probability of establishment relative to other 

species, which makes the simple-to-use uniform arrival rate model suitable for comparing 

taxonomic groups. However, as noted, several of the assumptions result in an overestimation of 𝑝

 and , including using a uniform arrival rate distribution instead of a right-skewed (0) 𝑃𝐸𝑋

distribution and assuming the establishment timeframe is the same as the (often shorter) 

interception timeframe (Table 1). In addition, arrival rates are likely to change through time, 

increasing with trade volume, or decreasing with effective phytosanitary measures. Trying to fit 

one source of variation while ignoring all others, in the absence of further data or controls, may 

lead to erroneous conclusions.

The model fit to the data could be influenced by variation in interception probability or by 

variation in per arrival event establishment probability among species, or by variation in Allee A
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effects among species. Unfortunately, there is insufficient data to reliably fit all these effects. This 

is illustrated in the fitting of the Allee inclusive Weibull model in Brockerhoff et al. (2014). Prior 

to correcting for measurement error using the SIMEX method, the Allee parameter ( ) absorbs all 𝑐

sources of variation resulting in a fitted value which is not biologically reasonable. Applying the 

SIMEX correction shifts the fitted Allee parameter to a more reasonable value. However, variation 

in per arrival establishment probability, which can influence the Allee parameter fit (Duncan et al., 

2014), is still not explicitly accounted for. The SIMEX method accounts for some of the variation 

in interception probability but requires an estimate of the error in the interception data. In 

Brockerhoff et al. (2014), this estimate comes from the variation between the USA and New 

Zealand data sets. However, this method will miss variation where the two countries have similar 

biases, for example, similar pest priorities or biological characteristics which make some insects 

easier to detect than others. Using border interception data also fails to capture the arrival 

frequencies for species arriving on non-human assisted pathways, such as natural dispersion across 

land borders into the US, and wind assisted dispersion from Australia into NZ (Close et al., 1978). 

Future development and applications

Although useful for qualitative predictions, the data available to us for this study was inadequate 

for detailed modelling and making quantitative predictions with a high level of certainty. Our 

stochastic model’s predictive ability could be improved by including additional information in the 

model to account for sources of variation in interception probability and individual per arrival 

establishment probability. Additional information could include comprehensive slippage surveys 

to assess the effectiveness of current border surveillance (Whyte, 2006) and climate suitability as 

assessed by environmental distance metrics (Phillips et al., 2018). Ideally, variation in interception 

probability would be controlled and monitored by statistically-designed border surveillance 

programs such as those discussed in Saccaggi et al. (2016). Some information already exists about 

the relationship between numbers of shipments inspected and the probability of pest interception 

(Work et al., 2005), but systematically collected estimates for the probability interception per 

arrival and its variation across all pathways for specific taxonomic groups would enable additional 

model refinement. Furthermore, increasing the intensity or efficiency of inspection could be used 

to increase the probability of interception, and our model predicts that this would provide greater 

power in differentiating species with low vs. high probability of establishment. We acknowledge 

that increasing interception probability per arrival may be difficult given the vast quantity of A
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arriving imports, but an attractive alternative may be to increase support for diagnostics (pest 

identification) so that more detections can be identified to species level. If it is not practical to 

apply a consistent statistical sampling methodology over long time periods (e.g. decades), then 

well documented changes in methodology, and changes in estimates for key parameters, would be 

useful. Ultimately, models that account for costs associated with various intensities of inspection 

and compare these with benefits of invasion forecasts could be used to identify optimal intensities 

of inspection (Surkov et al., 2008).

Border inspection plays a crucial role in plant biosecurity programs (Magarey et al., 2009). While 

some of the benefit of inspection comes from direct prevention of entry by potentially invading 

pests, these direct benefits are likely to be small in most situations because of the relatively small 

fraction of arrivals that are actually intercepted. Indirect benefits of inspection are thought to be 

much greater, including the deterrent effect in which behavior of importers can be changed from 

knowledge that discovery of contaminated shipments could result in refusal, destruction or fines 

(Springborn et al., 2016). The other indirect benefit of border inspections is the information that it 

provides about pests associated with specific shipments (Kenis et al., 2007). Models, such as those 

developed here, can be used to predict probabilities of pest establishment associated with specific 

commodity imports and such predictions are of critical use in risk assessments that guide 

quarantine policy, including the imposition of phytosanitary measures. Estimates for the relative 

number of unseen arrivals in different taxonomic groups could be combined with risk assessments 

to inform resource prioritization by biosecurity officials. Predictions of establishment probabilities 

can also help to identify high risk pests and direct surveillance efforts accordingly (Colunga-

Garcia et al., 2013).

While the impact component of risk also needs to be taken into account, the contrasting qualitative 

behavior of the relationship between interceptions and establishments for Aphididae and 

Cerambycidae suggests the following recommendations. If the probability of a species 

establishment given no interceptions is relatively high, and the number of unseen species is also 

large, as is the case here for Aphididae, then this means that there will be little warning from the 

border about potential new establishments. A biosecurity manager could then take steps to 

increase the overall interception probability in order to be forewarned or increase general post-

border surveillance and general response plans to be able to respond quickly to an unknown 

incursion. It is also possible that the probability of a species establishment given no interceptions A
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is high because interception probability is uneven across the family and some introductory 

pathways or species are being under sampled during inspections.

On the other hand, if the number of unseen species is large, but the probability of a species 

establishment given no interceptions is low, as is the case here for Cerambycidae, then it may be 

better to focus on the known potentially arriving species and look to further knowledge about what 

causes the variability in the per arrival establishment probability among species. This would be 

recommended alongside continued collection of interception data, as changes can occur.

While the models developed here provide considerable benefit to risk assessments and other 

practices in the design of biosecurity strategies, it is likely that more advanced models could be 

developed in the future that would provide more quantitative value when additional data is 

available for further parameterization.
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Box 1

Unseen arrivals Species in a given family that have arrived but have neither been 

intercepted nor established.

Arrival event A propagule as defined in Simberloff (2009), in other words, an arrival of 

one or more individuals of a species at the same time and location.

𝑇 Time period over which interception data are collected.

𝜆𝑗 Arrival rate of species , (average number of arrival events per unit time).𝑗
𝑁𝐴 Number of arrival events of species  over time  𝑗 𝑇.
𝑁𝐼 Number of intercepted arrival events of species  over time .𝑗 𝑇
𝑝𝐼 Probability of an arrival event being intercepted.

𝑝𝐸 The per arrival event probability of establishment - i.e. the conditional 

probability of establishment given a non-intercepted arrival event. 
𝑁𝐸 Number of arrival events of species  which established over time .𝑗 𝑇
𝑃𝑇𝐸 𝑜𝑟 𝑝(𝑛) Probability of species  establishing over time, given  interception events.𝑗 𝑛
𝑃𝐸𝑋 Probability of species  establishing over time , given at least one arrival 𝑗 𝑇

event, but no interceptions.
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Table 1. Model assumptions and their consequences.

Assumption Implementation Reason Consequence

Establishments 

occurring over the 

earlier time period 

would have 

established again 

during the 

interception data 

time period.

All establishment data 

are used.

There is a lag between when an 

establishment occurs and when it 

is reported, which can be on the 

order of decades. This means that 

the data for the most recent 

couple of decades will 

underestimate the number of 

established species. Insects 

which established during the 

earlier decades due to arriving on 

trade routes would likely 

establish again, but “new 

establishments” of already 

widespread populations are not 

likely to be detected or recorded.

Establishment probability per 

arrival will be overestimated, and 

hence is overestimated. An 

alternative assumption would be 

to assume that the arrivals during 

the interception timeframe would 

have been arriving at the same 

rate over the earlier time frame, 

but this would lead to the same 

consequence in terms of the ratio 

of establishment probability per 

arrival and interception 

probability per arrival.

All arrival rates are 

equally likely (under 

the uniform arrival 

rate model).

Equations (1) and (2) 

can be simplified to 

(3) and (4).

This simplification leads to 

equations which are much 

simpler to fit. This is useful for a 

quick evaluation of the 

relationship between probability 

of establishment and number of 

interceptions. 

The probability of low arrival 

rates is likely underestimated. 

This leads to an overestimation 

of .𝑝(0)

There is no variation 

between species in a 

taxonomic group in 

their per arrival 

interception 

probability or their 

The per arrival 

interception 

probability and per 

arrival establishment 

probability are 

modelled as constant 

This is a simplifying assumption 

as we do not have the data to fit 

additional variables. However, 

there is likely to be less variation 

among species in the same 

taxonomic group, compared to 

See Figure 5.
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per arrival 

establishment 

probability.

within a taxonomic 

group.

among distantly related species.
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Table 2. Model results for each data set for the stochastic arrival-interception-establishment model under different candidate arrival rate distributions 

(uniform and power law), the exponential model, and a logistic regression model, where columns show , the assumed value for the interception 𝑝𝐼

probability; , the maximum likelihood estimate for the per arrival establishment probability; , the predicted probability of establishment for 𝑝𝐸 𝑝(0)

species that have not been intercepted; , the predicted probability of establishment for species that have arrived but not been intercepted; Akaike 𝑃𝐸𝑋

information criterion (AIC). 

Model 

input

Model outputsData set Model

𝑝𝐼 𝑝𝐸 𝑝(0) 𝑃𝐸𝑋 AIC

Cerambycidae US Uniform 0.5 0.00354 [0.00203, 0.00570] 0.00353 [0.00203, 0.00567] 0.00706 [0.00405, 0.01134] 111.13

0.1 0.00039 [0.00023, 0.00063] 0.00353 [0.00203, 0.00567] 0.00392 [0.00225, 0.00630] 111.13

0.01 0.00004 [0.00002, 0.00006] 0.00353 [0.00203, 0.00567] 0.00357 [0.00205, 0.00573] 111.13

 Power 

(mu=2.09)

0.5 0.00425 [0.00243, 0.00687] 0.00016 [0.00009, 0.00026] 0.00463 [0.00264, 0.00748] 115.13

 0.1 0.00047 [0.00027, 0.00076] 0.00016 [0.00009, 0.00026] 0.00072 [0.00041, 0.00116] 115.13

 0.01 0.00004 [0.00002, 0.00007] 0.00016 [0.00009, 0.00026] 0.00019 [0.00011, 0.00031] 115.13

 Exponential 0.01 0.00004 [0.00006, 0.00002] 0  112.00

 Logistic  0.03538   127.03

Cerambycidae NZ           Uniform 0.5 0.00337 [0.00142, 0.00661] 0.00336 [0.00142, 0.00657] 0.00672 [0.00283, 0.01313] 61.88

0.1 0.00037 [0.00016, 0.00073] 0.00336 [0.00142, 0.00657] 0.00373 [0.00157, 0.00729] 61.88

0.01 0.00003 [0.00001, 0.00007] 0.00336 [0.00142, 0.00657] 0.00339 [0.00143, 0.00663] 61.88
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 Power 

(mu=1.86)

0.5 0.00390 [0.00164, 0.00765] 0.00020 [0.00008, 0.00039] 0.00442 [0.00186, 0.00866] 64.25

 0.1 0.00043 [0.00018, 0.00085] 0.00020 [0.00008, 0.00039] 0.00076 [0.00032, 0.00149] 64.25

 0.01 0.00004 [0.00002, 0.00008] 0.00020 [0.00008, 0.00039] 0.00024 [0.00010, 0.00046] 64.25

 Exponential 0.01 0.00004 [0.00007, 0.00002] 0 62.85

 Logistic     0.04138  61.66

Aphididae US Uniform 0.5 0.16672 [0.12832, 0.21408] 0.14290 [0.11372, 0.17633] 0.28579 [0.22745, 0.35266] 225.14

0.1 0.01852 [0.01426, 0.02379] 0.14290 [0.11372, 0.17633] 0.15877 [0.12636, 0.19592] 225.14

0.01 0.00168 [0.00130, 0.00216] 0.14290 [0.11372, 0.17633] 0.14434 [0.11487, 0.17811] 225.14

 Power 

(mu=1.79)

0.5 0.25363 [0.19291, 0.32993] 0.01390 [0.01068, 0.01788] 0.27972 [0.21478, 0.35969] 298.61

 0.1 0.02818 [0.02143, 0.03666] 0.01390 [0.01068, 0.01788] 0.05006 [0.03844, 0.06437] 298.61

 0.01 0.00256 [0.00195, 0.00333] 0.01390 [0.01068, 0.01788] 0.01611 [0.01237, 0.02072] 298.61

 Exponential 0.01 0.00191 [0.00240, 0.00149] 0   251.20

 Logistic     0.55521  190.58

Aphididae NZ Uniform 0.5 0.26298 [0.15996, 0.41999] 0.20822 [0.13790, 0.29577] 0.41644 [0.27580, 0.59154] 59.22

0.1 0.02922 [0.01777, 0.04667] 0.20822 [0.13790, 0.29577] 0.23135 [0.15322, 0.32863] 59.22

0.01 0.00266 [0.00162, 0.00424] 0.20822 [0.13790, 0.29577] 0.21032 [0.13929, 0.29876] 59.22

 Power 

(mu=1.70)

0.5 0.43960 [0.25880, 0.72800] 0.02713 [0.01647, 0.04298] 0.47698 [0.28964, 0.75568] 76.72

 0.1 0.04884 [0.02876, 0.08089] 0.02713 [0.01647, 0.04298] 0.09041 [0.05490, 0.14323] 76.72
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 0.01 0.00444 [0.00261, 0.00735] 0.02713 [0.01647, 0.04298] 0.03109 [0.01888, 0.04926] 76.72

 Exponential 0.01 0.00302 [0.00454, 0.00191] 0 66.01

 Logistic    0.64098 51.98

Notes. Values in square brackets show the 95% CI for  and corresponding predictions for  and . For the exponential model, the maximum 𝑝𝐸 𝑝(0) 𝑃𝐸𝑋

likelihood estimate and 95% CI of the parameter r are shown; these were converted to an estimate and CI for  for a selected value of  is the 𝑝𝐸 𝑝𝐼.  𝑇

number of years interception data was collected and N is the number of species in the interception data. For the Cerambycidae US data set, T = 100 

yr, N = 379. For the Cerambycidae NZ data set, T = 50 yr, N = 163. For the Aphididae US data set, T = 71 yr, N = 145. For the Aphididae NZ data set, 

T = 18 yr, N = 44.
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Figure 1. Schematic diagrams of the stochastic arrival-interception-establishment model. (A) 

Time series showing arrivals events (full dots), interceptions (open dots) and establishments (open 

dots) of three different species (blue, red and black). The interception and establishments may 

occur some time after the initial arrival event. During the observation window shown, the blue 

species has five arrivals, none of which establish, three are intercepted and two are neither 

intercepted nor established. (B) Venn diagram showing the five mutually exclusive outcomes for 

species in a defined set (black box) during a given observation period: (1) did not arrive; (2) 

arrived but neither intercepted nor established; (3) arrived and intercepted but not established; (4) 

arrived and established but not intercepted; (5) arrived, intercepted and established. The 

probability of establishment  for a species that has not been intercepted is the number of 𝑝(0)

species in area (4) divided by the number of species in areas (1), (2) and (4). The probability of 

establishment  for a species that has arrived but not been intercepted is the number of species 𝑃𝐸𝑋

in area (4) divided by the number of species areas (2) and (4).

Figure 2. The models calibrated to available data on species interceptions and 

establishments. (A) Cerambycidae arrivals in the USA; (B) Cerambycidae arrivals in New 

Zealand; (C) Aphididae arrivals in the USA; (D) Aphididae arrivals in New Zealand. Each graph 

shows the predicted species establishment probability as a function of the number of interceptions, 

under various models (see legend). Parameter values: , fitted value for  as shown in 𝑝𝐼 = 0.01 𝑝𝐸

Table 2. Probability of establishment was calculated from the data in logarithmic bins (black 

crosses).

Figure 3. Estimating the number of unseen arrivals using a uniform arrival rate distribution. 

Probability of establishment  (represented by the colour bar) for species that have arrived at 𝑃𝐸𝑋

least once but not been intercepted during the observation period, assuming a uniform arrival rate 

distribution (Eq. 4). If  is small, then for every species that has established without being 𝑃𝐸𝑋

intercepted, there are many more species that have breached border biosecurity but not yet 

established. Superimposed curves show the predicted values of  for the Cerambycidae data 𝑃𝐸𝑋

(white) and Aphididae data (red) in the USA (solid) and New Zealand (dashed), as a function of 

the assumed value for the probability of interception  and assuming a uniform arrival rate 𝑝𝐼

distribution.
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Figure 4. Estimating the number of unseen arrivals using a power law arrival rate 

distribution. Probability of establishment  (represented by the colour bar) for species that 𝑃𝐸𝑋

have arrived at least once but not been intercepted during the observation period, assuming a 

power law arrival rate distribution (Eq. 2). If  is small, then for every species that has 𝑃𝐸𝑋

established without being intercepted, there are many more species that have breached border 

biosecurity but not yet established. Superimposed curves show the predicted values of  for the 𝑃𝐸𝑋

Cerambycidae data (white, A and B) and Aphididae data (red, C and D) in the USA (solid, A and 

C) and New Zealand (dashed, B and D), as a function of the assumed value for the probability of 

interception  and assuming a power law arrival rate distribution.𝑝𝐼

Figure 5. Including variance in the model parameters or an Allee effect decreases the risk of 

establishment. The effect of including parameter variation and an Allee effect in the power law 

arrival rate model for the parameters values predicted by the Cerambycidae data (A,B) and the 

Aphididae data (C,D). Parameter values: mean interception probability ; mean per arrival 𝑝𝐼 = 0.01

establishment probability  is set to the fitted value of  shown in Table 2;  yr (weak 𝑝𝐸 𝑝𝐸 𝑎 = 0.01

Allee effect),  yr (strong Allee effect). 𝑎 = 0.001
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