Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations

Sylvain Monteux1,2,*, Frida Keuper1,3,*, Sébastien Fontaine4, Konstantin Gavazov1,5, Sara Hallin6, Jaanis Juhanson6, Eeline J. Krab1,2, Sandrine Revaillet4, Erik Verbruggen7, Josefine Walz1, James T. Weedon7,8, Ellen Dorrepaal1.

* Corresponding authors
‡ These authors contributed equally

Author affiliations

1: Climate Impacts Research Centre – Department of Ecology and Environmental Sciences – Umeå University. 98107 Abisko, Sweden.
2: Department of Soil and Environment – Swedish University of Agricultural Sciences (SLU). 75007 Uppsala, Sweden.
3: BioEcoAgro Joint Research Unit, INRAE, F-02000 Barenton-Bugny, France.
5: Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). 1015 Lausanne, Switzerland.
7: Plants and Ecosystems – Department of Biology – Universiteit Antwerpen. 2610 Wilrijk, Belgium.

This document is the accepted manuscript version of the following article:
Summary

Warming-induced microbial decomposition of organic matter in permafrost soils constitutes a climate-change feedback of uncertain magnitude. While physico-chemical constraints on soil functioning are relatively well understood, the constraints attributable to microbial community composition remain unclear. Here we show that biogeochemical processes in permafrost can be impaired by missing functions in the microbial community – functional limitations – likely due to environmental filtering of the microbial community over millennia-long freezing. We inoculated Yedoma permafrost with a functionally diverse exogenous microbial community to test this mechanism by introducing potentially missing microbial functions. This initiated nitrification activity and increased CO₂ production by 38% over 161 days. The changes in soil functioning were strongly associated with an altered microbial community composition, rather than with changes in soil chemistry or microbial biomass. The present permafrost microbial community composition thus constrains carbon and nitrogen biogeochemical processes, but microbial colonization, likely to occur upon permafrost thaw in situ, can alleviate such functional limitations. Accounting for functional limitations and their alleviation could strongly increase our estimate of the vulnerability of permafrost soil organic matter to decomposition and the resulting global climate feedback.
Main

Permafrost soils store large amounts of organic matter (1100-1500 Pg-C\(^1\); 66 Pg-N\(^2\)) and degradation of this organic matter can accelerate global warming. The vulnerability of the permafrost carbon pool to increased microbial mineralization with global warming has typically been estimated by incubating permafrost soil in isolation from the overlying topsoil\(^3–5\). Such studies generally focus on climatic, physical and soil chemical constraints on biogeochemical processes, and constraints by microbial community composition have been given less attention. The impairment or absence of a biogeochemical process due to absence or low abundance of the microbial taxa involved, is often ignored as a determinant of carbon and nitrogen cycling because soil microbial communities are usually considered functionally-redundant\(^6\). This presumed absence of functional limitations in microbial communities is typically deduced from the high diversity and dispersal capacity of soil microbes\(^7,8\), the weak coupling between their taxonomy and phenotype\(^9\), and because soil physical and chemical properties affect both biogeochemical process rates and microbial community composition simultaneously\(^10\). Empirical evidence shows that changes in microbial community composition rarely associate with changes in ecosystem processes carried out by many taxa, although such associations are more common for changes in less redundant functions\(^11–13\). However, in permafrost soils, freezing conditions and associated dispersal limitations\(^14,15\) have imposed a strong environmental filter over millennial time scales, which has likely reduced the diversity of the in situ microbial communities\(^15,16\), and potentially their functional repertoire\(^14\). Permafrost soil microbial communities might therefore be functionally limited, especially for functions performed by rare taxa which are more sensitive to diversity loss\(^12,17\). Upon deepening of the thaw-front\(^18,19\) or permafrost collapse, dispersal and colonization by functionally-diverse communities from the overlying topsoil\(^20,21\) or airborne microbes\(^7,22\) are no longer hindered, which might relieve such functional limitations. Studies with permafrost soil layers incubated in isolation e.g.\(^3,23,24\) quantify the response of communities that retain their potential functional limitations. If permafrost microbial communities
have functional limitations, this response to thawing, and thus the estimate of the vulnerability of
permafrost carbon and nitrogen, might be biased. We hypothesized that functional limitations occur
in permafrost microbial communities, and consequently that the introduction of diverse exogenous
microorganisms would alter their functioning.

We tested whether microbial communities in Upper Pleistocene Yedoma permafrost are functionally
limited in carbon and nitrogen cycling processes, by comparing CO$_2$ production and changes in
inorganic nitrogen pools between control and inoculated Yedoma permafrost. Organic-rich deposits
in the Yedoma domain store around 25% of permafrost frozen C stocks, 213 ± 24 Pg-C1,25, of which,
based on incubations, ~10% is especially decomposable25. Inoculation consisted in replacing 2.5%
permafrost (w:w) by a donor soil harbouring a previously characterized, functionally diverse
microbial community26,27, to maximise the potential effect on the permafrost microbial community
composition and the possibility of functional rescue (hereafter referred to as ‘Soil transfer’, Extended
Data Figure 1). In the absence of functional limitation, we expected little to no effect of this soil
transfer on carbon and nitrogen related processes despite changes in microbial community
composition, while changes in carbon and nitrogen related processes would reveal functional
limitations.

Soil transfer modified microbial community trajectory

Soil transfer (ST) induced changes in bacterial and fungal communities, which persisted throughout
the 161-day incubation (Figure 1, Extended Data Figure 2). This was reflected by differences in
bacterial community composition (ManyGLM ANOVA, $P < 0.01$, Figure 1a and b, Extended Data
Figure 3), and by a doubling of α-diversity (Figure 1c). More specifically, the relative abundance of
33% of the 4768 bacterial OTUs (79% of the reads) differed significantly between control and ST
samples over the incubation period. The fungal community composition was less dramatically
modified, but α-diversity tripled (Extended Data Figure 2, Extended Data Figure 3). The large and persistent changes in community composition, resembling neither the donor nor the control samples after 161 days, show that permafrost microbial communities are vulnerable to coalescence (sensu Ref 28: the joining of previously separate communities). Therefore, permafrost microbial communities do not only respond intrinsically to thawing, as previously observed29, but are also sensitive to colonization by other microbial taxa (e.g. from the overlying active layer), with potentially major consequences for the trajectory of their response to thawing.

Functional limitation of CO₂ production

CO₂ production rates increased on average by 41% (95% CI: 30-52%, n=15, Figure 2a) in inoculated relative to control samples. Accounting for fluctuations over time (time : ST interaction n.s., Extended Data Figure 3), we observed a 38% increase in cumulative aerobic CO₂ production over the 161 day incubation (95% CI: 25-52%, n=3, two-sided Welch’s t₂₁₂=11.76, \(P=0.006 \)). This coincided with a net loss of total dissolved carbon (TDC) in the ST samples (Figure 2b, Extended Data Figure 3), but the difference in TDC between ST and control treatments was 33% smaller than the difference in CO₂ production (95% CI: 16-49%, n=15, ANOVA \(F_{1,20}=17.11, P<0.001 \); Extended Data Figure 4). The small quantity of transferred soil (2.5%) did not introduce enough C, nutrients or microbial biomass to initially affect the soil chemistry, microbial biomass, or explain the increase in CO₂ production (Figure 2, Extended Data Figures 1, 3, 5, Supplementary Discussion) and the basal CO₂ production of the donor soil was 65% lower than that of the control samples (Extended Data Figure 6). Further, permafrost organic matter-derived CO₂ production was not affected by nutrient (NPK) amendment and only moderately by labile carbon amendment (\(^{13}\)C-cellulose, c. 9% increase) and these effects were additive to effects of soil transfer (no interaction effects, Supplementary Discussion, Extended Data Figure 6).
The increased CO$_2$ production rates were predominantly associated with relative abundances of different bacterial taxa and abundance of microbes involved in ammonia oxidation rather than with soil chemistry or microbial biomass (Table 1; RandomForest-based variable selection, Extended Data Figure 7). Among the 27 most important variables, 23 reflected information on the microbial communities. These results strongly suggest that the exogenous change in microbial community composition caused the increase in CO$_2$ emissions. Functional limitations and functional alleviations related to the composition of the microbial community can therefore influence broad ecosystem processes, such as CO$_2$ production, in Yedoma permafrost.

Functional limitation of nitrification

Soil transfer (ST) drastically altered the composition of nitrogen species in the dissolved inorganic nitrogen (DIN) pool (Figure 2c-d), although the total DIN content only marginally increased (Extended Data Figure 3). Ammonium content in the permafrost was initially high (Figure 2c), similar to what has been observed previously for other permafrost types30,31, whereas nitrate and nitrite content was initially below the detection limit (c. 0.5 mg-N kg-dry-soil$^{-1}$). In the ST samples only, nitrate and nitrite were detectable after 15 days and then strongly increased (Figure 2d, Extended Data Figure 3), while the ammonium content concomitantly almost halved over the 161 day incubation (Figure 2c, Extended Data Figure 3).

The abundance of $amoA$ genes, coding for the ammonium monooxygenase in Thaumarchaeota and Betaproteobacteria, were below detection limit in control samples, but were introduced upon soil transfer (Figure 3). By day 161, bacterial $amoA$ had reached the same amounts as observed in the donor soil (Figure 3b, Supplementary Discussion). Accordingly, *Nitrosomonadaceae* OTUs had a higher abundance in ST samples (Figure 1a) and their relative abundance was strongly correlated with the nitrate and nitrite pools (Pearson’s $r = 0.78$; 95% CI 0.57–0.89; $P < 10^{-5}$; $n = 29$). Clade A and B
From complete ammonia oxidisers (comammox) within the bacterial phylum *Nitrospira* were detected in all ST and control samples from 15 days onwards, but reliable quantitative data on comammox were not obtained (Supplementary Table 1). Nevertheless, the qualitative data indicate minor differences between control and ST samples and no changes after day 15. In support, relative abundances of detected *Nitrospirae* OTUs were not correlated with the onset of nitrification ($r = -0.03$; 95% CI -0.39–0.34; $P = 0.885$; $n = 29$). The introduction of large numbers of bacterial-*amoA* genes, and, to a lesser extent, archaeal-*amoA* genes, together with the onset of nitrification upon soil transfer, thus confirms that community coalescence-induced introduction of bacterial ammonia oxidizers alleviated the functional limitation of nitrification.

Proposed mechanisms and implications

Our results demonstrate that microbial community composition can limit microbially driven mineralization processes in thawing permafrost soils, affecting both carbon and nitrogen cycling processes with potential climate feedbacks. Long-term residence under unfavourable conditions in the permafrost likely resulted in impaired or complete loss of functions over time. The nitrifier abundance, reflected by the *amoA* genes, was sufficiently low to impede nitrification, potentially because of the prevailing anoxic conditions and because this function is carried out by a few, rare and phylogenetically constrained taxa. However, even processes performed by presumably redundant, broad groups of microorganisms, such as those involved in CO$_2$ production, appear constrained by the composition of the microbial community. Together, these results suggest that genetic capacity needed for coping with thawed conditions was lost, or absent upon permafrost aggradation, from the community. This functionally limited community was, however, vulnerable to coalescence, as contact with an exogenous community modified the trajectory of its compositional change over time. When coalescence with a functionally diverse community occurs, like in the present study, exogenous taxa
with their genetic capacity seem to be able to alleviate functional limitations and thereby diversify soil functioning.

The consequences for soil functioning during *in situ* thaw will depend on the manner in which new microbial communities will colonize newly thawed permafrost soil, and on the extent to which these communities can alleviate functional limitations. Colonization can occur through deepening of the active layer, i.e. the seasonally thawed soil above the permafrost, *via* extended root-growth or percolating water18,19 and may additionally occur through airborne dispersal7,22 or soil mixing upon permafrost collapse (cryoturbation33, thermokarst34, thermo-erosion25, and active layer detachment35). Our observations suggest that colonization could happen rapidly upon thawing. Since tundra active layer soil communities can be as functionally-diverse as those found in temperate grasslands20 (such as our donor soil), and because microorganisms carrying out nitrification, for instance, have been detected close to the permafrost table21,36, it seems likely that active layer communities can alleviate functional limitations. To test this assumption, we reproduced our main experiment, by inoculating Yedoma permafrost with suspensions of arctic topsoils that can be found in the Yedoma domain25 (Extended Data Figure 8a). The arctic topsoil inoculations substantially increased CO\textsubscript{2} production, although to a lesser extent than the donor soil used in our main experiment. We further explored generalization beyond our Upper Pleistocene study system by inoculating three more recent (Holocene) permafrost soils with our donor soil, and in agreement with our main experiment, CO\textsubscript{2} production increased in all inoculated samples (+20-37\%, Extended Data Figure 8b). Overall, our findings strongly suggest that, upon thaw, microbial colonizers could rapidly change the metabolic potential of permafrost microbial communities.

The increase in CO\textsubscript{2} release and the initiation of nitrification after relieving functional limitations highlights microbial community dynamics as an important but poorly understood source of non-
linearity in the relation between warming, permafrost thaw and changes to Earth’s radiative forcing. Our results imply that incubation-based predictions of future soil organic matter turnover in permafrost affected soils likely underestimate the magnitude of the permafrost carbon-climate feedback. Not only can CO$_2$ production and nitrification activity increase, but the introduction of nitrifiers from the active layer will pave the way for denitrification or nitrifier denitrification, further increasing radiative forcing through the production of the potent greenhouse gas nitrous oxide$^{31,37–40}$. The presence or absence of nitrogen processing functions may also affect primary production by altering plant-microbe competition for the presumably large pool of newly thawed permafrost nitrogen30,41,42 or increasing its leaching into aquatic ecosystems43. Although we only tested for a limited set of functions, more soil processes may be subject to functional limitation, which could explain recent findings on the varying methanogenesis potential in permafrost soils44,45. Demonstrating the existence and alleviation of functional limitations in permafrost microbial communities is a first step towards apprehending its extent and consequences in natural settings. Understanding how small-scale soil processes, such as changes in microbial community composition and soil chemistry, affect functional limitations in permafrost, their alleviation upon thawing, and its consequences for carbon and nitrogen biogeochemistry, is urgent to improve global climate feedback predictions.

References

8. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity.

12. Schimel, J. Ecosystem Consequences of Microbial Diversity and Community Structure. in

Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences 239–254 (Springer,

Correspondence and requests for materials should be addressed to Dr. Sylvain Monteux and Dr. Frida Keuper.

Sylvain Monteux: Department of Soil and Environment, Swedish University of Agricultural Sciences – PO Box 7014, SE-750 07 Uppsala, Sweden – Monteux@protonmail.com

Acknowledgements

This study was funded by grants from the Wallenberg Academy Fellowship (KAW 2012.0152), Swedish Research Council (Dnr 621-2011-5444), Formas (Dnr 214-2011-788) and Kempestiftelserna (JCK-1822) all awarded to ED, by a grant from Formas (Dnr 2017-01182) awarded to EJK, by the European Union ClimMani COST Action (ES1308 COST ClimMani) Short Term Scientific Mission, the Arctic Research Centre at Umeå University (Arcum) strategic funding grants awarded to SM and by the Department of Forest Mycology and Plant Pathology, SLU. We thank Pr. Dr. Sarah Lebeer and the ENdEMIC team for hosting part of the molecular work, T. H. Douglas from the U.S. Army Cold Regions Research and Engineering Laboratory’s Permafrost Tunnel (Alaska) for assistance and permission to sample, and the staff of Abisko Scientific Research Station for hospitality and logistic support.

Author contributions

SM, FK, SF, JTW and ED designed the study.
FK, SF, SM and SR performed the experiment.
SM, EV and JTW collected and analysed the DNA data.
FK and KG collected and analysed the PLFA data.
FK, SF, SM and SR collected and analysed all other data.
SM, JJ and SH collected and analyzed the qPCR data.
SM, FK, ED, SF, JW and EK designed and performed the experiment reproducing these findings as presented in Extended Data Fig 8.
SM and FK wrote the manuscript with contributions from all authors.
SM and FK contributed equally.
Financial and non-financial competing interests statement

The authors declare no competing interests.

Figure captions

Figure 1: Changes in permafrost bacterial communities with inoculation by soil transfer (ST).
a: Differential abundance of OTUs between ST and control samples over days 1-161 (n=15). Each bar is a significantly changing OTU, a positive fold-change indicates a higher relative abundance in ST. Crosses indicate the most abundant OTUs (>0.5% rarefied observations) and arrows indicate nitrifiers. b: Phylum-/class-level summary of average relative abundances for control and ST samples. c: Alpha-diversity (Abundance-based Coverage Estimator) of bacterial communities in control and ST samples (mean ± SE). In b and c: n=3 except ST, day 1 where n=2; vertical lines separate pre-incubation permafrost (control) and donor (left) soils from incubated soils (right).

Figure 2: Changes in permafrost carbon and nitrogen fluxes and pools with soil transfer (ST).
a: Daily CO₂ production rates at five dates (circles) and averaged over 161 days (bars). Numbers indicate cumulative CO₂ production after 161 days. b: Total dissolved carbon content. c: Ammonium content. d: Nitrate and nitrite content. (a-d): light colour indicates control, dark colour ST (means ± SE, n=3). Asterisks denote significant ST effect for averaged rates (a) or within a day (significant 'ST x time' interaction; b-e). Letters indicate significant differences between days (main effect): ** P ≤ 0.01; *** P ≤ 0.001. Values in (d) for control (days 1-161) and ST (day 1) are below detection limit.

Figure 3: Abundances of (a) archaeal and (b) bacterial amoA genes in permafrost inoculated by soil transfer (ST) over 161 days. Abundances of amoA genes for control samples (all days, a-b), as well as two ST samples for bacteria (day 1, b) were below detection limit. Small symbols indicate values for individual samples (average of two technical replicates), large symbols indicate means.
error-bars indicate standard-error of the mean (n=3) and different lower-case letters indicate significant differences between days (excluding pre-incubation). The black vertical lines separate pre-incubation donor soil (left, triangles) from incubated samples (right, circles).

Table 1: Explanatory power of multiple linear regressions of CO$_2$ production rates of Yedoma permafrost subjected or not to soil transfer.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>AICc</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-function</td>
<td>61.213</td>
<td>0.662</td>
</tr>
<tr>
<td>Community-function + Biomass</td>
<td>67.865</td>
<td>0.640</td>
</tr>
<tr>
<td>Community-function + Chemistry</td>
<td>72.875</td>
<td>0.655</td>
</tr>
<tr>
<td>Community-function + Biomass + Chemistry</td>
<td>82.823</td>
<td>0.634</td>
</tr>
<tr>
<td>Biomass + Chemistry</td>
<td>73.362</td>
<td>0.565</td>
</tr>
<tr>
<td>Biomass</td>
<td>72.088</td>
<td>0.438</td>
</tr>
<tr>
<td>Chemistry</td>
<td>76.170</td>
<td>0.433</td>
</tr>
</tbody>
</table>

CO$_2$ production rates are divided by the average of their respective date to omit the time dynamics and focus on the differences induced by soil transfer. Community-function: variables selected by the VSURF algorithm (bacterial and archaeal *amoA* genes abundance, Bacteroidetes and WS3 phyla relative abundance; Extended Data Figure 7); Biomass: proxies of microbial biomass (16S rRNA gene abundance, microbial biomass-C); Chemistry: soil chemistry variables (TDC, DIN, ammonium, nitrate+nitrite); AICc and R^2 are adjusted for differing number of parameters.
Methods

Soil description & sampling

Deep (c. 20 m) Yedoma permafrost was collected in the CRREL Permafrost Tunnel Research Facility, in Interior Alaska 11 km north of Fairbanks (64°57’ N, 147°37’ W). Yedoma deposits are ice- and organic matter-rich, syngenetic permafrost, consisting of loess-like silt deposited during the Pleistocene and storing 181-407 Pg-C across the circum-Arctic. They are sediments rather than soil, but we use the term "soil" throughout the text for readability. The permafrost exposed in the tunnel has been carbon dated at between 11 000 and 30 000 years BP. For a more detailed description of the Yedoma-permafrost and its microbial communities, see Refs. 16,49. Three 40-cm long, undisturbed silt cores from the lower silt unit were extracted from the tunnel wall with a SIPRE corer, after excluding the first 20 cm to avoid cryodesiccated permafrost. The cores were kept frozen during transport and stored until further processing at -15 °C.

We tested for the presence of the hypothesized functional limitations in Yedoma permafrost by inoculating the permafrost samples with a donor soil harbouring a diverse microbial community, following the logic that functions which only appeared or significantly increased upon soil transfer were either absent or constrained in the original permafrost samples. Changing the microbial community composition was central to our study design, thus we used solid soil transfer (2.5% w:w, i.e. 0.5 g DW in 20 g) rather than inoculation by liquid suspension. To cover a wide range of soil functions we selected as donor a microbiially diverse temperate grassland soil with known nitrification, denitrification, rhizosphere priming capacity and high functional redundancy. Elemental carbon and nitrogen content, and pH of this donor soil were similar to those of the Yedoma samples (Extended Data Figure 1). The donor soil was collected from a temperate grassland (0-20 cm depth) at the LTER research site of the French National Research Institute for Agriculture, Food and the Environment (INRAE) in central France (Theix, 45°43' N, 03°01' E), from an abandonment-
treatment where no cutting or fertilizing had been carried out for 11 years. The soil is a drained Cambisol developed on granitic rock and has been described in detail previously26,27,51,52.

Soil transfer and incubation conditions, CO\textsubscript{2} production measurements and harvests

Before starting the incubations, the permafrost was thawed at 5 °C, homogenized and mixed by sieving, and pre-incubated for eleven days in a climate chamber (11 °C). We used clean, rather than aseptic, conditions to keep our study similar, and therefore comparable, to other biogeochemistry-oriented incubation studiese.g. 23,24,53,54. We assumed that potential contaminations would affect the control and ST samples equally, and would in the worst case introduce functions missing from control samples, thereby rendering our observations conservative. For each of 30 samples, approximately 32 g of pre-incubated Yedoma permafrost (fresh weight, equivalent to 20 g dry weight) was transferred to 250 mL flasks sealed with rubber septa. Half of the flasks (15) were inoculated by soil transfer to manipulate their microbial communities. The soil transfer (ST) consisted of replacing 2.5% (weight : weight) of Yedoma samples with the donor soil described above (0.5 g DW-equivalent of donor soil per 19.5 g DW-equivalent of Yedoma soil, Extended Data Figure 1), which incidentally replaced 2.5% of initial soil C and N (15.25 mg-C and 1.2 mg-N) with 2.56% of initial C and 3.33% of initial N (15.65 mg-C and 1.6 mg-N). Control jars average C and N content (610 mg-C and 48 mg-N) was therefore similar to those in ST jars (610.4 mg-C and 48.4 mg-N), and both ST and control samples were stirred to apply the same disturbance. We dark-incubated all flasks for up to 161 days at an adjusted water potential of -100 kPa, under aerobic conditions and at 11 °C. This incubation temperature is similar to summer active-layer temperatures in permafrost affected areas30,55,56 and low enough to be within the thermal tolerance range of psychrophilic microorganisms57. Headspace air was sampled with a syringe at least once a week for the first 45 days, then at least once a month, to measure CO\textsubscript{2} concentrations (Binos IRGA, Leybold-Hereaus, Germany). CO\textsubscript{2} production rates were measured on one set of three flasks for each treatment for all time points until 161 days, except three
due to practical constraints. All flasks were flushed with moisturised CO$_2$-free air after each CO$_2$
production measurement, to ensure CO$_2$ concentrations in the flasks never reached 20,000 ppm. CO$_2$
concentrations were adjusted for changes in temperature and atmospheric pressure to calculate CO$_2$
production rates (τ) as follows:

$$\tau(i) = \frac{[CO_2]_i \times (P_i V / RT_i)}{(\Delta t)_i}$$

where $(\Delta t)_i$ is the time interval between measurement (i) and previous flushing, P_i is atmospheric
pressure at measurement time, V the headspace volume, R the ideal gas constant and T_i the
temperature. To calculate cumulative CO$_2$ production over the entire 161 days period, we multiplied
each CO$_2$ production rate with the number of days since the previous flushing, within each jar. For
time points when the 161-days set of flasks was not measured, we used linear interpolations of the
CO$_2$ production rates between the previous and next measurements to estimate CO$_2$ production rates
for intermediate incubation periods (Extended Data Figure 9), and used these in the calculations of
cumulative CO$_2$ production. For reference, similar CO$_2$ production measurements were also
performed on the donor soil used for soil transfer (in this case, supplemented with nutrients i.e.
NH$_4$NO$_3$-KH$_2$PO$_4$, as in Ref. 52), and on control and ST permafrost samples amended with nutrients
and/or 13C-labeled cellulose (Extended Data Figure 6, Supplementary Discussion and Supplementary
Methods).

After each of 1, 15, 30, 71 and 161 days, three flasks of each treatment (control and ST) were
destructively sampled for chemical and microbial analyses described below. Chemical analyses were
carried out immediately, while two subsamples of ca. 3 g of soil were collected and kept frozen
(-80 °C) or lyophilized until DNA or PLFA extractions, respectively, were carried out.
Soil samples from each treatment (n = 3) on days 1, 15, 30, 71 and 161 were analysed for total dissolved carbon (TDC, dissolved organic carbon + dissolved inorganic carbon), dissolved inorganic nitrogen (DIN: NH$_4^+$ and sum of NO$_3^-/NO_2^-$) and microbial biomass carbon. DIN, NH$_4^+$ and sum of NO$_3^-/NO_2^-$ were quantified in filtered extracts (5 g fresh weight in 30 mL 1 M KCl, 1 hour shaking) and analysed on a San++ autoanalyzer (Skalar Analytical, Breda, The Netherlands). Similar extracts (30 mM K$_2$SO$_4$) were used to quantify TDC, as well as microbial biomass carbon by the chloroform fumigation-extraction method58 followed by element-analyses of the lyophilised extracts. Microbial biomass carbon (C$_{MB}$) was calculated using: C$_{MB}$ = E/k, where k is the coefficient of extraction efficiency (0.45; Ref. 58,59) and E is the soluble microbial carbon, calculated as the difference between organic carbon extracted by K$_2$SO$_4$ from fumigated and non-fumigated samples.

DNA extraction and quantitative PCR

DNA was extracted using MoBio PowerSoil DNA extraction kits (now DNEasy PowerSoil Kit, Qiagen, Venlo, The Netherlands), according to the manufacturer's instructions using 0.25 to 0.40 g of soil, sampled 1, 15, 30, 71 and 161 days after the start of the incubation. Presence, quality and concentration of DNA were assessed using a NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Waltham, Massachusetts), prior to amplicon preparation and further quantified using Qubit 2.0 (Invitrogen, Thermo Scientific) before performing quantitative real-time PCR (qPCR). With Qubit, DNA concentrations ranged from 0.2 to 183 ng µL$^{-1}$.

To determine the genetic potential for nitrification, qPCR of variants of the functional gene amoA found in betaproteobacterial ammonia oxidising bacteria (AOB60), ammonia oxidising archaea (AOA61) within Thaumarchaeota, complete ammonia oxidisers (comammox) within the phylum Nitrospira (universal62 and clade-specific63) were performed, as well as the abundance of the V3
region of the bacterial 16S rRNA gene as a proxy for bacterial abundance. DNA extracts were
diluted to 1 ng µL⁻¹ (or 1:8 for samples below 4 ng µL⁻¹). Two 15 µL reactions per gene were analysed
on independent runs using CFX Connect or CFX-96 Real-Time System thermocyclers (Bio-Rad
laboratories, Hercules, California), and the conditions described in Supplementary Table 1. Each
reaction contained 2 µL of diluted DNA template, 10 µg bovine serum albumin, 1x Biorad iQ™
SYBR®Green Supermix (Bio-Rad laboratories) and primers according Supplementary Table 1. The
absence of polymerase inhibitors was ensured by amplifying a known amount of pCR 4-TOPO
plasmid (Invitrogen) added to the DNA extracts or no-template controls and comparing the threshold
cycle number. No inhibition of the amplification reactions was detected with the amount of DNA
used.

Bacterial 16S rRNA and fungal ITS amplicon sequence libraries

We amplified the V3 region of the 16S ribosomal RNA to characterize bacterial communities for all
samples (341F, 518R; Ref. 65), and the internal transcribed spacer ITS1 region for fungal communities
(ITS1f, ITS2; Ref. 66) in samples from day 1, 15 and 161. DNA extracts were diluted to 5 ng µL⁻¹ or
1:1, and up to 1:50 if amplification failed (samples that did not show visible amplification despite
dilution were nevertheless used in the downstream processing). Primers and conditions for PCR and
clean-up are described in Supplementary Table 1. Clean PCR products were then quantified using
Nanodrop ND-1000 spectrophotometer, and pooled together in equimolar ratios. 60 µL of this library
was further cleaned with a QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer’s
instructions. The resulting library was quantified on a Qubit 3.0 Fluorometer (Thermo Scientific),
diluted to 4 pM and sequenced on a MiSeq platform (Illumina, San Diego, California) using V2
chemistry with 2×150 cycles to obtain paired-end reads for bacteria, and 1×300 cycles for fungi.
Bioinformatics pipeline

Merging of bacterial paired-end reads and stringent quality-filtering (fastq_maxdiffs 1, fastq_maxee 0.05, and max length 200 bp for fungal reads) were performed with VSEARCH v2.3.4[67]. Non-target regions were removed with a custom awk script for bacterial reads, and with the ShortRead R library[68] for fungal reads, before 97% de novo OTU clustering using VSEARCH. Chimeras were removed with UCHIME and the GOLD or UNITE v7 databases[69–71] OTUs that were abundant in the technical controls (>5%) were removed, alike in Ref. 16,18. PyNAST, FastTree, the RDP naïve Bayesian classifier and Greengenes 13.8 or UNITE v7 databases were used in QIIME v1.9.1[72–76] to obtain OTUs taxonomy, filtering out OTUs present in less than 10% of the samples to exclude highly-variable OTUs that may artificially inflate the number of differentially-abundant OTUs (adapted from Ref. 77, see also Ref. 18). α-diversity metrics (abundance-based coverage estimator ACE) for both bacteria and fungi were computed using QIIME from abundance tables, both derived by averaging 100 rarefactions at 5000 sequences depth to minimize loss of samples while ensuring a coverage judged sufficient based on α-diversity rarefaction curves (Extended Data Figures 2 and 10). One sample (ST, day 1) yielded fewer than 5000 high-quality 16S sequences and was excluded from rarefaction-based analyses, while one other sample (ST, day 15) as well as all three pre-incubation permafrost samples did not yield any ITS sequences.

Phospholipid fatty acids (PLFA) extraction

The relative abundance of fungal and bacterial biomarkers in the samples was assessed with the PLFA technique[78], 1, 30 and 161 days after soil transfer. Lipids were extracted from 1.5 g of lyophilised soil with a solution of chloroform, methanol and phosphate buffer (1:2:0.8 volume), and then separated into neutral, glyco-, and phospholipids on silica solid phase extraction cartridges (Supelco, Merck, Darmstadt, Germany). The phospholipids were subsequently trans-esterified in fatty acid methyl esters using 1 mL of 0.2 M methanolic KOH, and detected by gas chromatography (Varian CP3800,
Agilent, Santa Clara, USA). Methyl nonadecanoate (19:0) was used as an internal standard and PLFA biomarkers were identified as fungal or bacterial following standard notation with reference to commercial standards (Supelco).

Reproduced incubation

In an additional incubation experiment, we tested whether we could generalize our findings by introducing arctic active layer soils as sources of exogenous microorganisms into our Yedoma permafrost as well as in other permafrost soils. For the latter we used different Holocene permafrost soils, because microbial communities in Yedoma permafrost deposits from the Upper Pleistocene may be particularly limited due to their old age. Details on the soils and the incubation conditions are found in Supplementary Methods. Briefly, Yedoma permafrost was inoculated with the three different arctic active layers from the Holocene soils as well as with the donor soil used in the main experiment, to test whether the observed effects of soil transfer on CO$_2$ production occur with active layer soils (Extended Data Figure 8a). Additionally, the three Holocene permafrost soils, ranging from 1 to 12% organic matter content, were inoculated with our donor soil, to test whether CO$_2$ production in other permafrost soils responded to coalescence with a functionally diverse microbial community (Extended Data Figure 8b). We incubated c. 20g FW of these soils in the dark at 10°C for 389 days, measuring headspace CO$_2$ concentrations at intervals in a similar manner as in our main experiment (see Supplementary Methods).

Statistical analyses

Aerobic CO$_2$ production rates were obtained from the measurements made on the harvest date, except for the first harvest (day 2 instead of 1, Extended Data Figure 9). The effects of ST and time on aerobic CO$_2$ production rates, cumulative CO$_2$ production (Extended Data Figure 6), soil chemistry, PLFA marker groups, bacterial and fungal α-diversity, and gene abundances were tested using two-
way ANOVA, and pairwise comparisons were computed when relevant using the *emmeans* package\(^{83}\) with Holm adjustment for family-wise error rate. Data transformation was used when necessary to meet homoscedasticity assumptions (Extended Data Figure 3). When the ANOVA assumptions could not be met, non-parametric alternatives were used (Kruskal-Wallis test and Dunn’s test, DIN, NH\(^+\)). The tests excluded ST for NO\(_3^-\)+NO\(_2^-\), which was irrelevant since all control sample values were below detection limit. The effects of ST and time on bacterial and fungal community composition were tested using two-way ANOVA on negative-binomial generalized linear models fitted for each OTU (*manyglm* in *mvabund* package\(^{84,85}\)). Differential abundance of OTUs between treatments for each harvest was assessed using DESeq\(^2\)\(^{86,87}\) negative-binomial Wald test on non-rarefied reads in QIIME with Benjamini-Hochberg false discovery rate control. The phylum- and/or class- distribution of differentially abundant OTUs was deemed consistent enough across time points to present only the OTUs changing over the whole incubation in Figure 1 (Extended Data Figures 2 and 10). The proportions of reads belonging to OTUs that were differentially abundant between treatments, as well as those unaffected and those occurring only in either control or ST samples were derived from the rarefied OTU table (Extended Data Figures 2 and 10). Bacterial OTUs able to carry out nitrification were identified based on their assigned taxonomy, which included members of phylum *Nitrospira* and the family *Nitrosomonadaceae*. No other taxa known as ammonia-oxidising bacteria were found\(^{88-90}\).

We estimated the relative importance of bacterial community composition, diversity, nitrification potential, microbial biomass, and soil chemistry in explaining the differences in CO\(_2\) production rates between control and ST samples (i.e. de-trended CO\(_2\) production rates: divided by the average within the respective date’s values) with RandomForest and multiple linear regressions. Fungal relative abundances and PLFA biomass data, for which fewer dates had been analysed, were excluded to retain as many samples as possible, variables were scaled and centered and we attributed a 0 value to all
values below detection limit to avoid missing values when necessary (i.e. for nitrate + nitrite and amoA genes). Altogether, relative abundances of bacterial taxa, proxies of bacterial biomass, amoA gene abundances, alpha-diversity and soil chemistry variables amounted up to 47 variables for 29 samples (Extended Data Figure 7). We compared partial-least squares regression and RandomForest using the caret package91 as both methods are suited to having more parameters than observations and can tease out highly collinear variables. RandomForest yielded slightly better MAE, RMSE and pseudo-R^2, thus we used the interpretation phase output of Variable Selection using Random Forests regression (VSURF92–94), using default parameters ($mtry = p/3$, 2000 and 25 forests for the thresholding and interpretation phases, respectively). We further used multiple linear regressions of de-trended CO\textsubscript{2} production rates, using either the four variables selected by VSURF (“community-function”), the microbial biomass variables (microbial biomass-C, 16S rRNA gene copy number), the soil chemistry variables (TDC, DIN, ammonium, nitrate + nitrite) or combinations thereof to compare their explanatory power (Table 1).

All analyses were performed using R v3.6.195, unless specified otherwise.

Data availability

Sequence data supporting the findings of this study have been deposited at ENA under the project number PRJEB29467 at https://www.ebi.ac.uk/ena/browser/view/PRJEB29467. Processed data files supporting the findings are found at figshare (doi:10.6084/m9.figshare.7713308).

Code availability

Scripts used to produce the figures and tables presented here are found at figshare (doi:10.6084/m9.figshare.7713308). The bioinformatics and analysis pipeline used to reproduce our findings is found at https://bitbucket.org/smonteux/functional_limitations/.
References only in Methods

Kuhn, M. *et al.* caret: Classification and Regression Training. (2020).

Figure 1: Changes in permafrost bacterial communities with inoculation by soil transfer (ST).

a: Differential abundance of OTUs between ST and control samples over days 1-161 (n=15). Each bar is a significantly changing OTU, a positive fold-change indicates higher relative abundance in ST. Crosses indicate most abundant OTUs (>0.5% rarefied observations) and arrows indicate nitrifiers.

b: Phylum-/class-level summary of average relative abundances for control and ST samples. c: Alpha-diversity (Abundance-based Coverage Estimator) of bacterial communities in control and ST samples (mean ± SE). In b and c: n=3 except ST, day 1 where n=2; vertical lines separate pre-incubation permafrost (control) and donor soil (left) from incubated samples (right).
Figure 2: Changes in permafrost carbon and nitrogen fluxes and pools with soil transfer (ST).

(a) Daily CO$_2$ production rates at five dates (circles) and averaged over 161 days (bars). Numbers indicate cumulative CO$_2$ production after 161 days. (b) Total dissolved carbon content. (c) Ammonium content. (d) Nitrate and nitrite content. (a-d): white colour indicates control, grey colour ST (means ± SE, n=3). Asterisks denote significant ST effect for averaged rates (a) or within a day (significant 'ST x time' interaction; b-c). Letters indicate significant differences between days (main effect). ** P ≤ 0.01; *** P ≤ 0.001. Values in (d) for control (day 1-161) and ST (day 1) are below detection limit.
Figure 3: Abundances of (a) archaeal and (b) bacterial amoA genes in permafrost inoculated by soil transfer (ST) over 161 days. Abundances of amoA genes for control samples (all days, a-b), as well as two ST samples for bacteria (day 1, b) were below detection limit. Small symbols indicate values for individual samples (average of two technical replicates), large symbols indicate means (n=3), error-bars indicate standard-error of the mean (n=3) and different lower-case letters indicate significant differences between days (excluding pre-incubation). The black vertical lines separate pre-incubation donor soil (left, triangles) from incubated samples (right, circles).
Extended Data Figure 1: Summary of initial chemistry of the permafrost used for incubation and of the topsoil used for the soil transfer treatment (top, mean ± SE, n = 3) and estimated average C and N content of incubated jars for each treatment (bottom).

<table>
<thead>
<tr>
<th>Initial soil chemistry</th>
<th>Permafrost homogenized</th>
<th>Donor soil</th>
<th>Two-sided Welch's t (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%C</td>
<td>3.05 ± 0.02</td>
<td>3.13 ± 0.20†</td>
<td>t_{2.098} = -0.493 (0.669)</td>
</tr>
<tr>
<td>%N</td>
<td>0.24 ± 0.00</td>
<td>0.32 ± 0.02†</td>
<td>t_{2.114} = -4.801* (0.037)</td>
</tr>
<tr>
<td>C/N</td>
<td>12.50 ± 0.07</td>
<td>9.77 ± 0.03†</td>
<td>t_{2.843} = 40.406* (<10^{-4})</td>
</tr>
<tr>
<td>TDC (mg C kg soil DW^{-1})</td>
<td>350.30 ± 6.65</td>
<td>39.10 ± 16.77</td>
<td>t_{2.613} = 21.124* (5.10^{-4})</td>
</tr>
<tr>
<td>DIN (mg N kg soil DW^{-1})</td>
<td>176.77 ± 2.47</td>
<td>126.68 ± 5.44</td>
<td>t_{2.793} = 10.273* (0.003)</td>
</tr>
<tr>
<td>pH</td>
<td>7.10 ± 0.00</td>
<td>6.30 ± 0.00</td>
<td>ND</td>
</tr>
</tbody>
</table>

†: data from Ref. 27 (Fontaine et al. 2007; doi:10.1038/nature06275). *: Welch's test P < 0.05, pH values could not be tested due to virtually inexistent variance (replicate measurements were identical).

<table>
<thead>
<tr>
<th>Estimated incubation jars content</th>
<th>Control</th>
<th>Soil transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5g DW Permafrost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (mg)</td>
<td>594.750</td>
<td>594.750</td>
</tr>
<tr>
<td>of which TDC (mg C)</td>
<td>6.831</td>
<td>6.831</td>
</tr>
<tr>
<td>N (mg)</td>
<td>46.800</td>
<td>46.800</td>
</tr>
<tr>
<td>of which DIN (mg N)</td>
<td>3.447</td>
<td>3.447</td>
</tr>
<tr>
<td>0.5g DW Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Permafrost for Control, Donor soil for ST)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (mg)</td>
<td>15.250</td>
<td>15.650</td>
</tr>
<tr>
<td>of which TDC (mg C)</td>
<td>0.175</td>
<td>0.020</td>
</tr>
<tr>
<td>N (mg)</td>
<td>1.200</td>
<td>1.600</td>
</tr>
<tr>
<td>of which DIN (mg N)</td>
<td>0.088</td>
<td>0.063</td>
</tr>
<tr>
<td>20g DW Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (mg)</td>
<td>610.000</td>
<td>610.400</td>
</tr>
<tr>
<td>of which TDC (mg C)</td>
<td>7.006</td>
<td>6.851</td>
</tr>
<tr>
<td>N (mg)</td>
<td>48.000</td>
<td>48.400</td>
</tr>
<tr>
<td>of which DIN (mg N)</td>
<td>3.535</td>
<td>3.510</td>
</tr>
</tbody>
</table>
Extended Data Figure 2: Changes in Yedoma permafrost fungal communities with soil transfer (ST).

a: Differential abundance of OTUs between ST and control samples over three sampling times (days 1, 15, 161; n=9 for control soils, n=8 for ST soils); each bar is a significantly changing OTU, arranged by decreasing fold-change within a class; positive fold-change indicates higher relative abundance in ST samples; crosses indicate most abundant OTUs (>0.5% rarefied observations).

b: Phylum-/class-level summary of average relative abundances for control and ST samples.

c: Alpha diversity (Abundance-based Coverage Estimator) of fungal communities in control and ST samples; means ± SE.

d-e: Differential abundance of OTUs between ST and control samples after 1 (d) and 161 (e) days of incubation. Due to one ST sample failing sequencing, the test could not be carried out for day 15. OTU percentage denotes the proportion of OTUs with significantly different abundance among those present at the respective date; reads percentage represents the proportion of rarefied reads these OTUs represent at the respective date.

f: Fungal alpha-diversity response to rarefaction depth in control and ST samples over the 161 days incubation, based on 10 rarefactions at 12 evenly-spaced depths between 10 and 12000 reads per sample (means ± SE; n=2-3).

g: Relative abundance along the 161 days incubation of the OTUs in control and ST samples which were overall affected by ST (Changing, see panel a), not affected by ST (Unaffected) or present only in either control or ST samples (Specific). The proportion of reads belonging to Changing OTUs differ from those in panels (d-e) because they refer to the test carried over the entire incubation period (as in panel a) rather than within each date.

(b-c, g): n=3 except for ST, day 15 where n=2. Vertical lines in (b-c) separate the pre-incubation donor soil (left) from the incubated samples (right); no fungal sequences could be obtained in pre-incubation permafrost.
Extended Data Figure 3: Soil transfer (ST) and time effects on permafrost microbial communities, soil chemistry, microbial biomass and functional genes (ANOVA). 'Δ-Day 1' is the post-hoc pairwise comparison between control and ST samples at Day 1, in cases when the interaction is significant ($P < 0.05$), with Holm P-value adjustment for multiple comparisons. Bold text denotes significant p-values ($P < 0.05$); n = 3, excepted for ManyGLM ANOVAs where n = 2 for ‘ST – day 1’ (Bacteria) and ‘ST – day 15’ (Fungi).

<table>
<thead>
<tr>
<th>Microbial community (ManyGLM)</th>
<th>Soil transfer</th>
<th>Time</th>
<th>Soil transfer × Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev</td>
<td>df</td>
<td>P</td>
</tr>
<tr>
<td>Bacteria (4768 OTUs)</td>
<td>13526</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>Fungi (280 OTUs)</td>
<td>848</td>
<td>1</td>
<td>0.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Soil transfer</th>
<th>Time</th>
<th>Soil transfer × Time</th>
<th>Δ-Day 1</th>
<th>t.ratio</th>
<th>P_{Holm}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-value</td>
<td>df</td>
<td>P</td>
<td>F-value</td>
<td>df</td>
<td>P</td>
</tr>
<tr>
<td>Microbial α-diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial α-diversity (ACE)*</td>
<td>106.83</td>
<td>1</td>
<td>$<10^{-4}$</td>
<td>20.83</td>
<td>4</td>
<td>$<10^{-4}$</td>
</tr>
<tr>
<td>Fungal α-diversity (ACE)*</td>
<td>112.99</td>
<td>1</td>
<td>$<10^{-4}$</td>
<td>1.09</td>
<td>2</td>
<td>0.369</td>
</tr>
<tr>
<td>Biogeochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO_2 production rates*</td>
<td>72.67</td>
<td>1</td>
<td>$<10^{-4}$</td>
<td>451.93</td>
<td>4</td>
<td>$<10^{-4}$</td>
</tr>
<tr>
<td>Dissolved C*</td>
<td>588.03</td>
<td>1</td>
<td>$<10^{-4}$</td>
<td>128.90</td>
<td>4</td>
<td>$<10^{-4}$</td>
</tr>
<tr>
<td>Dissolved inorganic N ‡</td>
<td>0.16‡</td>
<td>1</td>
<td>0.694</td>
<td>15.15‡</td>
<td>4</td>
<td>0.004</td>
</tr>
<tr>
<td>NH_4^+*</td>
<td>74.23</td>
<td>1</td>
<td>$<10^{-4}$</td>
<td>60.24</td>
<td>4</td>
<td>$<10^{-4}$</td>
</tr>
<tr>
<td>NO_2^- + NO_3^- *‡§</td>
<td>NA‡§</td>
<td>1064.10</td>
<td>3‡</td>
<td>$<10^{-4}$</td>
<td>NA‡§</td>
<td></td>
</tr>
<tr>
<td>Microbial biomass and functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbial biomass C*</td>
<td>0.04</td>
<td>1</td>
<td>0.846</td>
<td>10.56</td>
<td>4</td>
<td>$<10^{-4}$</td>
</tr>
<tr>
<td>Total PLFA</td>
<td>1.18</td>
<td>1</td>
<td>0.299</td>
<td>17.51</td>
<td>2</td>
<td>3.10^{-4}</td>
</tr>
<tr>
<td>Bacterial PLFA*</td>
<td>0.97</td>
<td>1</td>
<td>0.343</td>
<td>27.42</td>
<td>2</td>
<td>$<10^{-4}$</td>
</tr>
<tr>
<td>Fungal PLFA</td>
<td>32.96</td>
<td>1</td>
<td>$<10^{-4}$</td>
<td>26.48</td>
<td>2</td>
<td>$<10^{-4}$</td>
</tr>
<tr>
<td>Protozoan PLFA*</td>
<td>1.45</td>
<td>1</td>
<td>0.252</td>
<td>0.25</td>
<td>2</td>
<td>0.780</td>
</tr>
<tr>
<td>Fungi : Bacteria PLFA ratio*</td>
<td>11.45</td>
<td>1</td>
<td>0.005</td>
<td>17.08</td>
<td>2</td>
<td>3.10^{-4}</td>
</tr>
<tr>
<td>16S rRNA gene copy number *</td>
<td>9.29‡</td>
<td>1</td>
<td>0.002</td>
<td>12.99‡</td>
<td>4</td>
<td>0.011</td>
</tr>
<tr>
<td>Archaeal amoA gene copy number †</td>
<td>NA†</td>
<td>0.54</td>
<td>4</td>
<td>0.710</td>
<td>NA†</td>
<td></td>
</tr>
<tr>
<td>Bacterial amoA gene copy number **‡§</td>
<td>NA‡§</td>
<td>6.99</td>
<td>3‡</td>
<td>0.013</td>
<td>NA‡§</td>
<td></td>
</tr>
</tbody>
</table>

*: log-transformation; **: square-root transformation; ‡: Kruskal χ^2 or Dunn Z; †: all Control soils- and §: day 1 samples- excluded from analysis because of values below detection limit.
Extended Data Figure 4: Absolute differences in cumulative CO$_2$ production (CO$_2$-C) and in total dissolved carbon (TDC) between control and Soil transfer samples over 161 days of incubation. Means ± SE (n=3).
Extended Data Figure 5: Microbial proxies of microbial biomass in Yedoma permafrost with and without soil transfer (ST).

a: Microbial biomass C; **b:** total PLFA; **c:** Bacterial PLFA; **d:** Fungal PLFA; **e:** Protozoan PLFA; **f:** Fungal : bacterial PLFA ratio; **g:** 16S rRNA gene copy number. Light bars and symbols are control samples, dark bars and symbols are ST. (g): Vertical line separates pre-incubation permafrost (control) and donor soil (left; "pre-") from incubated samples (right), ANOVA and pairwise differences are based on incubated samples only. Asterisks over bars denote significant differences with ST at a given day (when the ST x time interaction is significant), letters indicate significant differences between days (main effect); n.s. = non-significant (P > 0.05), * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001. Means ± SE (n=3).
Extended Data Figure 6: Cumulative soil organic matter (SOM)-derived aerobic CO$_2$ production after 161 days incubation of permafrost with or without Soil transfer (bars with black outline correspond to values in Fig. 2a), and with addition of nutrients (NPK), 13C-cellulose and their combination. CO$_2$ production of the donor soil is shown in the inset as measured when incubated with nutrients (solid red outline), and estimated when incubated without nutrients using data from Ref. 52 (Fontaine et al., 2011, doi:10.1016/j.soilbio.2010.09.017, dashed black outline). The green “+” symbol in the “Permafrost + Soil transfer” black outline bar represents the expected effect of Soil transfer assuming no biotic interactions (i.e. 97.5% CO$_2$ production of control soil + 2.5% CO$_2$ production of donor soil without NPK). ANOVA statistics and effect sizes shown are derived from permafrost soils only, means ± SE (n=3).
Extended Data Figure 7: RandomForests variable selection (VSURF) on bacterial phyla relative abundance, bacterial and archaeal ammA and 16S genes abundance, alpha-diversity, soil chemistry and microbial biomass-C to select the variables explaining best the difference in detrended CO₂ production rates. Importance is non-normalized % Increase in Mean Squared Error of a tree when the variable is randomly permuted in out-of-bag (OOB) samples (i.e. a higher value indicates a higher importance), variables are ranked by decreasing importance. OOB_interpretation is the out-of-bag error of the nested forests (i.e. grown using this variable as well as all variables with greater importance), the VSURF algorithm selects variables leading to the lowest OOB_interpretation score. Variables in grey were considered uninformative at the thresholding phase, variables in bold were selected at the interpretation phase and are termed "Community + function" in Table 1. Variables in bold and italics are included in the multiple linear regression models presented in Table 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean importance</th>
<th>SD importance</th>
<th>OOB_interpretation</th>
<th>Model group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial ammA gene (AOB)</td>
<td>0.009811</td>
<td>0.000515</td>
<td>0.016329</td>
<td>Community + function</td>
</tr>
<tr>
<td>Archaeal ammA gene (AOA)</td>
<td>0.007038</td>
<td>0.000457</td>
<td>0.012572</td>
<td>Community + function</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>0.003779</td>
<td>0.000304</td>
<td>0.013552</td>
<td>Community + function</td>
</tr>
<tr>
<td>WS3</td>
<td>0.002752</td>
<td>0.000266</td>
<td>0.012391</td>
<td>Community + function</td>
</tr>
<tr>
<td>Nitrate + nitrite</td>
<td>0.002119</td>
<td>0.000233</td>
<td>0.012701</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Spirochaetes</td>
<td>0.002084</td>
<td>0.000216</td>
<td>0.013940</td>
<td></td>
</tr>
<tr>
<td>Planctomycetes</td>
<td>0.001939</td>
<td>0.000233</td>
<td>0.013903</td>
<td></td>
</tr>
<tr>
<td>Fibrobacteres</td>
<td>0.001726</td>
<td>0.000218</td>
<td>0.014243</td>
<td></td>
</tr>
<tr>
<td>Alpha diversity ACE</td>
<td>0.001522</td>
<td>0.000164</td>
<td>0.014272</td>
<td></td>
</tr>
<tr>
<td>16S rRNA gene abundance</td>
<td>0.000720</td>
<td>0.000122</td>
<td>0.014329</td>
<td>Microbial biomass</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>0.000690</td>
<td>0.000119</td>
<td>0.015108</td>
<td></td>
</tr>
<tr>
<td>Firmicutes</td>
<td>0.000641</td>
<td>0.000146</td>
<td>0.015680</td>
<td></td>
</tr>
<tr>
<td>Gammaproteobacteria</td>
<td>0.000564</td>
<td>0.000134</td>
<td>0.015961</td>
<td></td>
</tr>
<tr>
<td>TDC</td>
<td>0.000368</td>
<td>0.000130</td>
<td>0.015852</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Chlorobi</td>
<td>0.000250</td>
<td>0.000074</td>
<td>0.016349</td>
<td></td>
</tr>
<tr>
<td>Tenericutes</td>
<td>0.000244</td>
<td>0.000051</td>
<td>0.01679</td>
<td></td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td>0.000221</td>
<td>0.000067</td>
<td>0.015742</td>
<td></td>
</tr>
<tr>
<td>Nitrospirae</td>
<td>0.000166</td>
<td>0.000065</td>
<td>0.015900</td>
<td></td>
</tr>
<tr>
<td>TM7</td>
<td>0.000108</td>
<td>0.000073</td>
<td>0.015884</td>
<td></td>
</tr>
<tr>
<td>Verrucomicrobia</td>
<td>0.000094</td>
<td>0.000089</td>
<td>0.015905</td>
<td></td>
</tr>
<tr>
<td>Elusimicrobia</td>
<td>0.000067</td>
<td>0.000036</td>
<td>0.016167</td>
<td></td>
</tr>
<tr>
<td>Betaproteobacteria</td>
<td>0.000057</td>
<td>0.000059</td>
<td>0.016027</td>
<td></td>
</tr>
<tr>
<td>TM6</td>
<td>0.000056</td>
<td>0.000042</td>
<td>0.016109</td>
<td></td>
</tr>
<tr>
<td>DIN</td>
<td>0.000051</td>
<td>0.000050</td>
<td>0.016484</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Ammonium</td>
<td>0.000040</td>
<td>0.000050</td>
<td>0.016463</td>
<td>Chemistry</td>
</tr>
<tr>
<td>FCPU426</td>
<td>0.000036</td>
<td>0.000025</td>
<td>0.016352</td>
<td></td>
</tr>
<tr>
<td>WS2</td>
<td>0.000025</td>
<td>0.000037</td>
<td>0.016552</td>
<td></td>
</tr>
<tr>
<td>Chloroflexi</td>
<td>0.000020</td>
<td>0.000059</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Armatimonadetes</td>
<td>0.000016</td>
<td>0.000037</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>MVP-21</td>
<td>0.000014</td>
<td>0.000023</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Chlamydiae</td>
<td>0.000014</td>
<td>0.000028</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Alphaproteobacteria</td>
<td>0.000010</td>
<td>0.000070</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>GN02</td>
<td>0.000004</td>
<td>0.000016</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>WS5</td>
<td>0.000001</td>
<td>0.000013</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>BRC1</td>
<td>0.000000</td>
<td>0.000002</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Other phyla</td>
<td>-0.000002</td>
<td>0.000046</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>WPS-2</td>
<td>-0.000003</td>
<td>0.000024</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>OP3</td>
<td>-0.000005</td>
<td>0.000008</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>WS4</td>
<td>-0.000010</td>
<td>0.000014</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>FBP</td>
<td>-0.000019</td>
<td>0.000015</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>OD1</td>
<td>-0.000029</td>
<td>0.000029</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>OP11</td>
<td>-0.000033</td>
<td>0.000019</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>AD3</td>
<td>-0.000048</td>
<td>0.000040</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Acidobacteria</td>
<td>-0.000165</td>
<td>0.000081</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Microbial biomass C</td>
<td>-0.000195</td>
<td>0.000051</td>
<td>NA</td>
<td>Microbial biomass</td>
</tr>
<tr>
<td>Gemmatimonadetes</td>
<td>-0.000444</td>
<td>0.000069</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Deltaproteobacteria</td>
<td>-0.000732</td>
<td>0.000090</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>
Extended Data Figure 8: Cumulative CO₂ production after 389 days of (a) Yedoma permafrost inoculated with soil suspensions from three Arctic active layer soils and the donor soil used in the main experiment and (b) three other permafrost soils inoculated with donor soil suspension.

a: “Control” and “ST inoculum” reproduce the “Permafrost” and “Soil transfer” described in the main text, except for using a soil suspension instead of solid soil transfer as inoculum, and sterile ddH₂O in controls. AL1, AL2 and AL3 are likewise soil suspension inocula originating from three distinct active layer soils. Different letters denote significant (Holm-adjusted P < 0.05) differences between inocula.

b: “Control” for each permafrost type is inoculated with sterile ddH₂O, “ST inoculum” is as in (a). Asterisks denote significantly higher values than control, within a soil type (Welch’s one-tailed two sample t-test, **: P < 0.01; ***: P < 0.001).

a-b: Means ± SE, n=4. Coloured and grey error-bars in the lower part denote the quantity of total dissolved carbon (mg-C . g soil DW⁻¹) added with the soil suspensions upon inoculation. OMC%: Organic matter content (determined by loss on ignition at 475°C) in %. A description of the active layer soils used for preparing inoculum suspensions (a) and of the permafrost soils inoculated with ST inoculum (b) is found in Supplementary Methods.
Extended Data Figure 9: Measured and interpolated CO$_2$ production rates in Yedoma permafrost without (grey) and with soil transfer (black) over the course of 161 days. Circles denote measurements of flasks destructively harvested at day 161, triangles represent rates derived by linear interpolation from these data, used to calculate cumulative CO$_2$ production. Crosses represent the rates measured at the same dates on the set of flasks destructively harvested at day 71, for comparison. Numbers in red indicate the days of measurements linked to destructive harvests. Means ± SE (n=3), error-bars are shown unless smaller than the plotting symbols, asterisks indicate significant differences between control and ST soils at a given date, for the measured rates (i.e. circles and crosses; **: $P < 0.01$; ***: $P < 0.001$), note the log$_{10}$ y-axis.
Extended Data Figure 10: Changes in Yedoma permafrost bacterial communities with soil transfer (ST). (a) Bacterial alpha-diversity response to rarefaction depth in control and ST samples over the 161-days incubation, based on 10 rarefactions at 12 evenly-spaced depths between 10 and 12000 reads per sample (means ± SE, n=2-3). (b-f) Differential abundance of bacterial OTUs between ST and control samples after (b) 1; (c) 15; (d) 30; (e) 75 and (f) 161 days of incubation. Each bar is a significantly-changing OTU, arranged by decreasing fold-change within a phylum or class; positive fold-change indicates higher relative abundance in ST samples; crosses indicate the most abundant OTUs (>0.5% rarefied observations); arrows indicate nitriﬁers; OTU percentage denotes the proportion of OTUs with signiﬁcantly changing abundance among those present at the respective date; reads percentage denotes the proportion of (rareﬁed) reads these OTUs represent at the respective date. (g) Relative abundance along the 161-day incubation of the OTUs in control and ST samples which were overall affected by ST (Changing, see Figure 1a), not affected by ST (Unaffected), or present in only either control or ST samples (Speciﬁc); the proportion of reads belonging to Changing OTUs differs from those in panels (b-f) because they refer to the test carried over the entire incubation period (as in Figure 1a) rather than within each date.
Supplementary Discussion

Potential alternative explanations for observed changes in permafrost carbon and nitrogen fluxes and pools with 2.5% soil transfer

In this section, we discuss potential alternative explanations for the observed appearance of nitrification and the large increase in CO$_2$ production in permafrost soil, after inoculation with a diverse microbial community by a replacement of 2.5% (DW basis) of the studied permafrost (Yedoma sediment) with a donor topsoil of known high functional diversity (Soil Transfer; ST; Refs 26-27, 51-52). We present measured data and model outputs that we believe render these four potential alternative explanations unlikely: 1) immediate increase in microbial biomass, 2) introduction of carbon with a higher decomposition rate, 3) relieve of potential nutrient limitation, and 4) priming effect (sensu Ref. 94: “the extra decomposition of SOM after addition of easily decomposable organic materials”) through addition of labile C and N compounds.

1. Did the “donor” soil cause a transfer of microbial biomass and can such immediate increase in microbial biomass explain the observed increases in nitrification and CO$_2$ production rates after soil transfer?

No. We did not observe a significant increase in any measured proxies of microbial biomass one day after transfer (K$_2$SO$_4$-extractable microbial C, PLFA, 16S rRNA gene copy number, Extended Data Figure 5). The concordant absence of increases across these three different microbial biomass proxies makes it unlikely that the initiation of nitrification and the enhanced CO$_2$ production rates were caused by (initially) increased microbial biomass by the soil transfer.

2. Was the carbon in the “donor” soil used for soil transfer easier to decompose and could this explain the observed increase in CO$_2$ production rates?

No. Firstly, the cumulative CO$_2$ production over 161 days of the donor soil used for soil transfer was about 65% lower than that observed in the control permafrost samples (Extended Data Figure 6; Supplementary Methods), despite its already established non-psychrophilic microbial community. Without any biological interaction mechanisms, we would therefore expect that replacing 2.5% of the permafrost soil with donor soil (both c. 3% C, Extended Data Figure 1) would reduce the overall cumulative CO$_2$ production by 1.8% compared to pure permafrost soil (green dot in Extended Data Figure 6), instead of the observed 38% increase.
Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations
Sylvain Monteux, Frida Keuper, Sébastien Fontaine, Konstantin Gavazov, Sara Hallin, Jaanis Juhanson, Eveline J. Krab, Sandrine Révaillot, Erik Verbruggen, Josefine Walz, James T. Weedon, Ellen Dorrepaal.

Secondly, the total amount of introduced dissolved carbon (TDC) of the donor soil is smaller (c. 0.02 mg-C per jar added) than in the permafrost sediment (0.175 mg-C per jar removed; Extended Data Figure 1), and although it could potentially be more easily degraded by the Yedoma permafrost microorganisms, the amount is by far not large enough to explain the difference in CO₂ production (c. 5.86 mg-C per jar) between the control and soil transfer treatments. Even if we assume that all permafrost and donor TDC is labile and mineralised, the permafrost microorganisms would need to decompose the donor SOC (of both favourable and less-favourable compound composition) at 28 times higher rates than their native C and at 52 times higher rates than the native donor soil microbes in donor soil, if all the remaining increase in CO₂ production would come from mineralization of SOC from the donor soil only. This is equivalent to a SOC mineralization of 38.5% from the 0.5 g DW donor soil (over 161 days), while the estimated cumulative CO₂ production from this donor soil in isolation (Extended Data Figure 6) indicates a SOC mineralization of only 0.74%. We deem it unrealistic that Yedoma microbes would decompose the donor SOC at so much higher rates than the native donor soil community, but not have the same effect in the Yedoma sediment in absence of soil transfer.

Finally, in the incubation experiment carried out to reproduce our findings, microbial communities were manipulated by using a liquid soil suspension rather than soil transfer, introducing smaller amounts of carbon. The addition of 1 mL of donor soil suspension introduced c. 0.68 mg-TDC kg soil DW⁻¹, but resulted in an average 585 mg-C kg soil DW⁻¹ increase in CO₂ production compared to ddH₂O addition control soils after 389 days (‘ST inoculum’, Extended Data Figure 8).

We conclude from this that it is highly unlikely that a higher CO₂ production in the donor soil and the replacement of 2.5% of the permafrost soil with this donor soil can explain the observed increase in CO₂ production.

3. Did the donor soil contain more nutrients than the permafrost sediment, and could this have relieved a potential nutrient-limitation in the permafrost soil, explaining the observed difference in CO₂ production rates?
No. CO₂ production could theoretically be constrained by a lack of nitrogen, phosphorus or potassium, which the donor soil could have added upon soil transfer. The nitrogen content of the donor soil was indeed c. 50% higher than that of the permafrost soils (Extended Data Figure 1). However, experimental addition of nutrients (Supplementary Methods) to the permafrost soil did not affect cumulative CO₂ production (nutrients main effect ANOVA F₁,₁₆=2.09 P=0.168, Extended Data Figure
6). It therefore is unlikely that relieving nutrient limitation by the (very small) addition of nutrients in inoculum soil has caused the observed increases in CO$_2$ production.

4. Is the increase in CO$_2$ production observed after soil transfer due to a priming effect of permafrost SOM decomposition induced by the addition of labile C and N compounds upon soil transfer?

No. First, amendment with an isotopically labelled labile carbon substrate (13C-cellulose, 2g . kg soil DW$^{-1}$ equivalent to c. 2.6 times more than total C introduced by soil transfer) caused only a small increase in cumulative SOM-derived CO$_2$ production of 8.9% (95% CI: 6.8 – 10.9%; ANOVA F$_{1,16}$=42.24, P<10$^{-4}$, n=3). Moreover, the magnitude of this priming effect was additive to the effect of the ST-treatment (cellulose:transfer interaction F$_{1,16}$=1.01, P=0.330, Extended Data Figure 6). Secondly, the labile C-induced priming effect was also independent of nutrient addition (cellulose:nutrient interaction F$_{1,16}$=0.02 P=0.890), and likewise there was no three-way interaction (cellulose:nutrient:transfer interaction F$_{1,16}$=0.02, P=0.887, Extended Data Figure 6). Lastly, the high TDC concentration in Yedoma sediment (350 mg TDC . kg soil DW$^{-1}$), i.e. c. nine times higher than in the donor soil suggests that the microbial community in the Yedoma sediment was not carbon-limited, and suggests against priming from the c. 0.3% of TDC introduced by soil transfer. The increase in CO$_2$ production with the ST-treatment effect therefore appears to be independent of priming effects and nutrient availability.
Supplementary Methods

1. 13C-labelled cellulose and nutrient addition

To assess potential alternative explanations (priming effect, release of nutrient limitation) of the effect of soil transfer (ST) on CO$_2$ production from Yedoma permafrost, we amended Yedoma sediment with a full-factorial combination of isotopically labelled labile C (13C-cellulose; to test for priming effects), nutrients (N, P, K; to test for nutrient limitation), and the exotic microbial community (ST), resulting in eight individual treatments (Extended Data Figure 6). CO$_2$ flux measurements were carried out as described in the Methods section, with additional measurements of CO$_2$ isotopic composition for the 13C-cellulose treatments (Picarro g2131-i equipped with a small sampling module). The Vienna PDB standard was used for δ13C calculations.

13C-labelled cellulose addition and isotopic partitioning

13C-cellulose was extracted from peas grown under a 100% 13C-enriched atmosphere, and had a δ13C value of 2210.885 (SE 0.716, n=2), while the Yedoma sediment δ13C was -25.705 (SE 0.016, n=3). The use of 13C-labeled cellulose allowed separation of total CO$_2$ production (R$_t$) into soil C (R$_s$) and cellulose (R$_c$) using the mass balance equations:

\[
\begin{align*}
R_s + R_c &= R_t \\
^{13}A_s \times R_s + ^{13}A_c \times R_c &= ^{13}A_t \times R_t
\end{align*}
\]

Where 13A$_s$, 13A$_c$ and 13A$_t$ are the 13C abundances in soil, cellulose and total CO$_2$ production, respectively. If we define $\alpha = R_c / R_t$, then:

\[
\begin{align*}
\alpha &= R_c / R_t = (^{13}A_t - ^{13}A_s) / (^{13}A_c - ^{13}A_s) \\
R_s &= (1 - \alpha) \times R_t
\end{align*}
\]

Allowing us to calculate R$_s$ as the soil organic matter-derived fraction of CO$_2$ production.

Mineral nutrient addition

To ensure an absence of nutrient limitations, soils were supplemented with a mixture of NH$_4$NO$_3$ – KH$_2$PO$_4$ (NPK) to reach a C:N ratio of 15:1, C:P ratio of 60:1 and C:K ratio of 150:1, as per Ref. 52. This nutrient addition accounted for the additional quantity of 13C-labelled cellulose on the C pool size when both cellulose and nutrients were added. The pure donor soil was incubated only in presence of NPK addition (Extended Data Figure 6), where the dashed column represents the estimated value of CO$_2$ production upon incubation without NPK addition based on CO$_2$ production.
rates for the donor soil with and without NPK addition from Ref. 52, assuming similar responses to
NPK addition (17.15% decrease) at 20°C (in Ref. 52) and at 11°C (here).

2. Estimated CO₂ production of donor soil and ST treatment
To calculate how much more easily decomposable the donor soil should be to explain the CO₂
production increase induced by ST without functional limitations, we first calculated the average CO₂
production in control and ST soils (770.67 / 50 = 15.413 mg-C per jar and 1063.85 / 50 = 21.277 mg-C
per jar, respectively, Figure 2a) and the difference between the two (5.864 mg-C per jar). The CO₂
production of the donor soil in absence of mineral nutrients addition (Extended Data Figure 6), was
estimated by multiplying the cumulative CO₂ production of the measured ‘donor soil + NPK’ by
1.207 to account for the lower CO₂ production observed in presence of mineral nutrients, as per
Fontaine et al., 2011 (Ref. 52). This estimated figure (dashed column in Extended Data Figure 6) is
the one on which we base the calculations for Supplementary Discussion point 2 (e.g. 65% lower than
the control soils). This allowed us to estimate the expected effect of the ST treatment assuming no
biological interactions (green symbol in Extended Data Figure 6), by simply multiplying the baseline
cumulative CO₂ production of control and donor soil on a w:w basis, i.e. 97.5% (control CO₂
production) + 2.5% (donor soil CO₂ production), c. 758.21 mg-C kg soil DW⁻¹ (green dot in Extended
Data Figure 6, about 1.8% lower than observed in the control soil).

We then used the elemental C content to calculate the average C content of the different fractions, as
reported in Extended Data Figure 1. For the donor soil, average total C content was 626.00 mg-C, of
which 0.78 mg-C were dissolved.
We then calculated the fraction of SOC that was mineralized after 161 days in control permafrost and
in donor soil. For this we made the simplifying assumption that all dissolved C is labile and
mineralized. Per jar:
- (15.413 – 7.01) / (610 – 7.01) = 1.39% of control SOC mineralized after 161 days;
- (272 / 50 – 0.78) / (626 – 0.78) = 0.74% of donor SOC mineralized after 161 days;
If we exclude biological interactions affecting Yedoma permafrost, the difference between the average
measured 15.413 mg-C per jar (control soils) and the 21.277 mg-C per jar (ST soils) must come from
the donor soil introduced during soil transfer. Still assuming that all dissolved C was mineralized, the
difference in SOC mineralization between control and ST soils is as follows:
(CO₂-ST - TDC-ST) - (CO₂-control - TDC-control) = (21.277 - 6.851) - (15.413 - 7.006) = 6.019 mg-C
This amounts up to 38.5% of the SOC in the 0.5 g donor soil used for soil transfer. When incubated in isolation, 0.74% of the SOC in the donor soil is mineralized, this implies that to correspond to our observations, the donor soil microbes should mineralize the SOC of their own soil 52 times faster when incubated with Yedoma sediment than when incubated on their own soil. Alternatively, the Yedoma sediment microbes should mineralize the SOC of the donor soil 28 times faster than they mineralize the SOC in their own soil.

If we assume none of the dissolved C is mineralized, the figures change slightly: Yedoma and donor soil SOC mineralization become 2.53% and 0.87%, respectively, the difference in CO$_2$ production is 5.864 mg-C, or 37.5% of the 0.5 g donor soil SOC, meaning the donor soil and Yedoma microbes must mineralize the donor soil SOC respectively 43 and 15 times faster than they would mineralize their own soil, which are unrealistically large differences to the baseline CO$_2$ production measured when the soils are incubated in isolation.

3. **Reproduced incubation**

To further explore the potential of arctic active layer soils to alleviate functional limitations in Yedoma sediment, and the susceptibility of other permafrost soils to functional limitations, we performed two additional incubation experiments (Extended Data Figure 8). The active layer and permafrost soils were collected from the same locations in August 2012 (Franklin Bluffs), September 2015 (Storflaket) and August 2016 (Ice Cut), around the time of maximum thaw depth.

3a. **Potential of different arctic active layer soils to alleviate functional limitations**

The aim of this side-experiment was to compare the impact of different inocula, which might or might not alleviate functional limitations, on CO$_2$ production in Yedoma sediment. Excluding putative alleviation by microbes other than those found in the selected arctic topsoils was therefore more important here, than in our main experiment (evidencing the existence of functional limitations), and conditions closer to asepsis were applied for that reason. We further used liquid suspensions rather than soil transfer, to simulate downwards microbial migration through percolating water. The three active layer (AL) soils were a turbel (cryoturbated soil) and two histels (sedge peat and Sphagnum peat), as examples of soil and vegetation types found throughout the Yedoma domains of Alaska and Siberia25.
The turbel soil was sampled from the center of a non-sorted circle in the coastal plain of the Alaskan North Slope (AL1, frost boil at Franklin Bluffs; gravimetric water content GWC 23.5% ± 1.2%; organic matter content OMC 6.82% ± 0.50%; mean ± SE, n = 3), the histel inocula from organic sedge peat at the boundary of the Yedoma domain of the Alaskan North Slope (AL2, moist non-acidic tundra at Ice Cut; GWC: 81.3% ± 2.0%; OMC: 86.81% ± 1.52%), and from a *Sphagnum* peat bog underlain by silty permafrost in sub-arctic Sweden (AL3, palsa mire at Storflaket; GWC: 79.1% ± 0.8%; OMC: 95.91% ± 0.09%). Lastly, we also used the donor soil used in our main experiment as a “positive control” known to be able to alleviate functional limitations (GWC: 25.8% ± 0.2%; OMC: 13.50% ± 0.16%). Active layer soils were collected with a breadknife and shovel or a peat-corer. The gravimetric water content (GWC) and organic matter content (OMC) of the soils were determined by drying c. 5g fresh soil at 105°C for at least 24h, and at 475°C for 4h, respectively.

Soil suspensions were prepared in autoclaved Erlenmeyer flasks with 50g (fresh weight) soil and 100mL (for the more mineral AL1 and ST soils) or 150 mL (organic AL2 and AL3 soils) autoclaved ddH$_2$O under a UV-cleaned and bleached laminar flow hood. Slurries soaked for 1 hour at 4°C were shaken for 90 min (150 rpm, orbital), stored overnight at 4°C, and then filtered through qualitative filter paper to remove large-sized particles (Ahlstrom-Munksjö, Eskilstuna, Sweden; 10 µm pore size, previously washed with autoclaved ddH$_2$O and air-dried to prevent cellulose leaching from the filter). TDC and TN were analyzed on filtered and acidified aliquots (0.45 µm, Filtropur S, Sarstedt AG & Co., Germany; 50 µL 20% HCl to 20 mL filtrate) by high temperature catalytic oxidation (HTCO) using a Shimadzu TOC-V CPH analyzer with a TN unit (Shimadzu Corporation, Japan). TDC and TN values per kg dry soil were 0.771 ± 0.018 mg C and 0.042 ± 0.001 mg N for AL1, 49.264 ± 5.118 mg C and 0.019 ± 0.002 mg N for AL2, 2.799 ± 0.198 mg C for AL3 (N below detection limit), and 0.681 ± 0.023 mg C and 0.477 ± 0.016 mg N for ST (one measurement per suspension, mean ± SE derived from differing soil weight across four jars).

A fourth core of Yedoma sediment, sampled simultaneously with the soil used in the main experiment (see Methods, ‘Soil description and sampling’), was thawed overnight in a UV-treated and bleached positive pressure hood, then homogenized through a 2 mm sieve into a stainless steel basket, and excess water was decanted. Approximately 20 g (fresh weight) homogenized sediment was set in UV-treated jars, sealed with parafilm to allow for gas but not moisture or microorganism exchange, and pre-incubated at 10°C for 11 days before inoculation.
One mL of the respective soil suspensions was added to randomly-assigned jars for each of the four inoculum treatments (AL1, AL2, AL3 and ST inoculum) and one mL autoclaved ddH2O was added to control jars. After 1 day, water-extractable pH was unaffected by the inoculation treatments (Kruskal-Wallis $\chi^2 = 4.807$, df = 4, $P = 0.308$; 2.5g soil FW in 40 mL, 250rpm orbital shaking for 2 hours, 10 µm qualitative filter as above).

3b. Functional limitations of different permafrost soils

We tested for the susceptibility of three additional permafrost soils to functional limitations, by inoculating them with the donor soil also used in our main experiment. We used permafrost soils from the sites described above for the active layer soil suspension inocula, since turbels and histels are important pools of permafrost SOC. Because a large part of the circum-arctic was ice-covered until the Holocene, Yedoma deposits are the main type of permafrost preserved since the Upper Pleistocene. As such, microbial communities in Yedoma permafrost may be particularly affected by environmental filtering over long time-scales, while most extant permafrost, formed through the Holocene, would harbour microbial communities that have undergone shorter-term freezing constraints, and may not be as functionally-limited. At least two of the permafrost soils we tested in this additional incubations are more recent deposits than Yedoma: the turbel from Franklin Bluffs (Permafrost1; GWC: 19.5% ± 1.4%; OMC 1.18% ± 0.04%; mean ± SE, n = 4) lies further north than the boundary of the Alaskan Yedoma domain, while the soil from Storflaket (Permafrost3; GWC: 28.4% ± 0.4%; OMC 3.56% ± 0.05%) is a silty lacustrine deposit formed after the Scandinavian Ice Sheet retreat and its C was 14C-dated to c. 9100 years BP. The last soil (Ice Cut, Permafrost2; GWC: 40.2% ± 0.7%; OMC 12.80% ± 0.07%) lies at the northern boundary of the Alaskan Yedoma domain and it is uncertain whether it belongs to a Yedoma unit or an overlying Holocene deposit.

The permafrost soils were collected with a SIPRE corer as described in Methods, except for Storflaket soil which was sampled with a fluid-less gas-powered concrete drill. The soils were homogenized and pre-incubated as described above for the Yedoma sediment, after which we added one mL of the ST soil suspension described above to jars containing c. 20g fresh permafrost soil (n = 4), and one mL autoclaved ddH2O to control jars. At day 1, water-extractable pH was unaffected by inoculation (Welch’s one-tailed t-tests $P > 0.05$, df = 6, pH measurement as described above).
3c. CO₂ production measurements
The jars for both side experiments were incubated in the dark at 10°C for 389 days. CO₂ concentrations were measured (EGM-5, PP Systems, Amesbury, Massachusetts) at intervals ranging from 2 to 37 days, keeping [CO₂]v:v below 28,000 ppm to prevent a toxic CO₂ build-up. After each measurement, the jars were flushed with 0.45µm-filtered CO₂-free air moisturized at 10°C with a dew point generator (LI-COR Biosciences, Lincoln, Nebraska), for >90 s at 1L min⁻¹, i.e. with at least 10 times the volume of the jar.

References
Supplementary Table 1: Primers and conditions for the qPCR assays for the inhibition test, 16S rRNA and amoA functional genes and the PCR reactions for 16S and ITS libraries. The qPCR reactions were carried out in two technical replicates with an initial denaturation at 95°C for 5 min, and cycles of denaturation at 95 °C for 15 s, annealing for 30 s and elongation at 72 °C. Standard curves were derived by serial dilutions of linearized plasmids containing cloned fragments of the specific genes in the range of 10^1-10^7 copies per reaction.

<table>
<thead>
<tr>
<th>qPCR assay target</th>
<th>Target gene</th>
<th>Primer</th>
<th>Primer sequence 5' - 3'</th>
<th>Primer reference</th>
<th>Final primer conc.</th>
<th>Cycles</th>
<th>Annealing temp.</th>
<th>Elongation time</th>
<th>Standard curves R²/efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition</td>
<td>TOPO vector</td>
<td>M13F</td>
<td>GTAACACGACGCAG</td>
<td></td>
<td>0.1 µM</td>
<td>35</td>
<td>55 °C</td>
<td>45 s</td>
<td>NA / NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M13R</td>
<td>CAGGAACACGCTATGAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prokaryotes</td>
<td>16S rRNA V3</td>
<td>341F</td>
<td>CCTACGGGAGGCAGCAG</td>
<td>Muyzer et al., 1993</td>
<td>0.2 µM</td>
<td>35</td>
<td>55 °C</td>
<td>30 s</td>
<td>0.993 / 101.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>534R</td>
<td>ATTAGGCGGCGCTGTCGCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.997 / 102.5</td>
</tr>
<tr>
<td>Ammonia-oxidizing</td>
<td>amoA</td>
<td>amoA-1F</td>
<td>GGGGTTCCTACGCTTGTTG</td>
<td>Rothhauwe et al., 1997</td>
<td>0.5 µM</td>
<td>40</td>
<td>55 °C</td>
<td>40 s</td>
<td>0.998 / 87.8</td>
</tr>
<tr>
<td>bacteria (AOB)</td>
<td></td>
<td>amoA-2R</td>
<td>CACCCTGCCAAAGCCTCTTTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.997 / 86</td>
</tr>
<tr>
<td>Ammonia-oxidizing</td>
<td>amoA</td>
<td>CrenamoA2F</td>
<td>ATGGTGTGATCGWAGCG</td>
<td>Tourna et al., 2008</td>
<td>0.5 µM</td>
<td>40</td>
<td>55 °C</td>
<td>40 s</td>
<td>0.997 / 91.2</td>
</tr>
<tr>
<td>archaea (AOA)</td>
<td></td>
<td>CrenamoA616R</td>
<td>GCCATCACTGTGTAATGCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.997 / 87.7</td>
</tr>
<tr>
<td>Complete ammonia</td>
<td>amoA</td>
<td>comA-244F</td>
<td>TAYAYTTGCGTAAYTAY</td>
<td>Pjevac et al., 2017</td>
<td>2 µM</td>
<td>40</td>
<td>52 °C</td>
<td>30 s</td>
<td>0.997 / 88.2</td>
</tr>
<tr>
<td>oxidizers clade A</td>
<td></td>
<td>comA-659R</td>
<td>ARATCATGATGCRTG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.994 / 92.4</td>
</tr>
<tr>
<td>Complete ammonia</td>
<td>amoA</td>
<td>comalb-244F</td>
<td>TAYTTCTGACRYYTYTA</td>
<td>Pjevac et al., 2017</td>
<td>2 µM</td>
<td>40</td>
<td>52 °C</td>
<td>30 s</td>
<td>0.997 / 90.2</td>
</tr>
<tr>
<td>oxidizers clade B</td>
<td></td>
<td>comalb-659R</td>
<td>ARATCCARACGDTGTTG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.998 / 93.6</td>
</tr>
<tr>
<td>Total complete</td>
<td>amoA</td>
<td>Ntsp_amoA_162F</td>
<td>GGATTTCTGGTSGATTGG</td>
<td>Fowler et al., 2018</td>
<td>0.5 µM</td>
<td>25</td>
<td>48 °C</td>
<td>45 s</td>
<td>0.993 / 92.3</td>
</tr>
<tr>
<td>ammonia oxidizers</td>
<td></td>
<td>Ntsp_amoA_359R</td>
<td>WAGTTNGACCACTACACA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.999 / 98.4</td>
</tr>
</tbody>
</table>

*Reverse primers harboured indexes as per Bartram et al., 2011 and Smith and Peay, 2014.