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Abstract 23 

Atmospheric warming and increasing tropospheric ozone (O3) concentrations often co-occur in 24 

many cities of the world including China, adversely affecting the health status of urban trees. 25 

However, little information is known about the combined and interactive effects from increased 26 

air temperature (IT) and elevated O3 (EO) exposures on urban tree species. Here, Ginkgo biloba 27 

and Populus alba ‘Berolinensis’ seedlings were subjected to IT (+ 2°C of ambient air temperature) 28 

and/or EO (+ 2-fold ambient air O3 concentrations) for one growing season by using open-top 29 

chambers. IT alone had no significant effect on physiological metabolisms at the early growing 30 

stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 31 

0.05). EO alone decreased physiological parameters except for increased oxidative stress. 32 

Compared to EO exposure alone, plants grown under IT and EO combined showed higher 33 

antioxidative and photosynthetic activity. There was a significant interactive effect between IT 34 

and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum 35 

quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme 36 

activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results 37 

suggested that during one growing season, IT mitigated the adverse effect of EO on the tested 38 

plants. In addition, we found that G. biloba was more sensitive than P. alba ‘Berolinensis’ to 39 

both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming 40 

and air pollution, particularly under environmental conditions as they co-occur in urban areas. 41 

Key words: Climate change; Ginkgo biloba; Oxidative stress; Photosynthesis; Physiological 42 

response; Poplar 43 
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Capsule 44 

There was a significant interactive effect between increased air temperature and elevated O3 on 45 

growth and physiological changes of urban tree species. 46 

Increased air temperature alleviated the adverse effect of O3 stress on urban plants by maintaining 47 

high antioxidative level and protecting photosynthetic apparatus during one growing season. 48 
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Introduction 49 

Global warming and tropospheric ozone (O3) pollution are crucial environmental drivers on 50 

a regional to global scale (Rotundo et al., 2019; Wang et al., 2019a, 2019b; Xu et al., 2019; Gao 51 

et al., 2020). Global warming is progressing at an unprecedented pace, altering plant species 52 

composition and biodiversity worldwide (IPCC, 2014; Lawal et al., 2019). It is estimated that 53 

global air temperature will enhance by over 1.5 °C by the late 21st century, depending on the 54 

selected scenario (IPCC, 2018). The increase in surface air temperature in China has been faster 55 

than the mean global rate, and more frequent temperature extremes are expected to occur in 56 

future (Piao et al., 2010; Fischer et al., 2012; Li et al., 2018). Shenyang, the biggest city with 57 

population in the northeastern China has been one of the regions with the greatest temperature 58 

increases in China since the 1980s (Zhao et al., 2009a; He et al., 2013). In general, increased 59 

temperatures are expected to stimulate plant growth (Mäenpää et al., 2011; Qi et al., 2015; 60 

Shestakova et al., 2016), affect physiological and biochemical metabolisms (Riikonen et al., 2009; 61 

Mäenpää et al., 2011, 2013; Fu et al., 2013; Tacarindua et al., 2013; Kumagai and Sameshima, 62 

2014), delay autumn phenophase (Wolkovich et al., 2012; He et al., 2016), alter plant distribution 63 

(Kelly and Goulden, 2008), and affect biodiversity of forest ecosystems (Grimm et al., 2013). 64 

Urban forests play a crucial role in improving urban air quality, alleviating urban heat island 65 

effects, maintaining environmental health and human well-being (Beckett et al., 1998; Mullaney 66 

et al., 2015; Chen et al., 2017). However, urban trees are often suffering from the impacts of 67 

abiotic factors such as air warming and atmospheric pollution in the urban environment 68 

(Dmuchowski et al., 2019). In addition, global warming and regional emission of greenhouse 69 

gases can aggravate urban warming during summer months (Fujibe, 2009; Bartholy and Pongracz, 70 

2018). It is therefore important to better understand how urban climate including environmental 71 

warming and air pollution will affect the physiological characteristics of urban trees to maintain 72 
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sustainability of urban forest ecosystems (Rotzer et al., 2019).  73 

O3 is considered as one of the main air pollutants and a powerful greenhouse gas, with rising 74 

concentrations at global and regional scale (Ziemke et al., 2019). The increasing of ground-level 75 

O3 concentrations in urban areas is one of the most important environmental issues in Asian 76 

countries including China despite of sustained efforts by the government to control ozone 77 

concentrations (Ueno and Tsunematsu, 2019; Chen et al., 2019). In many Chinese cities, O3 has 78 

taken over PM2.5 as the major air pollutant, especially on cloudless days in summer (Chen et al., 79 

2019). The highest 8-h average O3 concentration often reaches 80 ppb during the summer in 80 

some cities of northeast China (Aunan et al., 2000; Gao et al., 2020). Due to the strong oxidative 81 

toxicity, O3 generally causes negative impacts on forest plants (Feng et al., 2015; Nowak et al., 82 

2018). Increasing O3 concentrations can induce oxidative stress, lead to early leaf senescence, 83 

and thus strengthen deleterious impacts on physiological metabolisms and inhibits growth of 84 

trees (Xu et al., 2015; Moura et al., 2018; Dai et al., 2019; Xu et al., 2020). 85 

Indeed, further air warming and an increase in tropospheric O3 concentrations may coexist 86 

in many large cities in the world including China. Therefore, to make a better understanding of 87 

the effects of increased temperature and elevated O3 in combination on urban trees is vital for the 88 

adaptation and management of urban forests to regional and future climate change (Wang et al., 89 

2018; Nowak et al., 2018). So far, far less is known about the combined and interactive impacts 90 

of increased air temperature and ozone on physiological metabolisms of urban plants. 91 

Ginkgo biloba and Populus alba ‘Berolinensis’ are two of the most urban tree species in 92 

urban forests in many cities of Northeast China (Lu et al., 2011; Xu et al., 2015). In several 93 

countries, G. biloba is regarded as one of ancient living plant fossils and recommended for urban 94 

afforestation and roadside tree species due to its resistance to the adverse conditions in urban 95 

environments, for example in the US (Hurley and Emery, 2018; McBride and Lacan, 2018), 96 

Jo
urn

al 
Pre-

pro
of



Europe (Beus, 2014; Dmuchowski et al., 2019), and Asia (Li et al., 2011, 2014; Xu et al., 2015). 97 

P. alba 'Berolinensis' is a hybrid of P. alba × P. berolinensis in Northeast China (Wang et al., 98 

2008). This poplar is commonly planted as street tree species in cities, well known for its 99 

excellent ecological properties such as rapid growth and high adaptation capacity to 100 

environmental stress (Huang et al., 2017; Jiang et al., 2018). In our previous work, we carried out 101 

several studies on the physiological responses of both tree species to O3 stress; especially He et al. 102 

(2006) observed that the short-term O3 fumigation induced acclimation of the antioxidant defense 103 

system in leaves of G. biloba. Lu et al. (2009) found that O3 induced significant oxidative stress, 104 

leading to increased hydrogen peroxide accumulation in G. biloba leaves. He et al. (2007) and Li 105 

et al. (2011) found that G. biloba exhibited a significant inhibition in growth under increasing O3 106 

concentrations. The results from Xu et al. (2015) indicated that decreased net photosynthetic rate 107 

in leaves of G. biloba by 35.6% after 60 days of elevated O3 exposure. Fu et al. (2014) found that 108 

elevated O3 (160 ppb) significantly induced the accumulation of membrane lipid peroxidation 109 

products and decreased net photosynthetic rates in P. alba ‘Berolinensis’ leaves. Recently, we 110 

also found that this hybrid poplar leaves exposed to 120 ppb showed high malondialdehyde 111 

content and low net photosynthetic rate, compared to those in ambient O3 exposures (Xu et al., 112 

2019). 113 

The current work is based on a multi-factorial (elevated O3 combined with increased air 114 

temperature) experimental design to test for combined effects on G. biloba and P. alba 115 

‘Berolinensis’ grown in open top chambers (OTCs). This study focused on changes in 116 

multi-physiological parameters of two common urban tree species under increased air 117 

temperature and elevated O3 concentrations during one growing season. 118 

The purposes of our present study were: (1) to determine the responses of growth and 119 

photosynthetic characteristics to increased air temperatures and elevated O3; (2) to compare the 120 
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difference in the effects of increased air temperature and O3 fumigation on oxidative stress, the 121 

activities of antioxidant enzymes of G. biloba and P. alba ‘Berolinensis’ leaves at different 122 

growing stages; (3) to explore the interactive impacts on growth and photosynthesis of the two 123 

tree species. In this study, we postulated that increased air temperature can mitigate the negative 124 

impacts of O3 stress on the two urban tree species by antioxidant systems which change the 125 

strategy of adapting oxidative stress. The findings obtained will deepen our understanding of the 126 

physiological responses and ecological adaptations of urban tree species to environmental 127 

pollutants, which will contribute to developing management strategies for urban forests under 128 

future climate change and air pollution conditions. 129 

1. Materials and Methods 130 

1.1. Experimental site and plant materials 131 

This experiment was performed in Shenyang Arboretum (41° 46′ N, 123° 26′ E) of the 132 

Chinese Academy of Science (CAS) and closely located to a commercial center in Shenyang city 133 

of Northeast China, Liaoning Province. Elevation of the place is 41 m and the area was 5 ha (Xu 134 

et al., 2006). The place is affected by semi-humid continental monsoon climate. More detailed 135 

records in annual temperature and precipitation of this area can be found in our previous 136 

experiments (Xu et al., 2014b; Xu et al., 2005; Xu et al., 2017). 137 

Three-year-old G. biloba seedlings and one-year-old P. alba ‘Berolinensis’ cutting seedlings 138 

with consistent size in stem diameter and plant height (70 ± 5 cm) were selected from a local 139 

nursery and planted into plastic pots (30 cm in diameter and 25 cm in depth) on 15 March 2018. 140 

Pot soil (2 kg) was mixed of sand: peat: clay = 3:2:1 (v:v:v). All plants were cultivated for 30 141 

days in a glass greenhouse under a designed environmental condition (Xu et al., 2020). The 142 

nutritional status of soil in pot is 2.37 mg/g N, 1.78 mg/g P and 6.24 mg/g K, respectively. The 143 
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pots were regularly supplied enough water and the soil water content was maintained to the 144 

field capacity during the growing period. 145 

1.2. Experimental designs 146 

This study was set up in open-top cambers (OTCs) with four treatments: ambient air (AA, 147 

control, 40 ppb O3), increased temperature (IT, + 2°C to AA), elevated O3 (EO, 80 ppb O3), and 148 

increased temperature combined with elevated O3 (IT + EO). Twelve OTCs with 4 m in diameter 149 

and 3 m in height were distributed randomly without mutual shading (Li et al., 2011; Xu et al., 150 

2014a). During the treatments, the plants were watered twice a week and fertilized once at the 151 

beginning of the experiment. After 30 d (15 April), the plants were exposed to AA and EO for 8 152 

h d–1 from 09:00 to 17:00, except during bad weather conditions such as thunderstorm. We 153 

applied a fully computer controlled O3 elevation model, which continuously added generated O3 154 

to meet the target elevation level (2-fold ambient air O3 concentration). Air warming was 155 

provided with elongated (25.5 cm long and 10.0 cm wide) 1000 Watt ceramic infrared heaters 156 

(IRCER12101, 120V, Mor Electric Heating Assoc., Inc. USA). Three ceramic infrared heaters 157 

were fixed horizontally at 120 degrees above the canopy inside each IT OTC. According to the 158 

growth of seedlings, the heaters were lifted to keep a constant distance of 80 cm above the top of 159 

the seedling canopy. The exposure for IT was run 24 hr/day. The similar methods for IT by air 160 

warming exposure were referred according to the study by Ghimire et al. (2017).  161 

O3 was produced from an ozone generator (Xinhang-2010, Shenyang, China). O3 162 

concentrations in OTC were monitored by an automated time-sharing system connected to an 163 

ozone analyzer (S-905, Aeroqual Inc., Auckland, New Zealand) and recorded using a data logger 164 

(CR800, Campbell Scientific Inc., Logan, UT, USA). More detailed methods may be referred in 165 

our previous experiments (Xu et al. 2015, 2017). All treatments of this experiment were 166 
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independently repeated three times under the same conditions. The experiment lasted for six 167 

months (15 April to 20 October 2018). Under natural condition, air temperature, air humidity, 168 

precipitation (mm) and soil surface temperature at study site during the experiments were 169 

automatically recorded by a meteorological observation station (CR-1000, Campbell Scientific 170 

Inc., Logan, UT, USA), which is shown in Fig. S1. Fully expanded mature canopy leaves (n = 3) 171 

were sampled at 09:00 every 45 days from the experiment beginning for physiological 172 

measurements including photosynthetic pigment contents, gas exchange and chlorophyll 173 

fluorescence parameters, oxidative stress and antioxidative enzyme activities. By the end of the 174 

experiment, growth parameters for both tree species were measured under each treatment. 175 

1.3. Measurements 176 

1.3.1. Photosynthetic and chlorophyll fluorescence parameters 177 

Leaf photosynthetic pigments were extracted in 95% ethanol (v/v) and quantified 178 

spectrophotometrically (UV-1800, Shimadzu, Japan). Chlorophyll a (Chla) and b (Chlb) contents 179 

were determined at wavelength of 649 and 665 nm. Carotenoids (Car) were measured at 470, 649 180 

and 665 nm according to the modified methods of Lichtenthaler (1987). 181 

Leaf gas exchange measurements were conducted on two fully developed healthy leaves 182 

(3-5th leaf from the tip of a shoot) from three randomly selected plants per OTC. Net 183 

photosynthetic rate (Pn), stomatal conductance (gs), vapor pressure deficit (VPD) and 184 

transpiration (Tr) were recorded by using a portable infra-red gas analyzer (Li-6400, Li-Cor Inc. 185 

Lincoln, NE, USA) at a saturated photosynthetic photon flux density (PPFD, 1000 µmol/m2
·
 sec) 186 

under a constant condition of relative humidity (40 to 60%) and leaf temperature (25℃) from 9:00 187 

to 11:00. Water use efficiency (WUE) was gained by Pn divided by Tr according to Fischer and 188 

Turner (1978).  189 
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Leaf fluorescence parameters were determined by a chlorophyll fluorometer (FMS-2, 190 

Hansatech Instruments, Ltd, Norfolk, UK) to measure the minimum dark fluorescence yield 191 

(Fo), the maximal fluorescence yield (Fm), the maximum quantum efficiency of PSII 192 

photochemistry (Fv/Fm), the actual quantum efficiency of PSII (ΦPSII), the quenching of 193 

photochemical efficiency of PSII (qP) and the non-photochemical quenching (NPQ) 194 

(Maxwell and Johnson, 2000). Fv/Fm = (Fm − Fo)/Fm. ΦPSII, qP, NPQ were measured from 195 

steady-state fluorescence (Fs), maximum fluorescence (Fmʹ) and minimum fluorescence (Fś ) 196 

after the samples were adapted to light. ΦPSII= (Fmʹ − Fs)/Fmʹ, qP = (Fmʹ − Fs)/(Fmʹ − Foʹ) 197 

and NPQ = (Fm − Fḿ )/Fmʹ (Genty et al., 1989). 198 

1.3.2. Oxidative stress and antioxidative enzyme activities 199 

Leaf oxidative stress was assessed by malondialdehyde (MDA), the product of 200 

membrane lipid peroxidation, and Leaf electrolyte leakage (EL) and superoxide anion 201 

radical (O2·
–) accumulation in leaves. MDA content was determined according to the 202 

method of Dhindsa et al. (1981). EL was measured by a digital conductivity meter 203 

(DDS-11A). O2·
– production rate was determined by hydroxylamine hydrochloride 204 

oxidation method according to Elstner and Heupel (1976). 205 

Antioxidative enzymes were extracted according to Cho and Seo (2005). Superoxide 206 

dismutase (SOD) activity was analyzed by the ability to inhibit the photochemical reduction 207 

of nitroblue tetrazolium (NBT) (Dhindsa et al., 1981). Catalase (CAT) activity was assayed 208 

by ultraviolet absorption method (Azevedo et al., 1998). Ascorbate peroxidase (APX) 209 

activity was measured according to the method reported by Nakano and Asada (1981). 210 

Glutathione reductase (GR) activity was determined according to the method described by 211 

Krivosheeva et al. (1996). 212 
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1.3.3. Growth parameters 213 

Before harvesting, relative water content (RWC), plant height, basal diameter and specific 214 

leaf weight (SLW) were measured for all plants at the end of the experiment (20 October 2018). 215 

RWC (%) = (FW-DW)/FW × 100%, with FW standing for fresh weight, DW for dry weight. 216 

SLW (g /cm2) is the dry weight of unit area leaves. Root/shoot (R/S) ratio was determined by root 217 

biomass per plant divided by above-ground biomass. 218 

1. 4. Statistical analysis 219 

The data were subjected to the analysis of variance (ANOVA) with SPSS 18.0 (SPSS 18.0, 220 

Chicago, IL, USA). Prior to analysis, the assumption of normality and homogeneity was tested 221 

with Shapiro-Wilk and Levene tests, respectively. The repeated measures ANOVA was carried 222 

out for main effects and interactions of time, tree species, EO and IT on all physiological and 223 

growth parameters. One-way ANOVA was used to compare the difference of each parameter 224 

between the treatments for each tree species at each sampling date. The least significance 225 

differences (LSD) was used to analyze the significant difference between the treatments. The 226 

single and interactive impacts of IT and EO, sampling time and tree species on growth, and 227 

physiological parameters in leaves were studied by general linear model (GLM). Data shown in 228 

all tables and figures are means SD, P < 0.05 was regarded as statistically significant.  229 

2. Results 230 

2.1 Effects of increased temperature and/or elevated O3 on photosynthetic characteristics of 231 

two urban tree species 232 

During 90 days of exposure, IT alone had no significant effect on the contents of 233 

photosynthetic pigments including Chla, Chlb and Car in leaves of G. biloba and P. alba 234 
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‘Berolinensis’ (Fig. 1), but increased significantly their contents after 135 days of exposure 235 

compared to control. Elevated O3 alone decreased the contents of these pigments in leaves of the 236 

two tree species during the whole growing season. Chla contents of G. biloba and P. alba 237 

‘Berolinensis’ leaves exposed to O3 for 45, 90, 135 and 180 days decreased significantly by 13.2, 238 

28.1, 72.1, 81.8% and 14.4, 18.0, 62.5, 78.3%, respectively (Fig. 1a & b, P < 0.05). Under the 239 

combination of IT and EO, the content of each photosynthetic pigment in leaves showed the 240 

similar trend of changing and is higher than that under EO alone, and lower than that under IT 241 

alone, regardless of tree species. According to GLM analysis, the individual effects of IT, EO, 242 

time (i.e. different treatment times), and tree species were significant for all the photosynthetic 243 

pigments (Table S1). However, the interactive effect was significant for the content of Chla under 244 

the combination of IT, EO, species, and time. No significant interaction of temperature, O3, tree 245 

species and time was observed on Car change in leaves of two urban tree species (Table S1, P > 246 

0.05).  247 

    Compared with control, IT alone increased gas exchange parameters including Pn, gs, VPD 248 

and WUE of the two tree species (Fig. 2). IT alone significantly increased Pn of G. biloba and P. 249 

alba ‘Berolinensis’ by 33.2% and 48.0%, 42.3% and 49.5% after 135 and 180 days of exposure, 250 

respectively (P < 0.05). After 90 days, Pn and gs of plants showed no significant change under IT 251 

(P > 0.05). EO alone decreased Pn and gs of the two tree species at each sampling time (Fig. 2a, 252 

b, c, d). The plants exposed to IT and EO combined showed higher Pn and gs than those being 253 

exposed to EO alone at each sampling time. Compared with control at each sampling time, IT 254 

had no significant impact on VPD. WUE in both G. biloba and P. alba ‘Berolinensis’ showed no 255 

significant change between the different treatments after 45 and 135 days. EO alone increased 256 

VPD at each sampling time regardless of tree species, decreased significantly WUE in leaves of 257 

G. biloba and P. alba ‘Berolinensis’ by 36.1% and 41.9% after 180 days (P < 0.05), respectively 258 
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(Fig. 2g & h). GLM revealed significant interactive effect of IT and EO on Pn (P = 0.002), gs (P 259 

< 0.001), VPD (P < 0.001) and WUE (P = 0.009), respectively (Table S1). 260 

    IT had no significant effect on Fv/Fm, ΦPSII, qP and NPQ at most of sampling dates except 261 

after 180 days with a significant increase of ΦPSII and qP, respectively (Fig. 3c, d, e, f). EO 262 

decreased Fv/Fm, ΦPSII and qP, but increased NPQ at each sampling time (Fig. 3g & h). GLM 263 

revealed interactive effect of IT and EO on Fv/Fm, ΦPSII and NPQ (Table S1). 264 

2.2 Effects of increased temperature and/or elevated O3 on oxidative stress of two urban 265 

tree species 266 

After 45 days of exposure, IT had no significant effect on MDA content, EL and O2·
– 267 

production rate, but increased the levels of these parameters after 90 days, particularly for MDA 268 

content and O2·
– production rate in leaves of G. biloba (Fig. 4a & e, P < 0.05). IT decreased 269 

significantly MDA content, and O2·
– production rate in leaves of G. biloba and P. alba 270 

‘Berolinensis’ after 135 and 180 days. Regardless of tree species, EO induced a rise in MDA 271 

content, EL and O2·
– production rate at each sampling point (P < 0.05), respectively, compared 272 

with control. For G. biloba, EO increased significantly MDA content after 90, 135 and 180 days 273 

by 91.6%, 38.4%, 63.8%, EL by 94.4%, 97.6%, 83.8% and O2·
– production rate by 26.1%, 29.4% 274 

and 60.7% (Fig. 4a, c, e, P < 0.05), respectively. For P. alba ‘Berolinensis’, EO increased 275 

significantly MDA content after 90, 135 and 180 days of exposure by 18.6%, 31.9%, 52.1% (Fig. 276 

4b, P < 0.05). In addition, MDA content, EL and O2·
– production rate showed a lower level in 277 

plants combined with IT and EO than those of O3 alone regardless of tree species. GLM analysis 278 

showed a significant interactive effect of IT and EO on MDA content (P = 0.006), EL (P < 0.001) 279 

and O2·
– production rate (P < 0.001), respectively (Table S1). 280 

2.3 Effects of increased temperature and/or elevated O3 on the activities of antioxidative 281 
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enzymes in leaves of two urban tree species 282 

No significant effect was observed in SOD, CAT and APX activities in leaves of G. biloba 283 

and P. alba ‘Berolinensis’ under IT condition after 45 days of exposure (Fig. 5). EO increased 284 

the activities of these enzymes regardless of tree species, particularly for SOD activity with a 285 

significant rise by 13.7% and 18.2% in leaves of G. biloba and P. alba ‘Berolinensis’ after 45 286 

days (Fig. 5a & b, P < 0.05), respectively. IT increased all the enzyme activities including GR 287 

activity in leaves of the two tree species after 135 and 180 days of exposure (Fig. 5g & h). EO 288 

decreased the activities of SOD, CAT, APX and GR in leaves of the two tree species after 90, 289 

135 and 180 days, respectively. SOD activity decreased significantly by 41.6%, 31.3% and 39.1% 290 

in G. biloba and by 27.8%, 31.2% and 33.6% in P. alba ‘Berolinensis’ after 90, 135 and 180 days 291 

(P < 0.05), respectively. Compared to EO alone, the combination of IT and EO induced higher 292 

enzyme activities at these three sampling points regardless of tree species. By GLM analysis, we 293 

observed that no significant interaction between IT and EO on change in SOD activity (P = 294 

0.366), CAT (P = 0.451), APX (P = 0.079) and GR (P = 0.558). However, significant interaction 295 

between IT and O3 on changes in SOD (P < 0.001), CAT (P = 0.007) and APX (P = 0.028) 296 

activities was found when combined with time treatment (Table S1). 297 

2.4 Effects of increased temperature and/or elevated O3 on growth of two urban tree species 298 

IT and EO significantly affected all the growth parameters except for plant height (Table 1). 299 

Compared to AA, IT alone increased significantly shoot, root and total weight by 37.4%, 34.8% 300 

and 36.0% in G. biloba, and 32.9%, 35.5% and 34.2% in P. alba ‘Berolinensis’, respectively (P < 301 

0.05). EO decreased significantly RWC, specific leaf weight, shoot weight, root weight, total 302 

biomass and R/S ratio by 38.6%, 42.3%, 35.2%, 61.5%, 49.2% and 36.4% in G. biloba, and 303 

20.0%, 29.4%, 17.9%, 35.1%, 26.4%, and 20.0% in P. alba ‘Berolinensis’, respectively (P < 304 
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0.05). Each growth parameter of the two tree species showed a higher value under the 305 

combination of IT and EO compared to the single effect of IT and EO alone. GLM revealed 306 

significant interactive effect of IT and EO on RWC (P = 0.002), basal diameter (P = 0.032), shoot 307 

weight (P = 0.014) and R/S ratio (P < 0.001). 308 

3. Discussion 309 

The results presented here extend our insights into the combined and interactive effects of 310 

air warming and O3 pollution on plants. So far, the combined effects of air IT and EO have been 311 

investigated on a few crops (Wang et al., 2019a) and several field tree species (Riikonen et al., 312 

2013; Hartikainen et al., 2020). However, knowledge of the combined and interactive effects of 313 

the two abiotic factors is still limited on the widely planted urban tree species such as ginko and 314 

poplar tested in this study, both of them being used as bio-indicating species to climate change 315 

and air pollution in Chinese cities. 316 

3.1. Photosynthetic response to increased temperature and/or elevated O3 317 

Photosynthetic responses to IT and air pollution of terrestrial plants can potentially alter 318 

ecosystem C cycling (Jassey et al., 2015). The contents of photosynthetic pigments, leaf gas 319 

exchange and chlorophyll fluorescence are the most commonly used parameters in the 320 

assessment of photosynthetic response to various abiotic stresses including warming and ozone 321 

(Albert et al., 2011; Guidi and Calatayud, 2014; Zhang et al., 2018). In this study, warming by air 322 

IT increased the contents of photosynthetic pigments including chlorophyll and carotenoids in 323 

leaves of G. biloba and P. alba ‘Berolinensis’. The increase of contents in photosynthetic 324 

pigments under warming may be associated with higher photosynthetic performance indicating 325 

plant seedlings adaptability in the new condition for survival to deal temperature stress during 326 

acclimatization (Jeon et al., 2006). Similar studies were found that total chlorophyll 327 
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concentrations increased in needles of Abies faxoniana (Wang et al., 2012) and Picea asperata 328 

(Zhao and Liu, 2009), and in maize leaves under 2°C warming (Tan et al., 2017). Contrary to 329 

warming, EO usually induced the reduction of photosynthetic pigments in plants. Our results 330 

in this experiment supported the study of Leitao et al. (2007) where high O3 concentration 331 

decreased total chlorophyll and Car contents in maize leaves. Higher level of Car in plants might 332 

have played a protective role (Singh et al., 2014). In this study, plants under the combination of 333 

IT and EO showed higher Car content than that under EO alone, which might indicate a 334 

mitigation of adverse O3 effects on the photosynthetic apparatus by preventing photo-oxidative 335 

destruction of chloroplasts. 336 

Moderate warming can enhance plant photosynthesis (Martinez et al., 2014). In this study, 337 

the warming by + 2℃ increased Pn of the two tree species, particularly for G. biloba at earlier 338 

growing stage, indicating that regional warming can promote carbon gain and increase carbon 339 

sink function of urban vegetation by the means of more nutrient and biomass accumulation from 340 

photosynthesis. Our findings are in accordance with the study by Fan et al. (2015), who 341 

confirmed that the experimental warming significantly enhanced Pn and consequently the carbon 342 

gain in winter wheat from the Yangtze River Basin of China. Similarly, Zheng et al. (2018) found 343 

that that the experimental warming significantly increased the maximum Pn of maize leaves in 344 

the North China Plain. Warming tended to increase photosynthesis of trees such as Erica 345 

multiflora, Globularia alypum, and Pinus halepensis (Prieto et al., 2009) and grass species 346 

(Valencia et al., 2016).  347 

However, some studies showed that warming decreased photosynthesis in leaves 348 

of perennial grasses (Zhong et al., 2014), soybean (Zhang et al., 2016a) and boreal tree species 349 

(Reich et al., 2018). These conflicting findings indicated that photosynthetic characteristics of 350 

plants under warming might be related to plant species or cultivars, the intensity and duration of 351 
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warming and/or other environmental conditions (Valencia et al., 2016) or even to warming 352 

techniques (Boeck et al., 2007). Under warming, gs is suggested to increase in order to avoid 353 

overheating of the leaves (Urban et al., 2017; Drake et al., 2018). In current study, we found that 354 

IT increased gs in leaves of the two urban tree species. However, the evidence of gs adaptation to 355 

IT in trees over the long-term has been observed in both directions, i.e. increase and decrease gs 356 

(Way et al., 2015). In this experiment, IT increased VPD and WUE in G. biloba leaves but 357 

increased VPD in P. alba ‘Berolinensis’ leaves at early growing stage. Similar results showed 358 

that IT enhanced VPD of soybean leaves at different growing stages, which may indicate that IT 359 

could exacerbate the drying effects on soybean and lead to reductions in photosynthesis (Zhang et 360 

al., 2016a). 361 

As expected, Pn and gs declined in plants that were exposed to high O3 concentrations (Feng 362 

et al., 2011). In this study, we noticed that EO decreased Pn and gs and concurrently increased 363 

VPD in G. biloba and P. alba ‘Berolinensis’ leaves. Similar results were found in urban tree 364 

species in our studies (Xu et al., 2015, 2019). Actually, the reduction of gs by stomatal closure 365 

with increasing VPD under EO could prevent excessive water loss under high evaporative 366 

demand for adaptation to the adverse environments (Medina and Gilbert, 2016). Under the 367 

combination of IT and EO, Pn and gs showed higher values than those under IT or EO alone at 368 

each sampling time, indicating that increasing temperature increased the adaptation of 369 

photosynthesis to environment stresses (Ashraf and Harris, 2013; Xu et al., 2015). EO effects on 370 

Pn were partly compensated by increased air temperature, showing an interactive effect of the 371 

treatments (Table S1, P < 0.01). The reason for the alleviation of ozone stress under warmer 372 

environments could be due to the increasing of VOCs emissions (Hartikainen et al. 2009), which 373 

exerted a protection from O3 stress (Loreto and Velikova 2001). In this study, WUE decreased 374 

significantly under elevated O3, which showed that O3 stress might adversely affect 375 
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photosynthesis and increase water demand for plant growth (Masutomi et al. 2019). Mäenpää, et 376 

al. (2011) found that elevated ozone concentrations decreased the ratio of photosynthesis to 377 

stomatal conductance, and thus indirectly decreased WUE in leaves of silver birch and European 378 

aspen. 379 

Chlorophyll fluorescence parameters were used to study plant photosynthetic performance 380 

and as indicator for abiotic stresses (Dai et al., 2009; Kalaji et al., 2018). Fv/Fm was often 381 

applied to detect injury of plant photosynthetic apparatus by elevated temperature (Zhou et al., 382 

2018; Cao et al., 2019). Warming may increase plant photosynthesis by increasing the efficiency 383 

of PSII by means of increased Fv/Fm and ΦPSII (Yin et al., 2009). In this study, IT and its 384 

combination with EO exposure resulted in higher Fv/Fm, ΦPSII and qP for G. biloba and P. alba 385 

‘Berolinensis’ leaves than those under O3 exposure alone, indicating that moderate warming 386 

enhanced the efficiency of PSII that can improve Pn by accelerating the energy transport from 387 

PSII to PSI of plants (Hussain et al., 2019). Our result is consistent with earlier findings where 388 

Fv/Fm decreased in O3-exposed leaves of bean indicating photoinhibition in PSII reaction centers 389 

(Guidi et al., 2002). 390 

NPQ is one of the most key photoprotective mechanisms during plant growth (Moustaka et 391 

al. 2015). The increased NPQ appeared to serve as a photosynthetic protective mechanism to 392 

avoid injury accumulation of excitation energy with lower partitioning of photochemical 393 

activity in no-carbon-assimilative processes under high O3 concentration (Pellegrini, 2014). In 394 

this study, O3-treated leaves showed higher NPQ levels than those of leaves exposed to ambient 395 

air and warming conditions, indicating that non-radiative dissipative mechanisms are involved 396 

in the dissipation of excess excitation energy (Lorenzini et al., 1999) and greater 397 

photo-inactivation of PSII in O3-exposed plants (Pellegrini et al., 2011). The lower NPQ under 398 

IT associated with the increased PAR fraction absorbed by PS-II-antenna may have triggered 399 
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reactive oxygen species (ROS) production in the chloroplast, which was properly controlled by 400 

the maintenance of high antioxidative enzyme activities (Neves et al., 2019).  401 

3.2. Oxidative and antioxidative responses to increased temperature and/or elevated O3 402 

Oxidative stress induced by IT causes the membrane peroxidation and decreases the cell 403 

membrane stability of plants (Mittler et al., 2012). In current study, MDA content, EL and O2
• − 404 

accumulation showed slightly higher levels under IT than those under AA, indicating that 405 

oxidative stress temporarily occurred under IT probably due to young and weak leaves at early 406 

growing stage. Similar results showed that enhanced temperature (+ 1~3°C) increased MDA 407 

content in leaves of poplar clones (Yang et al., 2018) and herb species (Qin et al., 2020). However, 408 

it seemed that antioxidative enzyme activities such as SOD, CAT, APX and GR increased with 409 

further growth and development of plants in order to alleviate the oxidative stress by IT in this 410 

experiment. Similar results showed that a slight increase in air temperature of about 2°C was able 411 

to increase the antioxidant ability in Stylosanthes capitata (Martinez et al., 2014) and a 412 

significant increase of the total antioxidant capacity was found in Betula pendula saplings 413 

exposed to elevated temperature (+ 1.3°C) (Riikonen et al., 2009). Zhang et al. (2016b) found 414 

that soil warming (+ 5°C) increased significantly the activities of CAT and APX, but decreased 415 

SOD and peroxidase (POD) activities in leaves of Cunninghamia lanceolata. Some studies have 416 

also shown that a prolonged exposure to IT decreased antioxidant enzyme activities in leaves of 417 

plants such as grass species (Wang et al., 2003, Du et al., 2009). In this study, increased air 418 

temperature maintained higher antioxidative enzyme activities during the entire growing season 419 

than those under elevated O3, which could contribute to optimal warming adaptation for plant 420 

growth, as manifested by the lower MDA content and higher Pn and Fv/Fm. 421 

Generally, EO exposures can generate oxidative stress in plant tissues by inducing an 422 
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over-production of ROS such as O2
• − and H2O2 (He et al., 2006; Caregnato et al., 2013). MDA 423 

accumulation in plants can reflect the status, which they are suffering from oxidative stress 424 

induced by increasing O3 concentrations (Dai et al., 2017). In this study, we found that O3 425 

induced a significant increase in MDA content and O2
• − accumulation in leaves of tree species, 426 

indicating that peroxidation and denaturation of membrane lipids occurred under O3 stress and 427 

became more significant as growing period was progressing. Similar results were found when 428 

high O3 increased oxidative stress and accumulation of ROS and MDA in maize leaves (Singh et 429 

al., 2014), wheat cultivars (Wang et al., 2014; Fatima et al., 2018) and poplar clones (Podda et 430 

al., 2019; Shang et al., 2020). 431 

Plant protection against oxidative stress under additional abiotic stressors was properly 432 

achieved through enzymatic and non-enzymatic antioxidant systems (Hasanuzzaman et al., 2012; 433 

Voss et al., 2013; Soares et al., 2019). The antioxidant enzymes such as SOD, CAT, APX and GR 434 

are responsible for ROS detoxification. The variations of their activities are a common trait in 435 

plants under abiotic stresses such as ozone (Fatima et al., 2018; Soares et al., 2019). SOD activity 436 

in this study was found to increase at early growing stage, and decrease at the following growing 437 

stages under EO. The increase of SOD activity could provide early protection to scavenge ROS 438 

induced by O3 stress during early foliar development and the decrease at late stages could result 439 

from an increased oxidative stress. Similar changes were observed in CAT and APX activities in 440 

leaves of the two tree species (Fig. 5), consistent with the results confirmed by Singh et al. (2014) 441 

where SOD, CAT and APX activities in maize leaves were stimulated by elevated O3 at two 442 

developmental stages. In this study, GR activity however showed significant decrease at different 443 

growing stages regardless of tree species during O3 exposure. Similar results were found where 444 

EO decreased GR activity at different sampling dates in G. biloba leaves after 30-day fumigation 445 

during growing season (He et al., 2006) and in palm leaves during 8-h exposure (Du et al., 2018). 446 
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Under the combination of EO and IT, oxidative stress induced by O3 in plants was mitigated 447 

by IT, compared to that under EO alone. This finding was confirmed by the reductions in MDA 448 

contents, EL and O2 
• − production rate found in leaves of the two tree species under the 449 

combination of the two abiotic factors. The interactive effects of O3 and temperature on these 450 

parameters of oxidative stress were statistically significant (Table S1, P < 0.01) and antagonistic, 451 

resulting in ameliorative effects during the combined treatments due to the high activities of 452 

antioxidant enzymes under IT than EO. This implied that increased air temperature was beneficial 453 

and decreased the O3 sensitivity, as confirmed by non-significant differences in oxidative stress, 454 

enzyme activities, photosynthetic characteristics and growth, particularly the total biomass 455 

between the combined treatment of IT and EO and ambient air at the end of this experiment. 456 

3.3. Growth response to increased temperature and/or elevated O3 457 

Air warming generally increases plant growth and consequently biomass accumulation. In 458 

this study, IT (ambient + 2°C) significantly increased growth of the two broadleaf tree species. 459 

Similar findings were reported for other deciduous tree species such as European beech 460 

(Overdieck et al. 2007), silver birch and European aspen (Mäenpää et al., 2011) and for 461 

coniferous species such as A. faxoniana (Wang et al., 2012). Mäenpää et al. (2013) found that 462 

rising nocturnal temperature increased growth and shoot biomass of silver birch, which is 463 

recognized as a specific response of trees to warmer temperature in nights. 464 

However, warming by means of increased air temperature also resulted in negative or 465 

neutral impacts on growth (Chen et al., 2017; Iturrate-Garcia et al., 2017), which is in contrast to 466 

our current results. IT can usually enhance plant growth under modest temperature or dramatic 467 

precipitation (Gustafson et al., 2017). In addition, moderate warming (+ 3°C) increased 468 

photosynthetic rates, but decreased biomass production due to the increased maintenance costs 469 

Jo
urn

al 
Pre-

pro
of



through o respiration f plants (Gustafson et al., 2017). In our current study, air warming did not 470 

alter root/shoot ratio, indicating no change in the functional balance and distribution between 471 

carbon gain and nutrient supply under IT (Wang et al., 2012). Contrary to our present results, 472 

Tacarindua et al. (2013) found that the above-ground biomass of soybean significantly reduced 473 

by warming of 2~3°C. Dry biomass decrease was associated with a decline in net photosynthesis 474 

and stomatal conductance. The indicated contradictory results suggested that plant growth in 475 

response to warming might depend on plant species or cultivars, the intensity, frequency and 476 

duration of increasing temperature and the season (Silveira and Thiebaut, 2017), or 477 

environmental factors including O3 pollution. 478 

    Generally, increased O3 concentrations can inhibit plant growth in many species. In the 479 

current experiment, elevated O3 induced a significant reduction of growth in the two urban tree 480 

species, especially in biomass. Similar previous studies found that elevated O3 concentrations 481 

decreased growth and biomass accumulation in crops (Mills et al., 2011; Feng et al., 2015) and 482 

trees including G. biloba and poplar clones (Xu et al., 2015, 2019; Zhang et al., 2018; Shang et 483 

al., 2020). In addition, this study showed that the percentage of reduction in total biomass was 484 

larger in G. biloba (49.2%) than in P. alba ‘Berolinensis’ (26.4%) exposed to EO alone. Basal 485 

diameter in O3-exposed G. biloba showed a significant decrease but not in O3-exposed P. alba 486 

‘Berolinensis’. These results might imply that the former was more sensitive to O3 than the latter, 487 

as manifested by higher levels of MDA content, EL and O2
• − accumulation in G. biloba leaves 488 

exposed to O3 during the whole growing season (Fig. 4). It is well known that the reduction of the 489 

root/shoot (R/S) ratio is considered a typical plant response to O3 exposure (Matyssek et al., 490 

2008). In this study, EO decreased significantly R/S ratios of the two tree species, which could 491 

indicate that shoot was prioritized over root system for resource allocation (Keutgen et al., 2005).  492 

Under the current combination of abiotic factors, air warming throughout the experimental 493 
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period were perhaps more beneficial for plants to adapt the adverse environment by adjusting the 494 

physiological and biochemical processes. In other words, our findings suggest that air warming 495 

may be suitable for growth of urban tree species, which could alleviate the adverse effect of high 496 

O3 concentration on plants, as supported by the similar values for all growth parameters under the 497 

combination of increased air temperature and elevated O3 concentration, compared to those under 498 

ambient air and O3 alone. This was in accordance with a recent study that increased temperature 499 

attenuated the negative impact of O3 on the biomass of wheat cultivars (Changey et al., 2018). In 500 

fact, increased temperature can reduce the uptake of O3 through decreasing stomatal conductance, 501 

and improve the capacity of plants to defend against oxidative stress through increased 502 

photosynthetic efficiency (Mäenpää et al., 2011). Furthermore, global warming may alter the 503 

adaptive ability of plants or chance their phenology and distribution range adapt to the adverse 504 

environmental conditions including O3 pollution in a changing world (Riikonen et al., 2009; 505 

Hartikainen et al., 2012). 506 

4. Conclusions 507 

The current results highlighted the importance of a better understanding how trees 508 

responded and adapted to regional air warming and air pollution. The two urban tree species 509 

tested in this study showed similar physiological responses to adapt increased air warming and 510 

elevated O3 exposure. We found that increased temperature lead to enhanced above-ground 511 

biomass of urban trees. G. biloba was more sensitive to both increased temperature and elevated 512 

tropospheric O3 concentrations than P. alba ‘Berolinensis’. Elevated O3 concentrations induced 513 

oxidative stress, inhibited growth and photosynthesis, which being greatly mitigated by 514 

increasing temperature. Significant interactive and antagonistic effects between increased 515 

temperature and O3 pollution were found on photosynthetic performance, above-ground biomass 516 
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and root/shoot ratio. The results presented in this study based on one growing-season experiment 517 

using young plants. In addition, the physiological changes of the two tree species at different 518 

growing stages in this study cannot be generalized as the response to regional warming is largely 519 

species-specific and can depend on the leaf age and the development stage of plants. In particular, 520 

our results suggest that the effects of air warming and ozone pollution on growth and 521 

physiological metabolisms are likely to be limited in northern temperate and boreal tree species 522 

of continental climate. However, elucidating how rising temperatures interact with elevated O3 523 

may have significant implications for predicting the phenological characteristics and the 524 

responses of forest function and structure to projected future climate change, particularly under 525 

the regional warming and the ground-level ozone pollution frequently co-occurring during the 526 

growing season for plants in urban areas. 527 
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Figure captions 952 

Figure 1. Changes in chlorophyll a (Chla; a & b), chlorophyll b (Chlb; c & d) and carotenoids 953 

(Car; e & f) contents in leaves of Ginkgo biloba and Populus alba ‘Berolinensis’ exposed to 954 

increased temperature (IT, ambient air + 2 °C) and/or elevated O3 (EO, ambient air + 40 ppb O3) 955 

during the experimental treatments. AA-ambient air (40 ppb O3). 956 

Figure 2. Changes in net photosynthetic rate (Pn; a & b), stomatal conductance (gs; c & d), vapor 957 

pressure deficit (VPD; e & f) and water use efficiency (WUE; g & h) in leaves of Ginkgo biloba 958 

and Populus alba ‘Berolinensis’ exposed to increased temperature (IT, ambient air + 2 °C) and/or 959 

elevated O3 (EO, ambient air + 40 ppb O3) during the experimental treatments. AA-ambient air 960 

(40 ppb O3). 961 

Figure 3. Changes in the maximum quantum efficiency of PSII photochemistry (Fv/Fm; a & b), 962 

the actual quantum efficiency of PSII (ΦPSII; c & d), the quenching of photochemical efficiency 963 

of PSII (qP; e & f) and the non-photochemical quenching (NPQ; g & h) in leaves of Ginkgo 964 

biloba and Populus alba ‘Berolinensis’ exposed to increased temperature (IT, ambient air + 2 °C) 965 

and/or elevated O3 (EO, ambient air + 40 ppb O3) during the experimental treatments. 966 

AA-ambient air (40 ppb O3). 967 

Figure 4. Changes in malondialdehyde (MDA; a & b) content, electrolyte leakage (EL; c & d) 968 

and O2•
− production rate (e & f) in leaves of Ginkgo biloba and Populus alba ‘Berolinensis’ 969 

exposed to increased temperature (IT, ambient + 2°C) and/or elevated O3 (EO, ambient air + 40 970 

ppb O3) during the experimental treatments. AA-ambient air (40 ppb O3). 971 

Figure 5. Changes in the activities of superoxide dismutase (SOD; a & b), catalase (CAT; c & d), 972 

ascorbate peroxidase (APX; e & f) and glutathione reductase (GR; g & h) in leaves of Ginkgo 973 

biloba and Populus alba ‘Berolinensis’ exposed to increased temperature (IT, ambient + 2°C) 974 

and/or elevated O3 (EO, ambient air + 40 ppb O3) during the experimental treatments. 975 

AA-ambient air (40 ppb O3).976 
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Table 1 ANOVA (P values) of growth parameters for the main effects and interactions of EO (ambient air-AA + 40 ppb O3) and IT (ambient + 2°C) (n=3). 977 

Species Treatments 
RWC 

(%) 

Plant height 

(cm) 

Basal 
diameter 

(mm) 

SLW 

(g/cm2) 

Shoot weight 

(g) 

Root weight 

(g) 

Total weight 

( g) 

R/S 

ratio 

 Ginkgo 

biloba 

AA 97.3 ± 1.9b 80.0 ±14.7a 16.8 ± 2.3b 2.6 ± 0.5b 45.7 ± 2.5c 52.0 ± 3.1c 97.7 ± 4.7b 1.1 ± 0.1b 

IT 97.2 ± 0.8b 76.7 ± 9.9a 16.9 ± 2.2b 3.2 ± 0.7b 62.8 ± 7.1d 70.1 ± 3.1d 132.9 ± 9.3c 1.1 ± 0.1b 

EO 59.7 ± 3.1a 64.7 ± 7.6a 10.3 ± 1.2a 1.5 ± 0.2a 29.6 ± 3.9a 20.0 ± 2.8a 49.6 ± 5.6a 0.7 ± 0.1a 

IT+EO 86.9 ± 19.6b 73.0 ± 6.2a 15.6 ± 0.7b 2.4 ± 0.2b 40.2 ± 1.2b 46.1 ± 2.6b 86.3 ± 3.7b 1.1 ± 0.0b 

Populus alba 

‘Berolinensis’ 

AA 86.8 ± 1.5b 212.0 ± 2.7a 16.7 ± 0.2a 1.7 ± 0.4b 117.1 ± 6.8b 114.6 ± 5.1b 231.7 ± 1.7b 1.0 ± 0.1b 

IT 86.6 ± 5.2b 201.7 ± 10.4a 17.2 ± 1.5a 1.8 ± 0.1b 155.6 ± 10.7c 155.3 ± 12.0c 310.9±14.7c 1.0 ±0.1b 

EO 69.4 ± 2.4a 195.7 ± 22.9a 15.6 ± 1.2a 1.2 ± 0.1a 96.1 ± 3.7a 74.4 ± 6.7a 170.5 ± 9.7a 0.8 ± 0.1a 

IT+EO 87.0 ± 2.0b 

0.366 

205.0 ± 10.5a 

< 0.001*** 

16.7 ± 1.4a 

0.014* 

 1.4 ± 0.1ab 

< 0.001*** 

115.6 ± 3.1b 

< 0.001*** 

112.1 ± 5.9b 

< 0.001*** 

227.7 ± 7.5b 

< 0.001*** 

1.0 ± 0.0b 

0.018* Species 

IT 0.002**  0.841 0.011* 0.005**  < 0.001***  < 0.001***  < 0.001***  < 0.001***  

EO < 0.001***  0.123 0.001**  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***  

Species × IT 0.429 0.764 0.141 0.047* 0.003**  0.003**  < 0.001***  0.110 

Species × EO 0.021**  0.764 0.022* 0.050* 0.029* 0.012* 0.002** 0.174 

IT × EO 0.002**  0.131 0.032* 0.562 0.014* 0.623 0.139 < 0.001***  

Species × IT × EO 0.443 0.690 0.080 0.648 0.195 0.271 0.093 0.043* 

RWC-relative water content, SLW-specific leaf weight, R/S-root/shoot. *: P < 0.05; **: P < 0.01; ***: P < 0.001.978 
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Fig.1. Changes in chlorophyll a (Chla; a & b), chlorophyll b (Chlb; c & d) and carotenoids (Car; e & f) contents 1008 

in leaves of Ginkgo biloba and Populus alba ‘Berolinensis’ exposed to increased temperature (IT, ambient air + 1009 

2 °C) and/or elevated O3 (EO, ambient air + 40 ppb O3) during the experimental treatments. AA-ambient air 1010 

(40 ppb O3). 1011 
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Fig. 2. Changes in net photosynthetic rate (Pn; a & b), stomatal conductance (gs; c & d), vapor pressure deficit 1052 

(VPD; e & f) and water use efficiency (WUE; g & h) in leaves of Ginkgo biloba and Populus alba 1053 

‘Berolinensis’ exposed to increased temperature (IT, ambient air + 2 °C) and/or elevated O3 (EO, ambient air + 1054 

40 ppb O3) during the experimental treatments. AA-ambient air (40 ppb O3). 1055 
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Fig. 3. Changes in the maximum quantum efficiency of PSII photochemistry (Fv/Fm; a & b), the actual quantum 1092 

efficiency of PSII (ΦPSII; c & d), the quenching of photochemical efficiency of PSII (qP; e & f) and the 1093 

non-photochemical quenching (NPQ; g & h) in leaves of Ginkgo biloba and Populus alba ‘Berolinensis’ 1094 

exposed to increased temperature (IT, ambient air + 2 °C) and/or elevated O3 (EO, ambient air + 40 ppb O3) 1095 

during the experimental treatments. AA-ambient air (40 ppb O3). 1096 
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Fig.4. Changes in malondialdehyde (MDA; a & b) content, electrolyte leakage (EL; c & d) and O2•
− production 1130 

rate (e & f) in leaves of Ginkgo biloba and Populus alba ‘Berolinensis’ exposed to increased temperature (IT, 1131 

ambient + 2°C) and/or elevated O3 (EO, ambient air + 40 ppb O3) during the experimental treatments. 1132 

AA-ambient air (40 ppb O3). 1133 
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Fig.5. Changes in the activities of superoxide dismutase (SOD; a & b), catalase (CAT; c & d), ascorbate 1169 

peroxidase (APX; e & f) and glutathione reductase (GR; g & h) in leaves of Ginkgo biloba and Populus alba 1170 

‘Berolinensis’ exposed to increased temperature (IT, ambient + 2°C) and/or elevated O3 (EO, ambient air + 40 1171 

ppb O3) during the experimental treatments. AA-ambient air (40 ppb O3). 1172 
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Highlights 

• Increased temperature led to enhanced above-ground biomass of urban tree species. 

• Elevated O3 inhibited growth and photosynthesis of Ginkgo biloba and poplar. 

• Increased air temperature mitigated the negative impact from elevated O3 on growth. 

• Significant interactive effects between increased temperature and O3 pollution were found. 

• G. biloba was more sensitive than poplar to increased temperature and elevated O3. 
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