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Abstract 1 

Previous studies have suggested that the Late Glacial period (LG; ~ 14,600 – 11,700 2 

cal BP) was characterised by abrupt and extreme climate variability over the European 3 

sector of the North Atlantic. The limited number of precisely dated, high-resolution 4 

proxy records, however, restricts our understanding of climate dynamics through the 5 

LG. Here, we present the first annually-resolved tree-cellulose stable oxygen and 6 

carbon isotope chronology (δ18Otree, δ13Ctree) covering the LG between ~14,050 – 7 

12,795 cal BP, generated from a Swiss pine trees (P. sylvestris; 27 trees, 1255 years). 8 

Comparisons of δ18Otree with regional lake and ice core δ18O records reveal that LG 9 

climatic changes over the North Atlantic (as recorded by Greenland Stadials and Inter-10 

Stadials) were not all experienced to the same degree in the Swiss trees. Possible 11 

explanations include: (1) LG climate oscillations may be less extreme during the 12 

summer in Switzerland, (2) tree-ring δ18O may capture local precipitation and humidity 13 

changes and/or (3) decayed cellulose and various micro-site conditions may overprint 14 

large-scale temperature trends found in other δ18O records. Despite these challenges, 15 

our study emphasises the potential to investigate hydroclimate conditions using 16 

subfossil pine stable isotopes. 17 

Keywords: Tree-ring cellulose, δ13C, δ18O, Late Glacial, Switzerland, Climate  18 
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Highlights 19 

- Millennial-length stable isotope chronologies of δ13C and δ18O developed from 20 

27 Swiss subfossil pine trees, covering the Late Glacial (~14,050 – 12,795 cal 21 

BP); 22 

- Two periods of extreme δ18Otree depletions parallel known North Atlantic ‘cool 23 

periods’ recorded in Greenland δ18ONGRIP (GI-1c, GS-1), while another LG 24 

oscillation (GI-1b) is not clearly expressed in δ18Otree 25 

- Trees with less extensive decay have significantly higher inter-isotope 26 

(δ18Otree: δ13Ctree) correlations, and decay seemed to impact the stability of 27 

δ13Ctree more strongly over δ18Otree  28 
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1. Introduction 29 

1.1 The Late Glacial & climate proxy records 30 

The Late Glacial (LG; ~ 14,600 – 11,700 cal BP) in the North Atlantic (NA) region is 31 

characterised by extreme and abrupt climate change, including at least four prominent 32 

“cold periods”. In Greenland, these events are defined by ice core δ18O downturns, i.e. 33 

substages within the Greenland Stadials (GS) and Inter-Stadials (GI); GI-1d 34 

(Rasmussen et al. 2006), GI-1c (Rasmussen et al. 2014), GI-1b (Björk et al. 1998) and 35 

GS-1 (Mayle et al. 1999, Rasmussen et al. 2006, Steffensen et al. 2008). Greenland 36 

ice core δ18O records are regarded as key datasets for comparison of hydroclimate 37 

indices across the NA region (Figure 3) (Alley et al. 1993, Rasmussen et al. 2014, 38 

Steffensen et al. 2008), due to their unrivalled temporal resolution (annual in parts) 39 

and extent (tens of thousands of years) as well as its sensitivity to NA precipitation and 40 

temperature variability.  41 

In central Europe, δ18O in carbonates from several lake sediments offer sequences 42 

that can be directly compared to Greenland and portray broadly consistent signals of 43 

inferred temperature change (δ18O drop) in the low frequency domain (e.g. Lauterbach 44 

et al., 2011, Schwander et al. 2000, Siegenthaler et al. 1984, van Raden et al. 2012, 45 

2013, Verbruggen et al. 2010, von Grafenstein et al. 2000). Pronounced excursions in 46 

lake carbonate δ18O (negative) and speleothem δ18O (positive) records have 47 

pinpointed similar cold periods across central Europe including Germany (von 48 

Grafenstein et al. 1999, Rach et al., 2014), Switzerland (Lotter et al. 1992, 1999, 2000, 49 

Verbruggen et al. 2010) and Austria (Lauterbach et al. 2011). The characterisation and 50 

drivers of these temperature fluctuations, however, remains highly uncertain (Rach et 51 

al. 2014, Rasmussen et al. 2014). The low frequency climate variability inherent in lake 52 



Quaternary Science Reviews Submission 

5 

records provides information about decadal-scale variability on local to regional 53 

scales. However, the inter-annual features of such events are indistinguishable. 54 

In this respect, tree-rings offer an annually resolved archive not only in terms of dating 55 

like varved lake sediments, but also with respect to proxy information from parameters 56 

(e.g. ring width, maximum latewood density, stable isotope ratios) measured on 57 

sequences of individual tree rings. However, due to the relatively short lifespans of 58 

individual trees, it is challenging to maintain low frequency climate information within 59 

millennial records (Cook et al. 1995, Esper et al. 2002), as some records have 60 

revealed limited power at multi-centennial time scales (e.g. Saurer et al. 2012, Cook 61 

et al. 2019). Fortunately, it has been demonstrated that subfossil tree-ring δ18O 62 

records can capture large-scale climate deterioration, revealed through increased 63 

variability and distinct negative excursions (Pauly et al. 2018). 64 

1.2 Climate proxies in tree-ring stable isotopes  65 

The growth increments (ring width), wood density and stable isotope ratios of 66 

numerous modern species in Europe have been correlated significantly to relevant 67 

climatic parameters (temperature, precipitation, humidity) in numerous studies (e.g. 68 

Saurer et al. 2012, Büntgen et al. 2011, Esper et al. 2014). Signal strengths were found 69 

depending on the local limiting factors. Nevertheless, tree-ring widths, density and 70 

stable isotopes have the capacity to trace inter-annual variability and extremes, which 71 

are characteristic of climate change (e.g. drought, wet periods, storms).  72 

δ13C of tree-ring cellulose (δ13Ctree) is based on the δ13C of the atmospheric CO2 73 

source which contains no direct climatic signal. Its climate signature originates from 74 

fractionations during photosynthesis at the leaf or needle level (Farquhar et al., 1982). 75 

In contrast, δ18O of tree-ring cellulose (δ18Otree) is related to the δ18O of the 76 
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precipitation source via soil water. δ18O of soil water constitutes the δ18O input to the 77 

arboreal system and represents an average δ18O over several precipitation events 78 

modified by partial evaporation from the soil (depending on soil texture and porosity) 79 

and by a possible time lag, depending on rooting depth (Saurer et al. 2012). δ18Otree is 80 

further dependent on two tree-internal processes: evaporative 18O-enrichment of leaf 81 

or needle water via transpiration, as well as biochemical fractionations and isotopic 82 

exchange of δ18O with trunk water during cellulose biosynthesis (e.g. Roden et al., 83 

2000, Barbour, 2007, Kahmen et al. 2011, Treydte et al., 2014 and citations therein).  84 

1.2.1 Climate signals in stable isotopes of modern Swiss tree-ring records 85 

Modern tree-ring stable isotope chronologies in Switzerland have been found to have 86 

relatively strong correlations with a variety of summer (JJA) meteorological 87 

parameters. For example, δ18Otree has been correlated with summer precipitation 88 

extremes (various species: Saurer et al. 2008), relative humidity and sunshine duration 89 

(Pinus sylvestris: Saurer et al. 1997, Larix decidua: Kress et al. 2010, Pinus sylvestris, 90 

Picea abies, Fagus sylvatica, Fraxinus excelsior:  Saurer et al. 2012) and δ13Ctree with 91 

summer temperature (various species: Saurer et al. 2008) and drought conditions 92 

(Larix decidua: Kress et al. 2010). Synoptic patterns and associated indices (e.g. 93 

cyclone and anticyclone activity, air pressure) have also been reconstructed from 94 

Swiss tree-ring δ18Otree, with stronger correlations revealed during extreme years or 95 

periods (Saurer et al. 2012). Despite the success in tree-ring isotopes reflecting 96 

climate parameters, the relationships have been found to be unstable through time 97 

(Kress et al. 2010, Reynolds-Henne et al. 2007, Seftigen et al. 2011) as 98 

interdependency between meteorological variables also often changes depending on 99 

the climate state. As a result, Saurer et al. (2012) has suggested the integration of 100 

multiple climate parameters, with focus on reconstructing acute and widespread 101 
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synoptic deviations, rather than individual meteorological parameters for long tree-ring 102 

stable isotope records.  103 

1.2.2 Subfossil trees and stable isotope records 104 

The availability of robust tree-ring chronologies is limited prior to the Holocene and 105 

only a few subfossil records have been established for the LG (e.g. Reinig et al. 2018 106 

and references therein). Absolutely dated tree-ring chronologies begin in 12 325 cal 107 

BP with the Preboreal Pine Chronology (PPC) from Germany followed by the 108 

Holocene Oak Chronology (HOC) (Friedrich et al. 2004). Beyond 12 325 cal BP, 109 

floating tree-ring chronologies exist for Switzerland (Reinig et al. 2018), Germany (e.g. 110 

Friedrich et al. 1999, 2001, 2004), France (Miramont et al. 2000a, 2000b, 2011), Italy 111 

(Casadoro et al. 1976), USA (Leavitt et al. 2006, Panyushkina and Leavitt 2007, 2013), 112 

New Zealand (Hogg et al. 2013, 2016) and Tasmania (Barbetti et al. 2004, Hua et al. 113 

2009). Scots pine trees from a floating tree-ring chronology (Reinig et al. 2018) was 114 

used for this study.  115 

Some stable isotope records exist from subfossil tree-ring sequences from the 116 

prehistoric Holocene (Aguilera et al. 2011, Boettger, et al. 2003, Edvardsson, et al. 117 

2014, Frumkin 2009, Helama, et al. 2015, 2018, Helle 1994, Helle and Schleser 1998, 118 

Hunter, et al. 2006, Leavitt, et al. 2006, Mayr et al. 2003) and very few from the LG 119 

(Pauly et al. 2018, Wagner 2010, Becker et al. 1991). Many of these records lacked 120 

the sample replication to build a chronology (Aguilera et al. 2011, Frumkin 2009, 121 

Hunter et al. 2009), or developed a chronology with a limited temporal resolution or 122 

scale (Becker et al. 1991, Evardsson et al. 2013, Helama et al. 2015, Leavitt et al. 123 

2006, Mayr et al. 2003,). Only a few records exist with robust chronologies at annual 124 

(Pauly et al. 2018, Wagner et al. 2010) or decadal (Helama et al. 2018) resolution 125 
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during this time. Higher sample replication (ntrees > 5) has been possible at decadal 126 

resolution compared to lower sample replication (ntrees = 1-4) at annual resolution due 127 

to the limited availability and quality of subfossil wood material (See Supplementary 128 

Information 1).  129 

2. Material and Methods 130 

2.1 Stable Isotopes from pine trees in Switzerland 131 

To develop a new tree-ring stable isotope chronology (hereafter referred to as CH-132 

ISO) wood material from the improved Swiss Late Glacial Master Chronology, SWILM 133 

(Kaiser et al. 2012, Schaub et al. 2008, Friedrich et al. 1999) was used. While still 134 

floating, SWILM is the most robust and oldest LG tree-ring chronology currently 135 

available in the Northern Hemisphere, representing a very well-preserved LG forest. It 136 

covers 1500 years (~14 200 – 12 635 cal BP, Reinig et al. 2018) and comprises of 137 

trees from four pine stands in the Zürich region: Gaenziloo (ntrees=55), Landikon 138 

(ntrees=28), Daettnau (ntrees=46) and Binz (ntrees=187). The tree-ring chronology is 139 

plotted according to a local timescale “Zürich Scale” (representing floating positions 140 

prior to radiocarbon dating) as well as under cal BP. In conjunction with several 141 

hundred new 14C measurements of high quality - not only in terms of replication, but 142 

also resolution (annual) (Reinig et al. 2020) - the relative positioning of the SWILM 143 

with respect to IntCal13 (Reimer et al. 2013) was greatly improved (Reinig et al. 2018), 144 

resulting in a dating uncertainty of ± 8 years (2σ error). By independent inter-145 

hemispheric 14C wiggle matching with New Zealand`s subfossil Kauri (Hogg et al. 146 

2016), the consolidated SWILM used in this study was shifted by +35 years with 147 

respect to IntCal13 (Sookdeo et al. 2019).   148 
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A subset of 27 trees was chosen from the SWILM wood material to establish a pair of 149 

oxygen and carbon stable isotope chronologies from tree-ring cellulose at annual 150 

resolution (CH-ISO, Figure 1), covering approximately 14 050 – 12 795 cal BP. 151 

Cellulose was extracted from wholewood material of individual tree-rings (Wieloch et 152 

al. 2011, Schollaen et al. 2017), homogenised and freeze-dried prior to being weighed 153 

and packed (silver capsules (ø3.3x4mm) for stable isotope measurement (Delta V, 154 

Thermofisher Scientific Bremen; coupled with TC/EA HT at 1400°C). Results were 155 

compared against international and lab-internal reference material (IAEA-CH3, IAEA-156 

CH6 and Sigma-Aldrich Alpha-Cellulose) using two reference standards with 157 

widespread isotopic compositions for a single-point normalisation (Paul, Skrzypek, 158 

and Forizs 2007). Final isotope ratios are given in δ value, relative to VSMOW (δ18O) 159 

and VPDB (δ13C), with replication reproducibility of ±0.3‰ (δ18O) and ±0.15‰ (δ13C). 160 

2.2 Data Analysis 161 

Tree-ring records (δ13C and δ18O) were z-scored, as outlined in method one from 162 

Hangartner et al. (2012) due to the high variability in absolute levels (‰) of individual 163 

trees. Pearson’s correlations between (1) intra-tree isotope series of δ13C and δ18O 164 

(C:O) and (2) inter-tree δ18O were completed to investigate whether carbon and 165 

oxygen varied in tandem (thus controlled by similar environmental conditions) and to 166 

what degree δ18O was consistent across concurrently growing trees (i.e. the 167 

population signal). Inter-tree δ18O correlations were compared with sample replication 168 

using a linear model to explore the potential chronological bias.   169 

 170 
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Figure 1. Subfossil trees in Switzerland:  (a) Temporal distribution of a subset of subfossil tree-ring 
chronologies from 4 Swiss sites that make up the SWILM chronology: (1) Landikon (green, n = 28), 
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3. Results 171 

3.1 Tree-ring stable isotopes 172 

The isotope chronologies are a bit shorter than the SWILM (Figure 1d) due to 173 

limitations in cutting tracks and rings from the delicate subfossil wood material and 174 

avoidance of tree piths (to reduce any juvenile effects), with a total extent of ~14 050 175 

– 12 795 cal BP. The trees were chosen based on various selection criteria, including 176 

clearly expressed wood structure (allowing dissection of rings; ring-width ≥0.3mm), a 177 

relatively long lifespan (>150 years), suitability for tree-ring cross-dating, and detailed 178 

radiocarbon series data. Despite this, many of the tree disks exhibited signs of 179 

degradation and decay, which became apparent during the dissection process; 180 

particularly along the outer rings comprising the sapwood which is softer than the inner 181 

heartwood and where the tree stumps were likely exposed to aqueous conditions. 182 

Approximate level of decay was noted during the sample preparation (Table 1), 183 

however, sections of very clearly visible decay and crumbled wood were avoided 184 

where possible during sample collection. The wood texture varied greatly between 185 

trees of all decay states – from brittle and dry to hard and resinous - but this was not 186 

quantitatively measured for this study. The sample replication varies throughout CH-187 

ISO, with a maximum of 7, a minimum of 1 and a mean of 4. 188 

3.2 Time Series Analysis 189 

The inter-tree correlation of δ18Otree was highly variable (Figure 2a), with a mean of 190 

approximately 0.18, with average values ranging from 0.01 to 0.41. A significant 191 

relationship was found between the average inter-tree δ18O correlation (Figure 2e) and 192 

the sample replication (r, Figure 2f) with an error of ± 0.01: 193 



14000138001360013400132001300012800
Time (calendar years before present)

−1

0

1

0

0.1

0.2

0.3

0.4

0
2
4
6

0.0

0.1

0.2

0.3

Sa
m

pl
e 

re
pl

ic
at

io
n

 in
tra

-tr
ee

 O
:C

 
co

rre
la

tio
n 

(R
2  a

ve
ra

ge
)

δ18
O

 (z
-s

co
re

d 
av

er
ag

e)
In

te
r-t

re
e 

δ18
O

 
co

rre
la

tio
n 

(%
 a

ve
ra

ge
)

Figure 2. CH-ISO Chronology parameters: average series correlation of δ18O (a) boxplot and (b) compared to sample
replication; (c) average individual (intra-tree) correlations between stable isotopes (δ18O:δ13C), (d) mean tree-ring 
δ18O (z-scored) with standard deviation shaded, (e) average chronology (inter-tree) δ18O correlation, shaded from 
high correlation (green) to low correlation (yellow), and (f) chronology sample replication. 

a b

c

d

e

f

0

10

20

30

40
Av

er
ag

e 
Se

rie
s 

C
or

re
la

tio
n

0 10 20 30 40

2

3

4

5

6

7

Average Series Correlation

Sa
m

pl
e 

R
ep

lic
at

io
n



Quaternary Science Reviews Submission 

11 

CH-ISO δ18O correlation = 13.9 + 0.92*r ± error 194 

This relationship demonstrates that sample replication is positively related to inter-tree 195 

δ18O corrections. However, this linear relationship may be biased by more data points 196 

and spread in lower replication values (e.g. rep = 2 & 3, Figure 2b). For much of the 197 

chronology, the inter-tree δ18O corrections average between 12-20% (Figure 2b,e). 198 

The highest average inter-tree δ18O correlations (>25) occur in two distinct periods 199 

(~13 820 – 13 690 cal BP and 12 870 – 12 800 cal BP) with sample replications 200 

between 2-3 trees; demonstrating instances when outliers contradict the 201 

abovementioned linear relationship. 202 

 On the other hand, inter-tree correlation of δ18Ctree were generally very low (<0.10), 203 

and therefore further analysis will focus more on the suitability of δ18Otree as a 204 

paleoproxy.  205 

The covariance between the mean δ18O and δ13C is insignificant for the majority of 206 

trees within the chronology (Figure 2c). Only 9 of the 27 trees (33%) in CH-ISO 207 

demonstrated a δ18O:δ13C correlation R2 value >0.10.  208 

15 trees are strongly decayed (Table 1 “high”: 56% CH-ISO), 9 trees show moderate 209 

decay (Table 1 “medium”: 33% CH-ISO) and 3 trees have little decay (Table 1 “low”: 210 

11% CH-ISO). Of those trees with significant inter-isotope correlations (R2 >0.10), one 211 

had “high” decay, 5 had “medium” decay and 3 had “low” decay. Therefore, 100% of 212 

the trees that exhibited low levels of decay, 56% with moderate decay and 7% with 213 

high decay showed strong inter-isotope correlations. Of these trees, the highest 214 

correlations were found in low decay trees (mean R2 = 0.39, n=3) compared to 215 

moderately decayed (mean R2 = 0.16, n=5) and highly (mean R2 = 0.15; n=1) decayed 216 

trees. In addition, the vast majority of the highly decayed trees (93%) had low inter-217 
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isotope correlations (mean R2 = 0.03, n=14). When comparing individual tree δ18O to 218 

overlapping trees in the chronology, there was no significant difference in the average 219 

cross-correlation of different decay states – with a mean of 17.6% for low decay, 18.2% 220 

for moderate decay and 19.6% for high decay. The cross-correlations varied 221 

significantly, between 2% to 75% between tree pairs, averaging 7% to 40% for the 222 

population compared with each individual (Table 1, Figure 2e). 223 

Sample R2 

(O:C) 
P 
(O:C) 

Decay  Average 
inter-tree 
cross 
correlation 
(%) 

Timespan 

(cal BP) 

Zurich 
Scale 

LAN10 0.15 <0.001 High 18 13355 - 13241 1740-1854 

GAE28 0.06 <0.05 High 20 13330 - 13183 1765-1912 

GAE67 0.16 <0.001 Medium 14 13303 - 13045 1792-2050 

K353 0.15 <0.001 Medium 24 13185 - 12991 1910-2104 

K352 0.15 <0.001 Medium 7 13165 - 13005 1930-2090 

GAE59 0.02 - High 11 13091 - 12967 2004-2128 

GAE60 0.01 - High 5 12984 - 12842 2111-2253 

GAE25 0.06 <0.05 High 32 12883 - 12795 2212-2309 

GAE5 0.001 - High 32 12904 - 12795 2192- 2365 

LAN44 0.001 - High 30 13904 - 13781 1191-1314 

BIN138 0.19 <0.001 Medium 29 13838 - 13768 1257-1327 

BIN137 0.01 - High 40 13767 - 13697 1328-1398 
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LAN21 0.16 <0.001 Medium 11 13743 - 13555 1352-1540 

GAE68 0.05 <0.05 Medium 17 13670 - 13535 1425-1560 

LAN16 0.07 <0.001 Medium 17 13667 - 13489 1428-1606 

GAE74 0.015 - High 13 13647 - 13 509 1448-1586 

GAE48 0.02 0.1 High 19 13589 - 13413 1506-1682 

BIN150 0.42 <0.001 Low 14 13565 - 13 507 1530-1588 

BIN75 0.14 <0.001 Low 18 13558 - 13320 1537-1775 

GAE45 0.01 - High 11 13546 - 13466 1549-1629 

GAE51 0.001 - High 16 13417 - 13232 1678-1863 

GAE31 0.6 <0.001 Low 21 13369 - 13238 1726-1857 

BIN155 0.01 - Medium 7 14022 - 13855 1073-1240 

BIN162 0.06 <0.001 High 14 14033 - 13874 1062-1221 

BIN191 0.07 <0.001 High 17 14030 - 13879 1065-1216 

BIN207 0.003 - High 16 14050 - 13944 1040-1151 

LAN37 0.001 - Medium 38 13930 - 13772 1165-1323 

Table 1: Individual tree correlations between isotopes (δ18O:δ13C) within a single tree, 224 
average inter-tree δ18O cross-correlations and preliminary qualitative decay assessment of 225 
each tree. Significant inter-isotope correlations are highlighted.  226 
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et al. 2014), compared to the Swiss tree-ring stable oxygen isotope record (CH-ISO, this study). Four NGRIP cool 

substages indicated (GI-1d, GI-1c1,2, GI-1b and GS-1) matched with comparable climate oscillations in other archives.
Blue bars represent periods of relatively high population signal within the CH-ISO stable oxygen series.
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4. Discussion 227 

4.1 Considerations in CH-ISO chronology development 228 

4.1.1. Cellulose decay and stable isotopes 229 

Due to wood and cellulose decay considerations (Supplementary Material 1), in 230 

addition to the fact that cellulose is non-labile and does not exchange oxygen isotopes 231 

with xylem water following formation (Wright et al. 2008), cellulose was extracted for 232 

the development of CH-ISO. Similar to Nagavciuc et al. (2018), there were 233 

divergences in both δ13C and δ18O between trees, with weaker population signals in 234 

δ13C despite the use of standard sample replication. As a result of the low correlation 235 

of δ13Ctree between trees, this discussion will focus on the implications of δ18Otree.  236 

Evidence of decay can be seen around bark and sapwood in most CH-ISO trees 237 

(Figure 4), where the wood material is relatively discoloured and brittle, indicating 238 

variable levels of rot. Based on other studies (Savard et al. 2012; Blanchette 2000), 239 

we assume this is a result of bacteria from water-saturated soil, preferentially attacking 240 

the outer trunk portions through water infiltration. Yet, due to the expectation that 241 

stable oxygen in cellulose is less vulnerable to diagenetic alteration (Leavitt et al. 242 

1993), the varying decay states were not considered when developing the CH-ISO 243 

chronology. In CH-ISO, the subfossil trees exhibit highly variable states of visual decay 244 

(Table 1), as demonstrated by a qualitative assessment. While preliminary, it appears 245 

that trees with less extensive decay have significantly higher inter-isotope (δ18O: δ13C) 246 

correlations than those with moderate to high levels of decay. In cases where the 247 

stable isotopes do not exhibit similar trends, it is assumed that climatological variables 248 

which impact both isotopes through vapor pressure deficit and leaf stomatal 249 

conductance (e.g. relative humidity, precipitation) are not strongly recorded within the 250 

tree-rings. As a result, it can be assumed that trees with relatively high levels of decay 251 
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Figure 4. Swiss subfossil pine wood quality (a) disk of tree demonstrating variable levels 
of decay: (1) low, (2) moderate and (3) high. Higher levels of wood decay were generally 
found closer to the bark, with best preserved wood material closer to the pith (b).  

Allerød Younger Dryas

oscillating
polar front

polar front

strengthen 
zonal westerlies

North Atlantic

North Atlantic

subtropical subtropical

continental continental

a b
Figure 5. Hypothesised sequence of Late Glacial air mass teleconnections and migrations:  
(a) general Allerød conditions with oscillating polar front; the Allerød representing the Interstadial
in the Late Glacial between 13 900 - 12 900 cal BP, followed by (b) the Younger Dryas (GS-1) cold 
reversal, with increased zonal westerlies and migrated polar front. Study site indicated (white circle).
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lead to more extensive chemical alteration of δ13Ctree over δ18Otree, causing the greater 252 

divergence between the two measures and between δ13Ctree of different trees. 253 

Inter-tree δ18Otree correlations did not significantly differ as a function of wood decay, 254 

further suggesting that δ18Otree may be less prone to fractionation during wood decay, 255 

or at least wood decay that is clearly visible. The still relatively low cross-correlation 256 

between inter-tree δ18Otree (2% - 75%; mean: 15%) implies that chemical wood decay 257 

may be present but indistinguishable under light microscope. This is within the range, 258 

if not slightly lower than the inter-tree δ18Otree correlations for modern pine trees in the 259 

region; a  cross-correlation of 29% (ntrees = 4) was found by Reynolds-Henne et al. 260 

(2007) in the Swiss alps.  261 

In accordance to our findings, Savard et al. (2012) established divergences in δ18O 262 

between trees in the absence of visual decay, proving further processes of aqueous 263 

decay impacting subfossil wood are yet to be discovered. Indeed, while strongly 264 

decayed portions of tree disks were avoided where possible for stable isotope 265 

analysis, some differences in the structural integrity of the wood (in the absence of 266 

colouration change) was noted. The impact of textural variability on tree-ring isotopes 267 

was not taken into consideration and requires further investigation. 268 

4.1.2 Local site and tree-level considerations  269 

Local site conditions, which may impact tree-ring isotopic signatures, are difficult to 270 

decipher for CH-ISO. Trees from SWILM grew along an unstable slope, impacting root 271 

development and potentially uptake of sourcewater. Furthermore, varying depths of 272 

the active soil layer from (potential) permafrost conditions during cold episodes could 273 

have caused distinct variability in subsurface hydrology and rooting depth. Fluctuating 274 

thaw depth could have provided inconstant amounts of melted permafrost water to 275 
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individual trees, and it can well be assumed that the soil water δ18O with a large 276 

contribution from permafrost melt had a much different δ18O signature (more depleted) 277 

than summer rain. Moreover, the presence or absence of permafrost could have 278 

influenced the seasonal uptake of different water sources with various isotopic 279 

signatures (e.g. relatively δ18O-enriched liquid rain vs. δ18O-depleted snow). For 280 

example, meltwater and/or permafrost thaw could lead to depleted δ18O signatures 281 

despite high summer temperatures. Potentially drier and warmer summer conditions 282 

may lower soil water δ18O values, i.e. altering tree water source composition due to 283 

increased permafrost or snowpack meltwater. This can lead to inverse climate-δ18Ocel 284 

relationships as indeed reported for larch trees in Siberia (Saurer et al 2016). 285 

Furthermore, during very dry summers meltwater may have served as the most 286 

important water source for the trees, potentially compensating increased 18O 287 

enrichment of needle water due to increased transpiration rates during drought years.  288 

As a result of these potential differences in microsite-conditions, trees within the same 289 

vicinity could theoretically have divergence sourcewater signals. For example, more 290 

stable soil may have longer precipitation water residence times and trees may be less 291 

prone to take up water from event precipitation or subsequent surface runoff (which 292 

have different isotopic values) (Genereux & Hooper 1998). It is therefore expected that 293 

trees growing in unstable subsites may track short-term hydrological events more 294 

effectively (higher inter-annual δ18O) than those in more stable subsites. At present, it 295 

is impossible to tell which trees diverge from a population signal due to slope instability 296 

specifically without significantly increasing the sample replication.  297 

Scenario-specific responses of tree-rings to meteorological drivers may be an 298 

important factor moderating the stability between subfossil tree-ring δ18O and regional 299 
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δ18O correlations at high frequency over the LG. For example, during dry periods, trees 300 

tend to reduce stomata conductance to limit increasing water loss by transpiration due 301 

to increased leaf-to-air vapour pressure difference. Dry summers usually lead to 302 

increased 18O enrichment of leaf water and correspondingly higher δ18Otree values 303 

compared to sourcewater values (e.g. Kahmen et al. 2011). Conversely, during humid 304 

periods, 18O enrichment is reduced leading to reduced δ18Otree values being closer to 305 

δ18O of source (assuming oxygen isotope exchange between xylem water and sugars 306 

during cellulose biosynthesis in the trunk is constant during dry and wet years). 307 

Therefore, in times of high precipitation, regional δ18O precipitation tends to be 308 

incorporated more readily into tree-ring cellulose, with less overprinting due to 309 

physiologically driven fractionation, which may be the case during the periods of strong 310 

δ18O population signals and associated δ18O depletions within CH-ISO. 311 

4.1.3 Temporal stability of CH-ISO 312 

Time series analysis revealed high variability in the strength of the δ18O population 313 

signal, with a linear model suggesting higher sample replication leads to higher inter-314 

tree δ18Otree correlations (Results 3.2). However, numerous outliers (Figure 2a) 315 

suggest this relationship is limited. For example, relatively high correlations (>25%) 316 

exist only during periods of 2-3 tree replication (Figure 2b) and strong δ18Otree 317 

depletions (Figure 2d), despite moderate wood decay. During these extremes, intra-318 

tree δ18Otree:δ13Ctree correlations are generally quite low (Figure 2c, R2 < 0.20), with 319 

exception to the δ18Otree extreme at ~13 765 cal BP. This reveals that when the CH-320 

ISO trees exhibit significantly similar δ18Otree values, the δ18Otree is generally not well 321 

correlated to δ13Ctree. Therefore, during these periods, the environmental factors that 322 

have the potential to modulate both isotopes (e.g. relative humidity, temperature) are 323 
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not strongly recorded in the tree-rings; but rather, factors that only control δ18Otree 324 

(precipitation source, type and amount) are possibly dominating the population signal 325 

and/or wood decay is preferentially altering the δ13Ctree. Note, temporal instability of 326 

climate-isotope relationships are also observed in modern stable isotope records from 327 

Switzerland (Reynolds-Henne et al. 2007). Potentially, uncertainties in climate-proxy 328 

relationships can be detected by comparing independent proxy records from different 329 

archives, provided that they generally reflect the same climate variable at similar time 330 

and spatial resolution. 331 

4.2. The potential of subfossil tree-ring δ18O to record hydroclimate variability 332 

Swiss Plateau sourcewater (δ18O) is broadly driven by precipitation originating from 333 

North Atlantic air masses but can also receive other air masses (sub-tropical, 334 

continental; Figure 5, Kozel and Schotterer, 2003) and local hydrological variations 335 

influenced by geomorphological (local hillslope) processes. This demonstrates an 336 

element of non-stationarity to the tree-ring isotope relationship to climate variables 337 

over time, which has also been found in modern tree-ring isotope records (Kress et al. 338 

2010, Reynolds-Henne et al. 2007, Seftigen et al. 2011). Shorter-term fluctuations in 339 

δ18O precipitation correlate to synoptic patterns in precipitation-bearing air masses 340 

over temperature (Gat & Carmi 1987), overriding the general temperature-precipitation 341 

relationships and are further affected by leaf- and soil- level evaporative enrichment 342 

during warm/dry periods. As a result, rapid changes in precipitation isotopes may be 343 

strong, yet independent of temperature, creating significant deviations from the classic 344 

precipitation-temperature Daansgard relationship (Edwards et al. 1996, Teranes and 345 

McKenzie 2001, Hammarlund et al. 2002). 346 
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Swiss water isotopes recorded in tree-rings are theoretically sensitive to summer 347 

(growing season; JJA) precipitation, whereas Greenland water isotopes (δ18ONGRIP) 348 

are more strongly driven by winter precipitation and temperature (DJF). Similarly, 349 

water isotopes from LG southern France speleothems reflect winter (recharge season) 350 

precipitation; the signal of which is also moderated by summer evaporation and 351 

deviations in storm track pathway (e.g. Genty et al. 2006). Furthermore, regional lake 352 

water isotopes are sensitive to annual temperature variations and subject to reservoir 353 

effects (e.g. von Grafenstein 2000). These isotopic differences demonstrate the 354 

inherent seasonality of these archives, which makes regional climate change 355 

comparison challenging. Moreover, circulation controls the δ18O signal in the 356 

atmosphere more strongly during the winter (due to stronger temperature gradients 357 

and less extreme continental moisture cycling; Baldini et al. 2008), making winter δ18O 358 

a more sensitive recorder of changes in atmospheric circulation. Accordingly, annual 359 

or winter driven proxy records (e.g. lakes, ice cores, speleothems) may have more 360 

success reconstructing such hemispheric variability compared to summer proxies (e.g. 361 

trees), unless the circulation change is extreme and/or prevails for a few consecutive 362 

years (Saurer et al. 2012).  Modern δ18Otree reveals the strongest climate correlations 363 

during circulation changes (Saurer et al. 2012), suggesting that widespread climate 364 

extremes could be reconstructed from LG δ18Otree.   365 

4.3 Challenges in reconstructing LG climate oscillations from the CH-ISO subfossil 366 

tree-rings 367 

Due to complex and dynamic factors influencing the propagation of δ18O from the 368 

atmosphere into tree-ring cellulose, long-term and widespread climate interpretation 369 

from subfossil dendroisotope records is challenging; particularly when sample 370 
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selection is limited. For example, while two drops in δ18Otree seem to approximately 371 

parallel NGRIP ‘cool periods’ (δ18ONGRIP depletions; Figure 3), the inter-annual 372 

variability as well as low frequency trends of the rest of the dataset show limited visual 373 

resemblance between the records. The fluctuating similarity between tree-ring δ18O 374 

chronologies (e.g. Pauly et al. 2018 and this study) and other regional LG δ18O records 375 

prove climate-proxy relationships in subfossil dendroisotope records are not stable 376 

through time – shifting between recording regional and local weather conditions as 377 

well as being influenced by tree- and population- level factors.  378 

4.4 Low frequency δ18O similarity between LG archives   379 

Negative excursions (‘cool periods’) present in both European and Greenland δ18O 380 

records (GI-1C, GS-1c) are evident in δ18Otree (Figure 3) as significant depletions. 381 

These occur when inter-tree δ18Otree correlations are high, and thus the δ18Otree 382 

chronology is more likely to be recording regional climate conditions over local effects. 383 

This connection between δ18Otree and other records (Lauterbach et al. 2011, 384 

Rasmussen et al. 2014, von Grafenstein et al. 1999) could be due to an increased 385 

prevalence of North Atlantic air masses in mainland Europe as a result of a southerly 386 

moving polar front (e.g. Kageyama et al. 1999, Schenk et al. 2018). Models have 387 

predicted a winter amplification of this process due to sea ice expansion in winter and 388 

atmospheric blocking of westerlies in summer during the Late Glacial (e.g. Schenk et 389 

al. 2018 and references therein), which may explain its muted signature in the summer 390 

tree-ring archive for CH-ISO in comparison to the lake and ice core records.  391 

On the other hand, one other Greenland isotope substage (GI-1b) - demonstrated as 392 

the Gerzensee Oscillation across Europe (e.g. Eicher & Siegenthaler 1976, 393 

Lauterbach et al. 2011, Lotter et al. 1992, 2012) - is not identifiable in CH-ISO. This 394 



Quaternary Science Reviews Submission 

21 

could be due to the relatively low tree correlation (5-15%) in δ18Otree over this interval 395 

as a result of local site conditions overriding regional climate signals.  396 

δ18O records display a distinct excursion beginning between ~12 900 – 12 600 cal BP 397 

(Figure 3), ascribed as the onset of the GS-1 / Younger Dryas. A short tree-ring 398 

sourcewater reconstruction from southern France (Barbiers: ~12 900 – 12 600 cal BP, 399 

Pauly et al. 2018) revealed an onset at 12740 cal BP, reflected by an increasing 400 

influence of both Mediterranean (+ δ18Otree) and North Atlantic (- δ18Otree) storms, 401 

attributed to an oscillating polar front and more extreme weather locally. In contrast, 402 

SWILM trees exhibit high inter-annual variability along a low frequency decline (-5.5‰ 403 

over 40 years), providing further evidence of unstable weather conditions during the 404 

cooling onset (Steffenson et al. 2008). Subfossil forests from both Barbiers (Pauly et 405 

al. 2018) and SWILM (Reinig et al. 2018; Figure 2a) demonstrate a distinct decline in 406 

excavated trees at approximately ~12 600 cal BP, suggesting a tree die off concurrent 407 

with the sustained drop in all δ18O records. 408 

5. Conclusions 409 

The subfossil tree-ring δ18O and δ13C records developed in this study reflect a complex 410 

set of interacting climate variables modulated by local factors (microclimate, wood 411 

degradation); all of which must be carefully identified and investigated prior to a 412 

comprehensive paleoclimate interpretation.   413 

Detailed research in the calibration of cellulose decay and related isotopic fractionation 414 

is required as a prerequisite to further developing this chronology in order to increase 415 

the population signal of both δ13C and δ18O. In particular, experiments on present-day 416 

wood samples infected with certain fungi and/or bacteria targeting the isotopic effects 417 

of cellulolytic enzymes are recommended. Furthermore, a suite of pre-treatment 418 
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protocols would have to be completed, including cellulose content weighing (to 419 

measure mass loss of whole wood), wood strength tests (to determine texture) as well 420 

as wood anatomy and colorimetry (to distinguish decay), prior to selecting optimal 421 

subfossil samples for further analysis. Also, additional isotope data from wholewood, 422 

cellulose and/or lignin methoxyl groups will potentially allow to better identify 423 

problematic sequences in multi-parameter approach (e.g. Mischel et al. 2015). As 424 

Swiss subfossil trees continue to be dated (Reinig et al., 2018), a revised subfossil 425 

dendroisotope protocol and continued expansion of CH-ISO will follow. 426 

The strongly variable (visual) correlation between NGRIP, Mondsee, Ammersee and 427 

CH-ISO across millennia demonstrates that proxy-climate relationships are complex 428 

and non-stationary through time, beyond the differences in temporal resolution and 429 

dating uncertainties. Despite having the same variable (δ18O), each dataset records 430 

very different aspects of environmental conditions across space and time. A multi-431 

proxy approach with regional inter-archive comparisons is vital in detangling the 432 

relative contribution of different factors in the overall local isotopic signal. Nonetheless, 433 

this new stable isotope record here demonstrates the potential to hydroclimate 434 

conditions in the Late Glacial using subfossil pine trees. 435 
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1. Wood decay and tree-ring stable isotopes 

Wood decay and decomposition have been shown to significantly impact intra- and 

inter- tree-ring stable isotopes, particularly in subfossil wood (e.g. Ziehmer et al. 2016). 

Diagenetic effects, in terms of degradation from biotic (bacteria, fungi) and abiotic 

(hydrological) decay, impact the structural and therefore the chemical nature of wood 

(Björdal et al. 1999, Daniel 1994, Benner et al. 1987, Daniel & Nilsson 1998, Staccioli 

et al. 1997, Schleser et al. 1999). It has been well established that cellulose is 

preferentially decayed over lignin and other wood components, impacting their relative 

ratios in wholewood over time (Park & Epstein 1961, Spiker & Hatcher 1987, Schleser 

1999). This differential decay is a crucial consideration, as various wood components 

have divergent isotopic signatures, which can significantly impact the resultant 

wholewood stable isotopic signature. For example, a consistent enrichment of δ13C 

(Loader et al. 2003; Lukens et al. 2019) and inconsistent δ18O contained in lignin 

compared to cellulose (Park & Epstein 1961, Wilson & Grinsted 1977, Barbour 2002, 

McCarroll & Loader 2004, Borella et al. 1999). During burial and preservation of 

subfossil wood, infiltration of sediment-laden water leads to the reduction of specific 

acidic groups (native carboxyls and salt-derived carboxylates), and production of 

others (e.g. catalysation of esters) (Menchi et al. 1997, Staccioli et al. 1994). Hence, 

in this study cellulose was extracted in an attempt to avoid isotopic artefacts arising 

from the use of wholewood.  

Apart from cellulose decay (due to burial post-death spread fungi and maybe more 

importantly bacteria), oxygen and carbon ions can be redistributed between tree-rings 

(English et al. 2011), significantly impacting inter-annual variability and particularly 

isotopic trends from pith to bark (and/or heartwood to sapwood). Decay has shown 
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instances of δ13C depletion proportional to diminishing cellulose content to a specific 

threshold (Schleser et al. 1999), significant decreases in δ18O (Savard et al. 2012), as 

well as generally unreliable stable isotope values (Savard et al. 2012; Nagavciuc et al. 

2018; Savard et al. 2012) within the same tree and between trees at the same site. 
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