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Abstract

Photogrammetric reconstructions of the Aldegondabreen glacier on Svalbard from 17 archival
terrestrial oblique photographs taken in 1910 and 1911 reveal a past volume of 1373.7 ± 78.2 ·
106 m3; almost five times greater than its volume in 2016. Comparisons to elevation data obtained
from aerial and satellite imagery indicate a relatively unchanging volume loss rate of − 10.1 ± 1.6 ·
106 m3 a−1 over the entire study period, while the rate of elevation change is increasing. At this
rate of volume loss, the glacier may be almost non-existent within 30 years. If the changes of
Aldegondabreen are regionally representative, it suggests that there was considerable ice loss
over the entire 1900s for the low elevation glaciers of western Svalbard. The 1910/11 reconstruc-
tion was made from a few of the tens of thousands of archival terrestrial photographs from the
early 1900s that cover most of Svalbard. Further analysis of this material would give insight into
the recent history and future prospects of the archipelago’s glaciers. Photogrammetric reconstruc-
tions of this kind of material require extensive manual processing to produce good results; for
more extensive use of these archival imagery, a better processing workflow would be required.

Introduction

Svalbard glacier mass loss has been considerable since the beginning of the 1900s (Nuth and
others, 2007; Möller and Kohler, 2018). Air temperature, the main driver of glacier mass bal-
ance, has risen by 2.6°C in the last century, with a rate of increase that has accelerated in the
last ∼50 years (Nordli and others, 2014). Quantification of glacier melt in this period is
important for understanding how glaciers have responded to prolonged warming, and to fig-
ure out how unique the recent climatic trend of the past century is, compared to previous
warming events before the observational period. Inventories of glacier extents and area on
Svalbard show a 13% decrease in ice cover since the end of the Little Ice Age (LIA;
Martín-Moreno and others, 2017), a cold period spanning a few hundred years (Mann and
others, 2009). The end of this cold period on Svalbard featured overall glacier retreat, but
the timing of this event is still unclear, as the lack of data inhibits a clear picture. However,
maps and observations seem to suggest that the onset of retreat occurred sometime in the
late 1800s (Liestøl, 1988; Lefauconnier and Hagen, 1991; Svendsen and Mangerud, 1997).
Glacier surges occur more frequently on Svalbard than anywhere else in the world (Sevestre
and Benn, 2015). Surges are dynamic instabilities that result in dynamically driven advance
and retreat phases, which complicate the relationship between climate change and the geomet-
ric response of individual glaciers (Yde and Paasche, 2010). The total Svalbard glacier area has
nevertheless decreased by 7% over the last 30 years, indicating an accelerating retreat rate
(Nuth and others, 2013).

While area change is an important parameter, and more readily quantifiable, changes in
volume are most directly connected to the effects of climate change, and it is therefore espe-
cially valuable to estimate volume change, where possible. For Svalbard, this has recently been
reconciled for 2000–2019 by combining glaciological with geodetic mass-balance data (Schuler
and others, 2020). Other recent studies have used modern photogrammetry for calculating gla-
cier volume change from aerial images taken on Svalbard in 1936 (Mertes and others, 2017;
Midgley and Tonkin, 2017; Girod and others, 2018). In this study, photogrammetric recon-
structions are performed even further back in time, to 1910 and 1911, to gain a better under-
standing of the timing and extent of post-LIA glacier retreat on Svalbard. Aldegondabreen is
used as an example glacier, as its high temporal and spatial coverage of images gives a powerful
example of what a more widespread use of archival photographs can deliver.

A number of photogrammetric surveying campaigns were carried out during the early
1900s, and the resultant photographs are now archived by the National Library of Norway.
These surveys were carried out to create accurate and reliable topographic maps, which
were used for research, and later, for territorial claims by Norway (Barr, 2009). Surveying
was initially performed mostly by theodolite, complemented by photogrammetry, but from

Downloaded from https://www.cambridge.org/core. 04 May 2021 at 14:07:37, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/jog.2020.89
https://doi.org/10.1017/jog.2020.89
mailto:holmlund@vaw.baug.ethz.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/jog
https://orcid.org/0000-0002-9146-557X
https://crossmark.crossref.org/dialog?doi=10.1017/jog.2020.89&domain=pdf
https://www.cambridge.org/core


the 1910s and onward, photographs became the predominant
sources of information. This resulted in many glaciated areas
being covered by tens or more photographs in the same year,
and tens of thousands of photographs are now archived and avail-
able for scanning, with enough overlap to utilise modern photo-
grammetrical processing techniques for extracting accurate
topographic data.

Study area

Aldegondabreen (77.97°N, 14.05°E) is a 2.6 km long terrestrial
valley glacier in Grønfjorden on Svalbard, located 8 km from
the Russian mining settlement of Barentsburg (Fig. 1). The
mean annual air temperature and total annual precipitation in
1961–1990 at Barentsburg were − 6.1°C and 565 mm w.e. (water
equivalent), respectively, with statistically significant positive
trends for both parameters (Hanssen-Bauer and others, 2019).
In the early 1900s, photographs show that Aldegondabreen was
around 5 km long and terminated in the fjord, but it is today
roughly half as long (Fig. 2). Today, it covers 5.7 km2, with an ele-
vation range of 200–600 m a.s.l. Throughout its observational his-
tory, the glacier ice margin had little debris cover, making it easy
to delineate changes in its length and areal extent. The glacier had
an average thickness of 73 m in 1990, with temperate ice in its
thicker southern half, overlain by a thick cold surface layer
(Navarro and others, 2005). Unpublished radar data from 2017
by the University Centre in Svalbard show that the glacier still
has a small temperate core, but it has drastically reduced in
size. The geomorphology of the glacier’s forefield suggests a
more temperate regime in the past, as seen by the presence of
flutes, roche moutonnées and striated clasts (Kirkebøen, 2018).

In 1864, a Swedish expedition noted extensive calving of a tide-
water glacier in Grønfjorden (Dunér and others, 1867). Since
Aldegondabreen was the only glacier terminating in the fjord,
this indicates a much higher ice flux at that time. The glacier
was retreating already in 1910, as evidenced by a smooth terres-
trial terminus and a well-developed calving bay. The terrestrial
forefield geomorphology and low-resolution soundings in the
fjord by the Norwegian Mapping Authority suggests a slightly lar-
ger Neoglacial maximum than in 1910, maybe corresponding to
the late 1800s LIA culmination or of a larger older extent. The
characteristics of the glacier’s rapid subsequent decline is interest-
ing, as surge-indicative landforms exist in its forefield
(Farnsworth and others, 2016).

Data and methods

Terrestrial photographs

A total of 17 photographs from 1910 and 1911 are known to cover
Aldegondabreen (Figs 1 and 2). The 9 × 12 cm glass plate posi-
tives from 1910 and 1911 were scanned for the purpose of this
study at 1600 dpi by the National Library of Norway, equating
to approximately 42 megapixels for each image. They were pre-
processed in Adobe Photoshop CC 2019 by applying noise reduc-
tion, sharpening and contrast enhancement filters using the same
settings for each image.

Aerial photographs

Late-summer photographs from aerial surveys are available for
Aldegondabreen in 1936, 1956, 1960, 1961, 1969, 1990 and
2008. The 1936 survey consists of images taken at an oblique

Fig. 1. Study location on Svalbard (red rectangle) and the location of Longyearbyen (LYB), the main settlement on Svalbard (a). The surroundings of
Aldegondabreen, showing the constructed GCPs used in the terrestrial, aerial, or both types of reconstructions (b). The locations of the used 1910/11 photographs
are shown together with their orientations.
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Fig. 2. Example photograph for the 1910/11 reconstruction (left), taken from the opposite side of the fjord. The fiducial marks around the frame are used to align the photographs’ internal coordinate system. Orthomosaics
(upper right) from the multiple aerial surveys performed by the NPI. A Planet satellite image (lower right) shows the 2019 state of the glacier.
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(∼ 30° from horizontal) angle, and the images in 1956 and later
were taken vertically. The 1960 and 1961 surveys each covered
only parts of Aldegondabreen, but taken together provide full
coverage. The subsequent reconstruction was assigned a single
time stamp since the photographs were obtained with only a
year between them (Fig. 2). Variable snow cover was assumed
to play a larger role than one year’s variation in ice elevation,
so this was considered a safe approach. The 2008 survey is already
processed by the NPI, yielding a well georeferenced orthomosaic
and a 5 m Digital Elevation Model (DEM; www.npolar.no), which
was used here as a reference data set.

Other data

An ArcticDEM strip (scene id: WV02_20160702_1030010)
derived from 2016 WorldView satellite imagery (Porter and
others, 2018) was used for modern elevation change, and was
co-registered using the vertical difference of stable terrain (c.f.
Rodrıguez and others, 2006; Berthier and others, 2007; Howat
and others, 2008). In addition, a Planet satellite scene from
2019 was used for areal extent change (scene id:
20190803_062019_1_0f2b; Planet Team, 2019). To put the eleva-
tion change of Aldegondabreen in context, its mean thickness of
73 m in 1990 determined by Navarro and others (2005) was used
to determine the current and past ice thickness. These depth data
are available through the Glacier Thickness Database 3.0
(GlaThiDa Consortium, 2019), and were used for visualisation
of the glacier’s profile. No error measure is given for the depth
estimate, and is therefore only treated as a potential qualitative
source of error.

Photogrammetry

Terrestrial and aerial surveys were processed in the photogram-
metric suite Agisoft Metashape 1.5.0. The aerial photographs
could be processed in a standard photogrammetric workflow
and were processed using similar processing parameters
(Table 1). The software employs structure-from-motion (SfM)
photogrammetry, which enables the estimation of relative posi-
tions of photographs, as well as one or multiple camera models
to correctly account for geometric distortions, yielding topo-
graphic information on the imaged terrain or object
(Koenderink and van Doorn, 1991; Snavely and others, 2008;
Westoby and others, 2012). This allows almost any image to be
used, as long as the internal coordinate systems of the images
are consistent, which is handled with fiducial marks in scanned
imagery (Fig. 2). Similar studies of archival aerial images give
examples of this potential (Koblet and others, 2010; Mölg and
Bolch, 2017; Vargo and others, 2017; Girod and others, 2018).

The flexibility of Metashape allows both the aerial and terrestrial
surveys to conveniently be done in the same framework, but lim-
itations of this approach with the terrestrial photographs are dis-
cussed later.

Point clouds, which are used to create Digital Elevation Models
(DEMs), and orthomosaics, are the products of the photogram-
metric processing in Metashape, and the DEMs and orthomosaics
were analysed in QGIS 3.8.0 to determine the changes in size of
Aldegondabreen. DEM gridding was performed in
CloudCompare v.2.10.2 instead of Metashape, to enable equal
gridding of 20 × 20 m DEMs for each survey. This simplified
the subsequent analyses as the DEMs were exactly aligned, and
no resampling (with possible inherent error) was needed to com-
pare them. Elevation change was calculated by subtracting each
consecutive DEM, and interpolating gaps in the DEM difference
(dDEM) products using linear spatial interpolation (Fig. 3).
Smaller gaps in the DEMs arose in the low-detail zones created
by shadows, but this usually has a negligible impact on the overall
result (McNabb and others, 2019). The dDEMs were cropped to
the largest glacier extent in respective DEM pairs, and the mean
thickness difference was multiplied by this area to yield the vol-
ume change. Elevation profiles, area and length variation (based
on ten equally spaced parallel transects), calculated from the
data, further helped to understand the glacier’s changes.

Ground control points (GCPs) are normally needed for photo-
grammetric reconstructions, to georeference the images and allow
comparisons between surveys (Smith and others, 2016). This is
preferably done by collecting them in the field with a differential
GNSS receiver (e.g. Rosnell and Honkavaara, 2012; James and
others, 2017). If this is not possible, a reference data set can be
used to derive 3D-coordinates of boulders and other features in
terrain assumed to be stable that can be seen in the historic
images, which is advantageous with respect to quantity over qual-
ity, when compared to the field-based approach (e.g. Hong and
others, 2006; Mertes and others, 2017; Girod and others, 2018).
The dominant flora in the study area are Northern Woodrush
and a multitude of mosses, which grow from less than one to a
few decimetres in height (Elvebakk and Prestrud, 1996).
Vegetation cover in the study area was therefore a good indicator
of unchanging ground, and features were consequently sought
with its presence. The 2008 orthomosaic and DEM, which
together served as a reference model, was used to extract 65
unique GCPs spread around the study area (Fig. 1). The number
of GCPs used for each survey, and their respective errors, are
shown in Table 1.

Terrestrial photogrammetry
The 1910 and 1911 photographs of Aldegondabreen have a high
degree of overlap, with up to 13 photographs covering one feature.

Table 1. Properties of the photogrammetric reconstructions. The dense quality refers to the resolution of the MVS reconstruction in Metashape (‘high’ means that
depth maps are generated at half the image resolution), dense filtering is the proprietary depth map filtering setting, and dense count refers to the resultant point
cloud count. The 1910/11 reconstruction was based on manual triangulation, giving it a much lower resultant 20 × 20 m DEM population. The ground sampling
distance (GSD) is the default orthomosaic resolution reported by Metashape.

Year Images GCPs RMSEx (m) RMSEy (m) RMSEz(m)

1910/11 7/10 9 4.35 4.53 1.51
1936 44 53 3.49 3.25 1.79
1960/-61 4/3 13 0.65 1.13 0.54
1990 11 8 1.60 1.69 0.78

Year Dense Quality Dense Filtering Dense Count DEM Pop. (pt/px) GSD (cm/px)

1910/11 — — — 0.06 128
1936 High Aggressive 61 577 011 42 232
1960/-61 High Aggressive 47 330 438 239 64
1990 High Aggressive 211 192 801 1700 24
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In spite of this fact, manual input was needed to align them all,
requiring considerable extra time and effort, and 102 manual tie
points were added. Each manual tie point was defined in between
2 and 13 photographs (5 on average), with a mean pixel error of
2.95 px (equivalent to around 4 m in projected coordinates). The
automatic alignment in Metashape gave poor results, with 2 801
tie points being identified in only 3 out of the 17 total photo-
graphs. This meant that each photograph could be aligned, but
with a higher uncertainty than what would otherwise be possible.
Attempts at dense reconstructions using the Multi-View Stereo
(MVS) algorithm in Metashape were also too noisy to use, so
only the manually triangulated points were considered reliable.

Due to the sparse nature of the viable topographic data, a more
advanced interpolation methodology was needed to feasibly inter-
polate a 1910/11 surface DEM. Due to low detail in the snowy
upper parts of the glacier, only one point was successfully trian-
gulated using three images on the upper half of the glacier. The
edge of the glacier was however easy to identify through the
photographs and was therefore used as an additional indicator
of the glacier’s past size. The elevations of the 1910/11 boundary
line on the rock wall was compared to the elevations of the 1936
boundary, and was used as additional point values, together with
the traditionally triangulated points. The 1910/11 outline was
made by projecting the outline drawn in each photograph onto
the 2008 DEM, which was assumed to accurately represent the
mountain side in 1910/11, to yield the 3D position of the bound-
ary. Finally, elevation changes between 1910/11 and 1936 (Fig. 4)
were interpolated, which is a statistically more accurate method
than first interpolating and then differencing elevations values
(McNabb and others, 2019). A 1910/11 DEM was constructed
by subtracting the 1910/11–1936 elevation differences (dDEM)
from the 1936 DEM. The surface thus inherits the general

shape of the glacier in 1936, which is not unrealistic, but remains
an untestable assumption of the methodology. However, signifi-
cant changes in surface morphology usually do not occur in the
absence of any surge-type behaviour. Since there is only a faint
geomorphological inference for past surging (Farnsworth and
others, 2016), and no indication of a surge in the study period,
assuming a constant shape seemed reasonable.

Error assessment

Elevation errors in photogrammetric reconstructions are typically
characterised by the Root Mean Square (RMS) of the elevation
differences between the estimated GCP positions and their corre-
sponding reference position (e.g. Kääb, 2005; Koblet and others,
2010; Mertes and others, 2017; McNabb and others, 2019). This
was used for the aerial image reconstructions, but additional
error sources were expected to play a role in the terrestrial
image reconstruction since the process was not performed in a
well-established workflow. In addition to the GCP uncertainty,
elevation data were extracted by manual triangulation, which pro-
duces fewer points and is therefore more prone to erroneous out-
liers affecting the final result. The triangulation uncertainty was
assessed by evaluating the location variance when each available
combination of image pairs was used to define it separately
(c.f. Holmlund and Holmlund, 2019): For each manual tie
point, every unique combination of image pairs used to define
it were tested, and the resulting position of the point was noted.
The RMS of the deviation from the mean of each point was
thus used to estimate the uncertainty. While only the vertical
components of errors are traditionally used for vertical difference
error, the horizontal uncertainty was assumed large enough to
require consideration. The mean slope of the 1910/11 DEM was

Fig. 3. Elevation change between the aerial image reconstructions. The background hillshade is from the latter year in the comparisons. Negative elevation change
retained its order of magnitude (ca. –2 m/a), in spite of the glacier retreating to higher elevation.
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12°, so the total horizontal error was multiplied by sin(12°) to
approximate the vertical effect of the horizontal component, add-
ing to the total vertical error of the reconstruction (Table 2). Since
the 2016 ArcticDEM lacked an associated alignment error, the
RMS of the residual error after registration to the 2008 DEM
was used instead. Finally, the elevation differences between the
aerial and satellite reconstructions on stable terrain (assumed
from extensive vegetation) were calculated, to provide an add-
itional error measure (Fig. 5). These differences were normally
distributed around medians with lower magnitudes than the cal-
culated vertical alignment root mean square errors (RMSE;
Table 1), thus supporting that the initial error assessment is
representative.

Results

The reconstructions of Aldegondabreen show a 79%+ 6% vol-
ume loss between 1910/11 and 2016 (Table 3). During the same
time, it was roughly halved in area and length (Fig. 6). There
was no clear change in the rate of volume loss between the studied
years (−10.1+ 1.6 · 106 m3 a−1), with a linear Pearson

correlation coefficient of 0.9986, suggesting that the entire 1900s
featured considerable ice loss. However, there is an accelerating
rate of elevation loss, similar to other parts of Svalbard (Kohler
and others, 2007; James and others, 2012; Nuth and others,
2012; Małecki, 2013, 2016). Since ∼1990, a similar acceleration
in area and length reduction is seen, although data with a higher
temporal resolution would be preferable to say this with certainty
(Fig. 7).

Aldegondabreen lost ice even in its uppermost elevations,
unlike some higher elevation Svalbard glaciers, where remote
sensing and modelling suggests that increased melt is counter-
acted by increased precipitation (and thus accumulation), yielding
positive thickness change in the upper parts (Moholdt and others,
2010; van Pelt and others, 2019). Additionally, surge-type glaciers
often tend to show a thickening in the upper parts during quies-
cence, even as the overall mass balance may be negative (Nuttall
and others, 1997; Melvold and Hagen, 1998; Benn and others,
2019; Nuth and others, 2019). This does not seem to be the
case for Aldegondabreen; there is no clear indication of past sur-
ging, and its accumulation area is too low to take advantage of any
positive mass change from the ongoing precipitation increase.
Aldegondabreen, and other low-elevation glaciers like it, could
only have remained unchanged in a much colder or wetter climate
than that of the 1900s. Linear extrapolation of the volume loss
suggests that Aldegondabreen will be almost non-existent by the
2040s.

Discussion

Few glacier reconstructions predating the 1936 aerial photography
campaign have been performed on Svalbard. Topographic maps
older than 1936 have been used to draw profiles or to calculate

Fig. 4. Elevation change between the terrestrial 1910/11 and aerial 1936 reconstruction, and the location of the constituent manual tie points, used together with
the boundary difference to interpolate the dDEM (a). Orthomosaic from the 1910/11 reconstruction, draped on the resultant DEM (b).

Table 2. Contributing sources of error for the 1910/11 reconstruction. The total
vertical error (RMS of all vertical components) is used as the error for the
elevation difference (Table 3, Fig. 7)

Type RMSEx (m) RMSEy (m) RMSEz (m)

GCP error 4.35 4.53 1.51
Placement error 22.78 22.03 1.51
Horizontal component — — 7.03
Total 23.19 22.49 7.35
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glacier extent (Liestøl, 1969; Nuttall and others, 1997; Pälli and
others, 2003; Flink and others, 2015, 2018). However, the asso-
ciated errors are large and sometimes difficult to quantify,
although the workflow suggested by Weber and others (2020)
may help in standardising these errors. Since no similar historic
terrestrial reconstructions have been done on Svalbard before
1936, the results of this study lack a good comparison. It is

however evident that this approach is more reliable than those
using topographic maps, which often have large systematic errors
that are difficult to quantify without a reference dataset (Lightfoot
and Butler, 1987; Fisher and Tate, 2006; Surazakov and Aizen,
2006). Digitally reprocessing these archival photographs may
mark a significant milestone in our understanding of the effects
of climate change and glacier dynamics just at the end of the LIA.

Fig. 5. The median, mean and standard distribution (SD) of the offsets of stable terrain in the aerial and satellite data comparisons (see Fig. 3). The y-axes
represent the number of 20 × 20 m pixels that occur in each bin (bin-width = 0.2 m).

Fig. 6. The variation in areal extent of Aldegondabreen since 1910/11, compared to its approximate Neoglacial maximum (a). The topographic profile is shown in
Fig. 8. Equally spaced lines along the approximate glacier centreline were used to calculate the glacier’s changing length (b).

Journal of Glaciology 113
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The underlying topography of Aldegondabreen is complex,
due to heavy tectonisation of the geological units in its surround-
ing (Dallmann, 2007). This may impact the glacier’s dynamics,
and thus alter its reaction to climate change. A major bedrock rie-
gel is present beneath the past surface of Aldegondabreen which
most likely disturbed the ice flow (Fig 8). Large riegels can
severely affect flow direction and speed, and will thus control
how a glacier reacts to increased melt (Hooke, 1991; Hanson

and others, 1998; Holmlund and Holmlund, 2019). In addition,
ice buildup above such topographic controls, which act as bar-
riers, can possibly lead to surges (Flowers and others, 2011;
Lovell and others, 2018). Melt rates and dynamics of
Aldegondabreen could have been affected by factors such as
these in the past, but the results of this study offer no proof, nei-
ther for nor against this possibility. The best course of action is to
reconstruct more glaciers in the same historic time-frame, which

Fig. 7. Variation in size of Aldegondabreen, with the corresponding error in elevation change and volume (c.f. Table 3). The yearly elevation change (dH · dt−1)
seems to indicate an acceleration, unlike the rate of volume loss. The rates of reduction in length and areal extent may have accelerated since 1990, but data
with higher temporal resolution would be preferable to say this with certainty.

Fig. 8. Elevation profile of Aldegondabreen, and its geometric changes over time. The main bedrock riegel (R) is clearly reflected in the reconstructed ice surfaces.
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would help to determine whether the response of Aldegondabreen
to 1900s century climate change is regionally representative.

This reconstruction shows that invaluable information can be
extracted from such archival terrestrial photographs. However, the
automatic processes of Agisoft Metashape were not suitable for
more extensive reconstructions, due to the need for time-
consuming manual processing, and yielded more sparsely distrib-
uted data than might normally be expected. Analyses of similar
archival photographs might benefit from more comprehensive
image preprocessing and from algorithms that are better suited
for feature extraction from archival imagery. Image preprocessing
can be automated by scoring the workflow using the amount or
the quality of extracted features in an image, where more or better
features indicate a better preprocessing workflow, and this
approach is encouraged to develop further. Next, other feature
detection algorithms than the built-in Scale Invariant Feature
Transform (SIFT) implementation in Metashape may be better
at extracting features from archival imagery. The potential of
the current approach is nevertheless intriguing, as many other
areas on Svalbard are covered by similar photographic material.
Elevation change data from the early 1900s would yield comple-
mentary data to aid and augment the mass-balance model recon-
structions afforded by century-scale meteorological reanalysis
products (e.g. Möller and Kohler, 2018).

Conclusion

The aim of the study was to evaluate the possibility of using his-
toric archival photographs on Svalbard to reconstruct the past
shape and size of its glaciers. Photogrammetric analyses of
oblique terrestrial photographs taken in 1910 and 1911 of
Aldegondabreen, combined with data from aerial imagery and
satellite data, yielded promising results, and point to the possibil-
ity of a more widespread application, since there are abundant
photographs from the early 1900s in other regions of Svalbard.
The reconstruction showed that there was a 79%+ 6% reduction
in volume, from 1373.7+ 78.2 · 106 m3 in 1910/11 to
288+ 4.5 · 106 m3 in 2016, together with an approximate halv-
ing in length and areal extent. The rate of volume change from
1910/11 to 2016 was largely constant, suggesting that the climate
throughout the 1900s was unfavourable for the glacier. Over the
same period, however, there was an acceleration in the rate of ele-
vation change, most likely due to the concurrently warming air
temperatures. A linear rate of volume change may be explained
by an adapting geometry occurring synchronously with the tem-
perature rise. Extrapolation of the rate of volume change suggests
that the glacier may be almost non-existent within 30 years.
Similar photographic material from the early 1900s exists in
many other regions of Svalbard, and the potential of its use is
shown here. Use of these in a larger extent with an improved pro-
cessing workflow may yield invaluable information on the history,

and future prospects, of glaciers that may not exist in the near
future.
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