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Abstract (150-250 words) 

Interspecific hybridization is increasingly recognized to play an important role in the 

evolution of fungi and oomycetes. In pathogens, this process may lead to the formation of 

new species having a greater impact on natural ecosystems than the parental species. From 

the early 1990s, a severe alder (Alnus spp.) decline due to an unknown Phytophthora species 

was observed in several European countries. Genetic analyses revealed that the disease was 

caused by the triploid hybrid P. xalni, which originated in Europe from the hybridization of 

P. uniformis and P. xmultiformis. Here, we investigated the population structure of P. xalni

(158 isolates) and P. uniformis (87 isolates) in several European countries using 

microsatellite markers. Our analyses confirmed the genetic structure previously observed in 

other European populations, with P. uniformis populations consisting of at most two 

multilocus genotypes (MLGs) and P. xalni populations dominated by MLG Pxa-1. Twenty-

four out of the 36 P. xalni MLGs detected were new and restricted to specific countries. Most 

of them showed a loss of heterozygosity (LOH) at one or a few microsatellite loci compared 

to other MLGs. This LOH may allow a stabilization within the P. xalni genome or a rapid 

adaptation to stress situations. Alternatively, alleles may be lost because of random genetic 

drift in small, isolated populations. The genetic structure of P. xalni populations in the Czech 

Republic, Hungary and Sweden seem to be shaped by river systems. Additional studies 

would be necessary to confirm these patterns of population diversification and to better 

understand the factors driving it. 

Key-words: oomycetes, hybridization, biological invasion, loss of heterozygosity, river 

systems, genetic differentiation 



Introduction 

In fungi (kingdom Mycota) and fungus-like oomycetes (kingdom Stramenopila), 

hybridization can be defined as the process of genome fusion between non-conspecific 

individuals, which occurs both sexually and asexually and generates offspring of mixed 

ancestry [1–3]. When the ploidy level of the hybrid sums that of the two parental species the 

process is called allopolyploid speciation, whereas hybridization without change in 

chromosome number is called homoploid speciation [4, 5]. Hybridization plays an important 

role in the evolution of plant pathogenic fungi and oomycetes [6–8], as the newly formed 

hybrid species may show a better adaptation to the environment and have a greater impact on 

natural ecosystems than the parental species (so-called heterosis) [7, 9–11]. 

Until the 1990s, only a few hybrid plant pathogens, mainly causing diseases to crops, 

were known [12], such as the Tilletia caries x T. leavis hybrid [13] or the Ustilago hordei x 

U. nuda hybrid [14]. At that time it was mainly thought that fungal hybrids were relatively

rare in nature [15]. Successively, thanks to the development and implementation of new 

DNA-based techniques [16], it has become evident that hybridization events and hybrid 

species formation are more frequent than previously supposed [2, 7]. To date, various 

molecular markers are used to characterize hybrids and their populations, including simple 

sequence repeats (SSRs) [17], single nucleotide polymorphism (SNPs), and mitochondrial 

DNA (mtDNA) [18]. 

Hybridization success strongly depends on the type of isolation (i.e. geographical or 

reproductive) between the involved species. In sympatric fungal species (i.e. co-existing in 

the same geographic area), interspecific hybridization is extremely difficult because of the 

presence of reinforced reproductive barriers [3]. Hence, hybridization is more likely to occur 

between geographically isolated (i.e. allopatric), but not necessarily reproductively isolated, 

species [5, 11]. In recent years, international plant trade has led to numerous introductions of 



microorganisms to new geographic areas [19–21], thereby considerably increasing the 

opportunities for new interspecific hybridization events to occur. Because of this ample 

movement of species around the globe, it is not uncommon that for hybrids no information 

exists about their parental species. A well-known example is the oilseed rape pathogen 

Verticillium longisporum, whose parental species are of unknown origin [22, 23]. 

Phytophthora is a cosmopolitan genus of oomycetes, mainly containing obligate plant 

pathogens that cause damage in both forest and agricultural systems [24]. Recent studies 

showed that interspecific hybridization can occur between Phytophthora species [8, 25, 26]. 

Besides being successfully created under laboratory conditions, hybrids have also been found 

in nature on all continents. Naturally formed hybrids were identified in several Phytophthora 

ITS-clades [18], including clades 1 (e.g [27, 28]), 6 (e.g. [18, 29]), 7 (e.g.[30]), and 8 (e.g.

[25]). Thus, in the genus Phytophthora interspecific hybridization is increasingly considered 

as an important process for the generation of new species [18, 31]. 

In the early 1990s, a sudden alder (Alnus spp.) decline was observed in the UK [32] 

and later on in several other European regions [30]. The declining trees (mainly A. incana 

and A. glutinosa) showed a sparse crown and bleeding lesions on the root collar and stem 

[33]. This new lethal disease was attributed to Phytophthora alni sensu lato, a new 

Phytophthora species typically isolated from symptomatic alders. Initially, it was thought that 

P. alni s.l. consisted of a common hybrid variant type and two less frequent types [30].

Successively, the three variants were considered as three subspecies, i.e. P. alni ssp. alni, P. 

alni ssp. multiformis, and P. alni ssp. uniformis [30], and recently described as species [34]. 

Brasier et al. [35] suggested that P. alni s.l. originated from interspecific hybridization, but at 

that time the parental species were unclear. Subsequent studies showed that the parental 

species of P. xalni are P. xmultiformis and P. uniformis [34, 36]. P. xmultiformis is itself a 

tetraploid hybrid species which origin is still unknown [34, 37]. On the other side, P. 



uniformis is a diploid species, which was possibly introduced to Europe from North America

[38]. Because of its frost tolerance, this species is more frequently found in the northern parts 

of Europe [39], although it has been also reported in the south of the continent [40]. 

In a previous study, Aguayo et al. [37] evidenced a low polymorphism in P. xalni, 

with European populations (mainly from France, Germany and Hungary) dominated by a 

single multilocus genotype (Pxa-1). However, since mtDNA patterns of both parental species 

were found in P. xalni isolates belonging to the same genotype, the authors concluded that 

multiple hybridization events occurred independently in several European regions, i.e. Pxa-1 

is not a true clone that colonized Europe. Noteworthy, the incidence of Pxa-1 in local 

populations seemed to increase over time. The population of the parental species P. uniformis 

was also dominated by a single multilocus genotype and was less diverse than expected based 

on the P. uniformis subgenomes present in the P. xalni population. 

In this study, we aimed at determining the genetic population structure of P. xalni and 

P. uniformis in four European countries that were not analyzed by Aguayo et al. [37], i.e.

Austria, Czech Republic, Lithuania, and Switzerland, and in three previously analyzed 

countries (Hungary, Spain and Sweden). Specifically, we addressed the following questions: 

(1) Do P. xalni populations in Austria, Czech Republic, Lithuania, and Switzerland show the

same diversity pattern reported by Aguayo et al. [37] for other European countries?; (2) 

Given that P. xalni spreads locally through riverine networks [41], are populations of this 

pathogen genetically structured by the river systems?; And (3) Is the population structure of 

the more frost tolerant parental species P. uniformis [39] in Sweden similar to that in central 

Europe? 

MATERIALS AND METHODS 

Phytophthora xalni and P. uniformis isolates 



In this study, a total of 168 P. xalni and 90 P. uniformis isolates from 7 countries (Austria, 

Hungary, Czech Republic, Lithuania, Spain, Sweden and Switzerland) were analyzed (Table 

1, Supplementary Table S1). The Swiss, Lithuanian, and Czech isolates originated from the 

culture collection at WSL, at Lithuanian State Research Institute Nature Research Centre 

(NRC) and from Czech collection of phytopathogenic oomycetes (Silva Tarouca Research 

Institute), respectively, whereas all other isolates were kindly provided by colleagues. Given 

that both species are not considered as a quarantine organism subjects to phytosanitary 

regulations by the Swiss plant protection ordinance (PSV, SR 916.20), a sampling or import 

permit was not required. 

DNA extraction 

Three different approaches were used to obtain genomic DNA from P. xalni and P. uniformis 

cultures: i) isolates from Austria, Czech Republic, Lithuania, Spain and Switzerland were 

grown on liquid-clarified V8 juice medium [42] for 5-7 days in the dark at 22 °C. The 

mycelium was subsequently harvested through filtration and washed with sterile H2O. 

Thereafter, it was frozen and stored at -20 °C until DNA extraction. Mycelia were lyophilized 

and genomic DNA was extracted using the DNeasy® Plant Mini kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s protocol [43]; ii) isolates from Sweden were 

grown on V8 agar for 7 days and DNA was extracted from mycelia harvested from the active 

growing margin of the cultures using NucleoSpin® Plant II 118 (Macherey-Nagel, Hoerdt, 

France)[39]; and iii) isolates from Hungary were grown in pea-broth [24] for 7–10 days in the 

dark at 25 °C and DNA was extracted from lyophilized mycelium powder using the 

E.Z.N.A.® Fungal DNA Mini Kit (OMEGA Bio–tek, Norcross, GA) or following the slightly

modified protocol of Murray and Thompson [44]. 



species identification     Phytophthora 

Prior to genotyping, all isolates were identified to species. Samples from Austria, Czech 

Republic [45], Hungary [46] and Sweden [39] have been identified to species before this 

study. P. alni s.l. isolates obtained from Lithuania, Spain and Switzerland were identified 

using the set-specific primers described by Ioos et al. [47], followed by sequencing of the 

ribosomal internal transcribed spacer (ITS) using ITS-6 [16] and ITS-4 [48] primer set. PCR 

amplification and sequencing were done as previously described by Schoebel et al. [43]. The 

obtained sequences were assembled and edited using CLC Main Workbench version software 

v8 beta 04 (Qiagen). For species identification, sequences (~800 bp) were compared with 

publicly available sequences in the National Center for Biotechnology Information (NCBI; 

https://blast.ncbi.nlm.nih.gov/Blast.cgi) database with the BLAST algorithm (with the 

threshold set to 1e-63). Two sequences were considered to belong to the same species if they 

showed at least 99% similarity. 

Microsatellite genotyping 

All P. xalni and P. uniformis isolates were genotyped at the ten microsatellite loci PA17, 

PA23 [49], PAU3, PAU9, PAU32 [38], PAU11, PAU14, PAU15, PAU56, and PAU72 [37] 

using the single-tube nested PCR method developed by Schuelke [50]. This method implied 

the labeling of the forward primers with a M13-F700 tag (5’-

CACGACGTTGTAAAACGAC-3’). PCR reactions were conducted using the Type-it 

Microsatellite PCR Kit (Qiagen, Valencia, CA, USA), following a modified manufacturer’s 

protocol. Modifications included the use (i) of less forward primer than reverse primer (0.1 

µM and 0.2 µM, respectively; Schuelke [50]), and (ii) of only 3 µl of Master Mix per reaction 

[43, 51]. PCR conditions were set as follows: initial denaturation for 5 min at 95°C, followed 

by 28 cycles with denaturation for 30 s at 95°C, annealing for 90 s at 60°C, extension for 30 s 



at 72°C, followed by M13-tag binding reaction of 8 cycles with denaturation for 30 at 95°C, 

annealing for 90 s at 55°C, extension for 30 s at 72°C, and a final extension for 30 min at 

60°C [43]. PCR amplifications were performed on Veriti™ Thermal Cycler (Applied 

Biosystems, Foster City, CA, USA). PCR products were run on ABI 3130 DNA Analyser 

with the GeneScan™ 500 LIZ® Size Standard for fragment analysis. All alleles were scored 

using the software GeneMapper v. 3.7 (Applied Biosystems). 

Population diversity analyses 

P. xalni and P. uniformis isolates were assigned to multilocus genotypes (MLGs) with the

software GENODIVE v. 2.0b27, using the Stepwise Mutation Model (SMM) as distance index 

under the assumption that allele repeat length differ by ancestry. The distance threshold that 

can assign individuals to the same MLG was set at zero (0) to differentiate closely related 

MLGs [52]. Genotypic richness, diversity and evenness of P. xalni populations were 

calculated using POPPR v. 2.6.1 [53]. Genotypic richness was estimated by the number of 

observed (MLGs) and expected, i.e. corrected by sample size based on a rarefaction 

procedure (eMLGs), multilocus genotypes. To avoid distorted genotypic diversity values due 

to uneven sample sizes, a corrected Simpson’s index (D) was calculated as D = ((N/N-1)) * λ, 

where N was the sample size and λ the Simpson’s index [53]. Genotype evenness was 

evaluated using the E5 index. This measure indicate the distribution of genotype abundance 

across population, where 1 shows that genotypes are equally abundant in population and 0 – 

population is dominated by one genotype. E5 is less susceptible to the effect of sample size 

[54]. To roughly assess the evolution over time of the genotypic diversity in P. xalni 

populations, the number of eMLGs and the incidence of the in Europe prevalent MLG Pxa-1 

[37] were plotted against the maximal number of years between the first official isolation of

P. xalni in a country and the sampling for this study.



To evaluate the genetic relationships among the P. xalni MLGs, a Minimum Spanning 

Network (MSN) was constructed using POPPR and visualized using igraph ver. 1.1.2 [55]. 

The MSN was based on Bruvo’s genetic distance [56] under the assumption of combined and 

averaged genome addition and loss model. Each node represented a different MLG and node 

size was proportional to the abundance of the specific MLG. 

Population differentiation analyses 

Analyses of population differentiation were only conducted for P. xalni in the Czech 

Republic, Hungary and Sweden, i.e. in the three countries with the largest sample sizes. 

Given that after introduction the pathogen mainly spreads downstream with streams and 

floods [41], for analyses isolates were assigned to corresponding river basins and systems 

(Figure 1). Discriminant analysis of principal components (DAPC) [57] was performed to 

describe clusters of genetically related P. xalni MLGs across Czech, Hungarian and Swedish 

river systems. DAPC was conducted using adegenet v.2.1.1 [58] with prior known P. xalni 

population information. To evaluate population differentiation in all river systems and rivers, 

an Analysis of Molecular Variance (AMOVA) was conducted [59] using POPPR v. 2.6.1. In 

most studies, population differentiation is measured using Wright’s F-statistics [60]. 

However, due to its sensitivity to population size, migration and mutation rate estimates [61, 

62], this statistic is not the best suited for polyploid organisms. In fact, compared to diploid 

organisms, polyploid organisms have higher total number of chromosome copies and thus 

different migration and mutation measures [63]. The Φ (phi) statistic [64] implemented in 

AMOVA was suggested in evaluation of polyploid organism population structure studies as a 

good alternative to Wright’s F-statistics [63]. The total P. xalni genetic variation (in Czech 

Republic, Hungary and Sweden) was partitioned at three levels: i) within river basins, ii) 



among river basins within one river system, iii) among river systems. Both full dataset and 

clone corrected data were used for calculations. 

RESULTS 

Population diversity 

A total of 258 P. alni s.l. isolates (168 P. xalni isolates and 90 isolates of P. uniformis) from 

seven different European countries were genotyped at 10 microsatellite loci (Supplementary 

Table S1). For 245 isolates (158 isolates of P. xalni and 87 P. uniformis isolates) alleles were 

successfully amplified at all loci. In total, 23 alleles were identified in the analyzed P. xalni 

and P. uniformis populations, with one (P. xalni and P. uniformis) to three (P. xalni) alleles 

per locus. Compared to previous studies [37, 38, 49], no new alleles were found. 

P. xalni. The 158 P. xalni isolates that were successfully genotyped at all loci belonged to 36

different MLGs, 24 of which had never been found before. The most common MLG was 

Pxa-1[38], which was present in all countries with an incidence ranging from 24.4% 

(Sweden) to 100% (Switzerland) (Table 1). Pxa-1 was followed by MLG Pxa-6 [37], which 

was found in the Czech Republic, Hungary, Spain and Sweden. All other MLGs were rare (1-

9 isolates each) and mainly restricted to a specific country (Table 2, Supplementary Table 

S1). The number of MLGs observed in a country ranged from one (Switzerland) to 21 (Czech 

Republic). After a rarefaction procedure (N = 4, corresponding to the smallest population 

being analyzed), the highest genotypic richness was observed in Sweden (eMLG = 5.6 ± 1.0). 

Genotypic diversity assessed with the corrected Simpson’s index showed the highest values 

in Austria, Spain and Sweden and the lowest in Switzerland and Lithuania (Table 1). Overall 

evenness of P. xalni MLGs across the seven European countries was low (E5 = 0.3). 

However, considerable differences in the E5-values were observed among countries (Table 

1). MLGs in Austria, Spain and Sweden were distributed more evenly than in other countries, 



whereas the most uneven distribution of MLGs was observed in the population in the Czech 

Republic (E5 = 0.33). Overall, genotypic diversity in P. xalni populations showed a positive 

trend with increasing age of the population, whereas the incidence of Pxa-1 considerably 

decreased (Figure 2). 

The MSN based on Bruvo’s genetic distance discriminated three different groups of 

P. xalni MLGs (Figure 3). The first group included MLGs closely related to the widespread

MLG Pxa-1. The second group was connected to Pxa-1 and consisted mainly of MLGs from 

Sweden. The third group also originated from Pxa-1 and included MLGs mostly from the 

Czech Republic and Austria. 

P. uniformis. The 87 P. uniformis isolates belonged to the MLGs Pu-E1 (66 isolates) and Pu-

E2 (21 isolates) that were previously described by Aguayo et al. [38]. Pu-E1 was found in all 

four countries from which P. uniformis isolates were genotyped, whereas Pu-E2 was only 

found in Sweden in the rivers Helgeå, Kävlingeå, Lagan, Lyckebyån and Nykopingsån 

(Figure 1) with an overall incidence of 31.3% (Table 1, Appendix xx). No significant 

differences (chi-square test: X2 = 0.03; P = 0.86) were observed in the incidence of Pu-E1 and 

Pu-E2 in Western (i.e. river system North Sea) and Eastern (i.e. river system Baltic Sea) 

Sweden. 

Allelic patterns in rare Phytophthora xalni MLGs 

Twenty-four out of the 36 MLGs of P. xalni detected in this study were represented by 1-2 

isolates (Table 2). The highest incidence of these rare genotypes was observed in the Czech 

Republic (16 MLGs), whereas in the other six countries they were rather scarce. Allele 

patterns at the 10 microsatellite loci showed that the rare MLGs were characterized by a loss 

of alleles at 1-3 loci compared to their genetically closest MLG (Table 2). Totally, 35 alleles 

were lost at 8 loci, with most MLGs (19 out of 24) lacking one allele at one locus. The 



highest number of missing alleles (7) was observed at locus M-Pau 56, whereas at loci M-

Pau3 and PA17 no alleles were lost. At the other loci, allele loss varied from 2 to 7. 

Since Aguayo et al. [46] previously assigned P. xalni alleles to the corresponding P. 

xmultiformis (P. xm) or P. uniformis (P. u) subgenomes, we could link allele loss to the 

specific parental subgenome. Eighteen rare MLGs formed after allele loss in the P. 

xmultiformis subgenome, 4 MLGs after allele loss in the P. uniformis subgenome and two 

MLGs after allele loss in both subgenomes (Table 2). In Hungarian, Lithuanian, Spanish and 

Swedish P. xalni populations, alleles were lost only in the P. xmultiformis subgenome. MLGs 

with allele loss in the P. uniformis subgenome were found in Austria and the Czech Republic, 

whereas the two MLGs with allele loss in both subgenomes originated from the Czech 

Republic. The dominant genotype Pxa-1 had the highest number of genetically close rare 

MLGs (Table 2): four MLGs formed after allele loss in its P. xmultiformis subgenome and 

one MLG after allele loss in its P. uniformis subgenome. Nine rare MLGs most likely 

originated from an allele loss in other rare MLGs. 

Population differentiation 

The total number of P. xalni MLGs detected in single river basins in the Czech Republic, 

Hungary and Sweden ranged from one to 5 (Table 3). The widespread MLG Pxa-1 was 

present in 14 out of 18 basins with an incidence ranging from 16% (Helgeå, Sweden) to 

100% (Mölndalsån and Alsteran, Sweden). This MLG was not found in three basins 

(Kävlingeå, Ronneå, Viskan) of the North Sea river system and one basin (Ronnebyån) of the 

Baltic Sea river system in Sweden. All river basins but Viskan, harbored one to 4 already 

described MLGs. Moreover, in 13 out of 17 basins one to 3 new MLGs were identified. 

These were particularly frequent in Czech river basins, whereas they were more rare in 

Hungarian and Swedish basins (Table 3). 



Discriminant analysis of principal components (DAPC) revealed the presence of three 

distinct clusters of P. xalni MLGs across the three countries (Figure 4). The first cluster 

contained the majority of MLGs from all countries. The second cluster included MLGs found 

in the Czech river system Elbe-Vtlava and in river basins of the Baltic Sea river system 

(Eastern Sweden). Finally, the third cluster harbored MLGs of the North Sea river system 

(Western Sweden) and Hungary. 

Analysis of molecular variance (AMOVA) showed that most of the genetic variation 

associated with microsatellites was accounted for by the within river basin component (Table 

4). With the full data set this component explained 56.9% (σ = 0.074) of the variation, 

whereas if only one representative isolate of each MLG was considered (clone-corrected data 

set), up to 86.98% (σ = 0.174) of the variation. Noteworthy, the component among river 

basins within river systems showed a significant contribution (33%, σ = 0.042) to the total 

variation with non-clone-corrected data, but not with clone-corrected data (Table 4). The 

same situation was observed with the component among river systems which was 

insignificant (13.37%, σ = 0.026) with clone-corrected data (Table 4). 

DISCUSSION 

In this study we investigated the genetic population structure of P. xalni and P. uniformis in 

seven (P. xalni) and five (P. uniformis) different European countries using microsatellite 

markers. Our analyses revealed an overall higher genotypic diversity in P. xalni than in P. 

uniformis confirming previous results by Aguayo et al. [38, 46]. The 87 genotyped P. 

uniformis isolates belonged to two MLGs (Pu-E1 and Pu-E2), one of which (Pu-E2) was only 

found in Sweden with an incidence of 31.4%. In the previous study by Aguayo et al. [38], 

this particular MLG was detected one time each in France, Italy and Sweden. However, as 

only two Swedish P. uniformis isolates were genotyped at that time, it is not possible to 



conclude about a possible increase in the incidence of Pu-E2 in Sweden. In any case, our 

study confirms the low genetic diversity of P. uniformis in Europe that was previously 

reported by Aguayo et al. [46]. 

The overall P. xalni population across the seven European countries considered in this 

study showed a low genotypic diversity, with one single MLG (Pxa-1) including more than 

half (about 54%) of the isolates. This MLG was particularly frequent in Lithuania and 

Switzerland (88.9 and 100% of the isolates, respectively). Since the P. xalni isolates from 

these two countries originated from three distinct and spatially well delimited populations 

(one in Switzerland and two in Lithuania), Pxa-1 was most likely the founder MLG. A strong 

dominance (in total 80% of the isolates) of Pxa-1 was previously reported by Aguayo et al. 

[46] in mainly French and Hungarian populations. The same study also revealed a decline of

clonal richness over time with an increased frequency of the dominant MLG. Our analyses 

show rather an increase in the number of expected (i.e. assuming equal population sizes) 

MLGs and at the same time a decrease in the incidence of Pxa-1 over time. Indeed, the 

highest genotypic diversity was detected in Sweden and Austria, the two countries among 

those included in our study with the longest time period between the first official isolation of 

P. xalni (1996 in both countries) [30, 39] and the year when sampling was conducted.

However, this result should be considered with caution: first, a variable time lag may exist 

between the year of official detection of an invasive pathogen and the year of introduction of 

this pathogen, and second, the sampling design varied considerably among countries (e.g. in 

some countries samples originated from a few small populations and in other countries from a 

widespread monitoring). 

Out of the 36 MLGs of P. xalni detected in our study, 24 were new, i.e. previously 

undescribed. These were found in all countries except Switzerland and only one new MLG 

occurred in more than one country (Pxa-28 in Czech Republic and Hungary). Unlike MLGs, 



no new alleles were detected at the microsatellite loci compared to the previous genotyping 

conducted by Aguayo et al. [46]. All new MLGs seem to have arisen from another MLG 

through allele loss at one or more loci. In 24 cases, the allele loss resulted in a homozygous 

microsatellite locus, i.e. in a so-called loss of heterozygosity (LOH). Twenty-four MLGs 

formed after allele loss in the P. xmultiformis subgenome, four MLGs in the P. uniformis 

subgenome, and two MLGs in both subgenomes. Given that P. xmultiformis is itself a 

tetraploid hybrid [34], its subgenome in P. xalni may be less stable than the subgenome of the 

pure species P. uniformis, which could explain the more frequent loss of alleles. Hybrid 

organisms combine genetic material of the two parents, which implies a certain degree of 

genetic divergence between homeologous (i.e. paralogous chromosomes merged within a 

single nucleus) chromosomes [65, 66]. Since high levels of heterozygosity may have negative 

effects on cell functioning, following hybrid formation natural selection will foster 

mechanisms like LOH to promote genome stabilization [67]. However, alleles can also be 

lost because of random evolutionary forces (e.g. genetic drift) influencing genetic variation in 

populations. Usually, consequences of such forces are more pronounced in small, isolated 

populations than in large, interconnected ones. 

LOH is not a peculiarity of hybrids, but occurs also in pure species. In pure 

Phytophthora species it was already observed using microsatellite or SNP markers in P. 

cinnamomi [68], P. capsici [69, 70], and P. ramorum [71, 72]. Dobrowolski et al. [68]

suggested that LOH is a consequence of mitotic crossing over (or recombination), i.e. a 

reciprocal crossover between homologue chromosomes with heterozygous alleles for a 

specific marker that can produce daughter cells that are homozygous for the same marker 

[73]. According to the same authors, mitotic recombination may have some evolutionary 

advantage, including purging deleterious mutations and generating genetic variation within 

asexual lineages. In P. capsici, indirect evidence indicated that LOH may be associated with 



changes in two phenotypic traits, namely virulence and mating type [69]. Kasuga et al. [71] 

showed that atypical P. ramorum phenotypes recovered from trunk cankers on oaks (Quercus 

sp.) in California are characterized by genomic alterations including partial aneuploidy and 

copy-neutral LOH. The authors hypothesized that the specific chemical environment of the 

bark of oaks (particularly the presence of phenolic compounds) may account for these 

abnormalities in the genome of the exposed P. ramorum strains. In asexually reproducing 

Phytophthora species, LOH may, thus, be an important mechanism driving clonal 

diversification and promoting rapid adaptation to stress conditions given by, e.g., changing 

environmental conditions, resistant host genotypes, or fungicides, by reducing the time to fix 

beneficial recessive alleles in a population [72]. The high incidence of LOH in specific P. 

xalni populations might thus suggest the local presence of stress factors for this species. 

Since P. xalni is a pathogen with optimal growth temperatures above 22 °C [35, 74], one of 

these factors may be the winter temperature in soil, water and bark. In this regard, a study 

conducted by Černý and Strnadová [75] in the Czech Republic, the country considered in this 

study with the highest incidence of LOH events, showed that the winter survival of P. xalni 

in necrotic bark tissue of black alder (Alnus glutinosa) is very limited. Soil properties, in 

particular pH [74, 76], might also be potential sources of stress. As observed by Kasuga et al. 

[71] in P. ramorum and oaks, the chemical composition of alder bark may also potentially

induce genomic changes in P. xalni. However, to definitively conclude that LOH in P. xalni 

is due to selective evolutionary forces, we should determine if the microsatellite loci 

considered in this study are linked with specific loci under selection. Indeed, alleles could 

also disappear because of random genetic drift in the small, fragmented populations. This 

fragmentation in P. xalni may be a consequence of the naturally scattered distribution of the 

host trees (Alnus sp.). The pathogen itself may exacerbate this situation by killing the infected 



alders, thereby increasing host patchiness. Noteworthy, although resulting in a reduced 

genetic variation in the population (i.e. less allelic variants), LOH produces new MLGs. 

Population differentiation analyses revealed some geographic structure within the 

overall P. xalni population in the Czech Republic, Hungary and Sweden. In particular, the 

pathogen population seems to be shaped to a certain degree by the river systems. Indeed, both 

with the complete and the clone-corrected data set, based on AMOVA analysis most of the 

genetic variation resides within river systems. Aguayo et al. [46] showed how the population 

structure of P. xalni was shaped by different hybridization events that took place in several 

European areas and produced the dominant MLG Pxa-1. Our analyses suggest a river-specific 

population differentiation after colonization by the initial MLG(s). This differentiation might 

be promoted by the lack of connections between the different populations which would 

considerably reduce gene flow. Particularly intriguing is the clear separation visible in the 

DAPC between P. xalni MLGs from Eastern (Baltic Sea river system - rivers flowing into the 

Baltic Sea) and Western (Skagerrak and Kattegat river system - rivers flowing into the North 

Sea) Sweden. An alder decline survey conducted in Bavaria (Germany) revealed that the 

main pathway for P. alni s.l. to reach new sites was through infected alder seedlings from 

nurseries [41]. Thus, it may be possible that different founder MLGs originating from 

different nurseries were initially introduced into East and West Sweden, from which the 

current populations have originated. 

In conclusion, our study indicates that the P. xalni populations in Austria, Czech 

Republic, Lithuania, Sweden and Switzerland show basically the same diversity pattern as 

that reported by Aguayo et al. [46] for other European populations. This pattern consists in 

the predominance, at different frequencies, of MLG Pxa-1 and the occurrence with a variable 

number of rare MLGs. Most of the rare MLGs show a LOH at one or a few microsatellite loci 

compared to other MLGs. This LOH may allow a stabilization within the subgenome of the 



hybrid parental species P. xmultiformis or a rapid adaptation to stress situations. 

Alternatively, alleles may be lost because of random genetic drift in isolated populations. The 

genetic structure of local populations seem to be shaped by river systems. Additional studies 

would be necessary to confirm this pattern of population diversification and to better 

understand the factors driving it. 
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Table 1. Diversity of the Phytophthora xalni and P. uniformis populations in the seven European countries included in this study. N, sample 

size; MLG, number of observed multilocus genotypes; eMLG, expected number of multilocus genotypes in a population of N = 4 (i.e. smallest 

population being analyzed); Pxa-1, incidence of the most common MLG Pxa-1 [37]; D, modified Simpson’s index; E5, evenness index; Pu-1, 

MLG Pu-1 [37]; Pu-2, MLG Pu-2 [37]. 

Phytophthora xalni Phytophthora uniformis 

Country 
First detection 

of P. alni s.l.1 

Sampling 

year(s) 
N MLG 

eMLG     

(± SE) 

Pxa-1 

(%) 
D E5 N Pu-1 Pu-2 

Austria (AU) 1996 [30] 2007-2014 9 5 5.0 (± 0.0) 33.3 0.861 0.91 2 2 0 

Czech Republic (CZ) 2001 [77] 2006-2014 49 21 5.4 (± 1.4) 54.0 0.699 0.33 7 7 0 

Hungary (HU) 1999 [78] 2001-2009 39 7 3.2 (± 1.0) 74.4 0.442 0.45 0 n.a.2 n.a.

Lithuania (LT) 1999 [79] 2014 9 2 2.0 (± 0.0) 88.9 0.222 0.59 0 n.a. n.a.

Spain (SP) 2009 [80] 2010-2012 4 3 3.0 (± 0.0) 50.0 0.833 0.91 12 12 0

Sweden (SW) 1996 [39] 2013-2015 41 9 5.6 (± 1.0) 24.4 0.852 0.89 67 46 21

Switzerland (CH) 2008 [81] 2015 7 1 1.0 (± 0.0) 100.0 0.00 n.a. 0 n.a. n.a.

Total - - 158 36 5.2 (± 1.4) 54.1 0.695 0.3 87 66 21 



 1According to [30, 39, 77, 78, 79, 80, 81].          

2n.a., non applicable.



 xalni MLGs detected in this  Table 2. Allelic patterns at the 10 microsatellite loci of the 24 rare (i.e. including only 1-2 isolates) Phytophthora

 study. For the locus/loci where the rare MLG differ from the genetically closest MLG, alleles are given (underscored: allele(s) lost in the rare  

MLG). 
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Pxa-
40 

CZ Pxa-
24 

1 
- 100 

(100/109) - - - - - - - 162/177 
(162/174/177) 2 

P. xm
and P.

u 
Pxa-
41 

CZ Pxa-
38 

1 - - 173 
(173/209) - - - - - 91/94 

(91/94/98) 
162 

(162/174) 3 P. xm

Pxa-
42 

CZ Pxa-
27 

1 - - - - - - - - 91/94 
(91/94/98) - 1 P. xm

Pxa-
43 

CZ Pxa-
38 

2 - - - - 95 
(92/95) - - - - - 1 P. xm

Pxa-
44 

CZ Pxa-
27 

1 - - - - - - - - - 162/177 
(162/174/177) 1 P. xm

Pxa-
45 

CZ Pxa-
43 

1 - 109 
(100/109) - 89 

(84/89/99) - - - 113 
(107/113) 

91 
(91/94/98) - 6 P. xm

Pxa-
46 

CZ Pxa-
33 

1 - - 173 
(173/209) - - - - - - - 1 P. xm

Pxa-
47 

LT Pxa-
42 

1 - - 173 
(173/209) 

84/89 
(84/89/99) - - - - 91 

(91/94) - 3 P. xm

Pxa-
48 

SP Pxa-
8 

1 - - - - - - - - 91 
(91/98) - 1 P. xm

Pxa-
49 

AU Pxa-
8 

2 - - - - - - - 113 
(107/113) - - 1 P. xm

Pxa-
50 

AU Pxa-
19 

1 - - 209 
(173/209) - - - - - - - 1 P. u

Total Allele Loss - 0 2 5 5 4 0 2 4 7 5 35 - 



 SP, Spain; SW, Sweden. 1AU, Austria, CZ; Czech Republic; HU, Hungary; LT, Lithuania;

2Number of alleles lost compared to the genetically closest MLG. 

3Subgenome in which the alleles were lost: P. u, P. uniformis; P. xm, P. xmultiformis. 



 of Phytophthora xalni in the       Table 3. Incidence of previously described and new MLGs

     different river systems and river basins in the Czech Republic, Hungary and Sweden. 

Country River 

system 

River basin N MLGs Pxa-1 

(%) Previously 

described1 

New Total 

Czech 

Republic 

Danube Dyje 6 2 3 5 2 (33.3) 

Morava 3 1 1 2 2 (66.6) 

Elbe-

Vltava 

Elbe 4 1 3 4 1 (25.0) 

Ploučnice 3 2 1 3 1 (33.3) 

Ohře 4 2 2 4 2 (50.0) 

Sázava 5 3 1 4 1 (20.0) 

Berounka 11 2 3 5 7 (63.6) 

Vltava 13 1 3 4 10 (76.9) 

Hungary Danube Répce 16 4 1 5 10 (62.5) 

Balaton Zala 23 3 2 5 19 (82.6) 

Sweden Baltic Sea Alsteran 1 1 0 1 1 (100) 

Helgeå 6 2 0 2 1 (16.0) 

Lyckebyån 3 1 1 2 1 (33.3) 

Ronnebyån 6 1 0 1 0 

North Sea Kävlingeå 8 3 1 4 0 

Mölndalsån 7 1 0 1 7 (100) 

Ronneå 8 1 0 1 0 

Viskan 2 0 2 2 0 

 

1Multilocus genotypes previously described by Aguayo et al. [38]. 



Table 4. Analysis of Molecular Variance (AMOVA) assessing the relative contribution of 

within river basins, among river basins within one river system, and among river systems 

components to the observed genetic variability in the overall Phytophthora xalni population 

in the Czech Republic, Hungary and Sweden. d.f - degree of freedom, SSD - sum of squared 

deviations, MSD - mean squared deviations, Sigma (σ) - variance component estimate, P-

value – probability value of significance based on 999 permutations. 

Source of variation d.f. SSD MSD Sigma % P-value

1) Complete data set

- Within river basins 111 8.214 0.074 0.074 56.9 0.001 

- Among river basins within one river

system 

13 4.08 0.313 0.042 33 0.001 

- Among river systems 4 3.535 0.883 0.012 9.9 0.105 

2) Clone-corrected data set

- Within river basins 36 6.298 0.174 0.174 86.98 0.041 

- Among river basins within one river

system 

13 2.248 0.172 -0.0007 -0.35 0.492

- Among river systems 4 1.744 0.436 0.026 13.37 0.092 





 

Figure 1. Main water systems in the Czech Republic (A), Hungary (B) and Sweden (C) from  

which Phytophthora xalni samples were genotyped in this study and geographic origin of the  

samples. 

 



Figure 2. Relationship between the number of expected multilocus genotypes (eMLGs) (A) 

and the incidence (% isolates) of Pxa-1 in P. xalni populations (B) and the age of the 

populations (i.e. years between first isolation of the pathogen in a country and sampling for 

this study). 



Figure 3. Minimum Spanning Network based on Bruvo’s genetic distance [57] of the 36 

multilocus genotypes (MLGs) of Phytophthora xalni detected in this study. Each node 

represents a different MLG and node size is proportional to the abundance of the specific 

MLG. HU, Hungary; SW, Sweden; LT, Lithuania; CH, Switzerland, CZ, Czech Republic; 

SP, Spain; AU, Austria. 



Figure 4. Discriminant Analysis of Principal Components (DAPC) of Phytophthora xalni in 

Czech Republic (CZ), Hungary (HU) and Sweden (SW). Each circle represents a MLG. 

HU_Da, Hungary Danube; HU_Ba, Hungary Balaton; SW_Ns, Sweden North Sea; SW_Bs, 

Sweden  Baltic Sea, CZ_EV, Czech Republic Elbe-Vltava; CZ_Da, Czech Republic Danube. 
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