
 

 

Supplementary Material 
 

 

A) LULC data: dependent variables 

For the analysis of the LULC changes, we used a data set that was originally produced in 

Pierri-Daunt and Silva (2019) (data is publicly available at https://zenodo.org/record/2648783), and 

is described there in detail. In the following, the main steps of data preparation are described, as well 

the results. 

We acquired three Landsat Collection 1 Higher-Level Surface Reflectance images (formerly 

known as Landsat Climatic Data Record images) distributed by the U.S. Geological Survey (USGS), 

covering the entire study area (path 76 and 77 row 220, WRS-2 reference system, 

https://earthexplorer.usgs.gov/). The series included two images acquired by the Landsat 5 Thematic 

Mapper (TM) sensor on 1985-07-27 and 2000-01-10, and one image from the Landsat 8 Operational 

Land Imager (OLI) sensor, from 2015-08-15.  

We choose the geographic object-based image analysis (GEOBIA) approach as it enables 

mixed use classification and requires less workload for manual post-classification corrections. We 

segmented the images into objects with homogeneous spectral responses using the Shepherd 

segmentation algorithm implemented in the open source library “RSGISlib”, accessible through the 

Python programming language (Bunting and Clewley, 2013).  

We then classified land use and land cover at each imaged date using the Random Forests 

supervised algorithm (Breiman, 2001) implemented in the “Sci-Kit Learn” Python library (Pedregosa 

et al., 2012). This algorithm is an ensemble learning method based on classification and regression 

trees built through randomization of the training data (Breiman, 2001). The training data were the 

spectral responses of samples with known LULC categories (Table A.i). Homogeneous regions were 

manually selected as training samples, and delineated separately for each combination of LULC class 

and each imaged date, distributed as best as possible throughout the study area. The total area sampled 

for training each class depended on the relative proportion of the class within the scene, varying from 

https://zenodo.org/record/2648783#.XYtcCM2xVPY


 

 

0.13 km² for bare soil to 14.10 km² for mature forest. Selection was based on visual interpretation of 

the images aided by visual comparison with high resolution datasets, when available. 

Table A.i. - Land use and land cover classes used for mapping land cover changes in the Northern 

Coast of São Paulo State, Brazil, between 1985 and 2015, using Landsat historical data. 

Land use / land cover class Description 

Mature forest 

Dense forest characterized by advanced successional stages and 

comprised mainly by primary forest, or occasional old-growth 

secondary forest. 

Regenerating forest 
Less dense forest at early to medium successional stages, mostly 

comprised by regenerating secondary forest. 

Non-forest vegetation 
Native or exotic vegetation including pastures, grasslands and 

agriculture. 

Bare soil and rock 
Exposed soil or rock surfaces lacking vegetation and buildings and 

including sandy beaches and rocky shores. 

Peri-urban 

Mixed areas with lower population density and sparse buildings, 

including a high diversity of rural uses, agroforestry, and small forest 

fragments. 

Dense urban settlements Dense built-up areas, mostly urban. 

Water Free water surfaces. 

 

To aid image interpretation and support map validation and accuracy assessment, we obtained 

digital georeferenced colour aerial photographs from 2001 at the 1:10.000 scale, freely available at 

www.datageo.sp.gov. We also used the GoogleEarthTM platform to assess the accuracy of the most 

recent classification, based on Landsat 8 OLI. To generate the ground truth dataset, we randomly 

distributed 40 random points per LULC class for each date, which were then visually interpreted and 

classified based on the available high-resolution imagery. We then used these sets to build confusion 

matrices and derive global accuracy, per-class accuracy, the kappa index of agreement, and 

commission and omission errors (Congalton, 1991) (Table A.ii). After manual revision and correction, 

land use and land cover maps for 2015 and 2000 had overall accuracies of 0.94 and 0.88, and 

corresponding Kappa agreement indices were 0.92 and 0.86 respectively. 

Table A.ii. Kappa index of agreement and omission and commission errors for each LULC class from 

2000 and 2015, after manual correction. 

Classes 
Kappa Index Omission Error Commission Error 

2000 2015 2000 2015 2000 2015 

Non-forest vegetation 0.85 0.94 0.15 0.05 0.13 0.05 

Peri-urban  0.79 0.85 0.13 0.07 0.18 0.13 

Bare soil/rock 0.83 0.93 0.00 0.09 0.15 0.06 

Dense urban settlements 1.00 0.88 0.05 0.03 0.00 0.10 

Mature forest 0.85 1.00 0.10 0.06 0.13 0.00 

Regenerating forest  0.81 0.93 0.26 0.08 0.15 0.06 

http://www.datageo.sp.gov/


 

 

 

Land use and land cover changes were quantified using map algebra, by mathematically 

adding them together in successive pairs, from 1985 to 2000 (10*LULC2000 + LULC1985) and from 

2000 to 2015 (10*LULC2015 + LULC2000). We reclassified the LULC data into the four chosen 

dominant processes of change from 1985 to 2000 and from 2000 to 2015 (in bold, Table A.iii). 

Different land cover conversions can sum up to the same process; for instance the process “urban 

growth” consists of conversions from various LC types into the “urban” class; “peri-urban growth” 

consists of conversions from various cover types into the “peri-urban” class; “forest persistence” 

consists of no changes in “mature” and “recovery” forest classes; and “deforestation” consists of 

conversions from both forest classes to any other cover type (Bürgi et al., 2017). We create binary 

rasters for one of each process of change from 1985 to 2000 and from 2000 to 2015, and this data 

was considered as the dependent variables of our model. 

 

Table A.iii. Dominant processes aggregated from Pierri-Daunt and Silva (2019). Processes used to 

construct the model are in black other processes and types of changes are in grey.  

LULC classes 
Non-forest  

vegetation 
Peri-Urban Bare soil Urban Mature forest 

Regenerating 

forest 

Non-forest  

vegetation 
No change 

Non forest  

vegetation 

decrease/ Peri-

Urban  growth 

Non forest  
vegetation decrease/ 

Bare soil increase 

Non forest  
vegetation decrease/ 

Urban growth 

Non forest  

vegetation 

decrease/ 
Afforestation 

Non forest  
vegetation decrease 

Afforestation 

Peri-Urban 

Peri-Urban 

decrease/ Non forest  
vegetation increase 

No change 

Peri-Urban 

decrease/ Bare soil 
increase 

Peri-Urban 

decrease/ Urban 

growth 

Peri-Urban 

decrease/ 
Afforestation 

Peri-Urban 

decrease / 
Afforestation 

Bare soil 

Bare soil decrease/ 

Non forest  
vegetation increase 

Bare soil decrease/ 

Peri-Urban 

growth 

No change 
Bare soil decrease/ 

Urban growth 

Bare soil 

decrease/ 
Afforestation 

Bare soil decrease/ 

Afforestation 

Urban 

Urban decrease/  

Non forest  
vegetation increase 

Urban decrease/  

Peri-Urban 

growth 

Urban decrease/ 

Bare soil increase 
No change 

Urban 

decrease/  
Afforestation 

Urban decrease/  

Afforestation 

Mature forest 

Deforestation/ Non 

forest  vegetation 
increase 

Deforestation / 

Peri-Urban 

growth 

Deforestation/ Bare 

soil increase 

Deforestation/ 

Urban growth 

Forest 

persistence 

Forest 

disturbance 

Regenerating 

forest 

Deforestation / Non 

forest  vegetation 
increase 

Deforestation / 

Peri-Urban 

growth 

Deforestation/ Bare 

soil increase 

Urban growth / 

Deforestation 

Forest 

persistence 
Forest persistence 

 

 

 

 

 

 

 

 

 



 

 

Table Aiiii Land use and cover characterization inside and outside state parks in Northern Coast of 

São Paulo State (State Park area = 1375.7 km²; Outside State Parks = 572.7 km², % = class percentage 

of the entire area). 

Land use and land cover classes 
1985 2000 2015 

km² % study area km² % study area km² % study area 

Mature forest 

Park 1282.0 91.4 1220.4 87.1 1182.2 84.3 

Outside 181.0 33.9 144.0 27.0 151.9 28.4 

Total 1463 75.5 1365.6 70.4 1335.3 68.9 

Recovery forest 

Park 78.0 5.6 146.5 10.4 183.4 13.1 

Outside 138.2 25.9 148.3 27.8 127.3 23.8 

Total 216.2 11.2 295.2 15.2 311.3 16.1 

Non-forestall vegetation 

Park 20.1 1.4 14.5 1.0 12.3 0.9 

Outside 114.1 21.4 98.7 18.5 74.1 13.9 

Total 134.4 6.9 113.4 5.8 86.5 4.5 

Bare soil/rock 

Park 3.6 0.3 2.3 0.2 1.4 0.1 

Outside 15.5 2.9 9.9 1.8 6.2 1.2 

Total 19.7 1.0 12.6 0.6 8.0 0.4 

Peri-urban 

Park 16.4 1.2 15.5 1.1 23.1 1.7 

Outside 34.4 6.4 36.8 6.9 41.1 7.7 

Total 50.8 2.6 52.4 2.7 64.3 3.3 

Urban 

Park 0.1 0.0 0.9 0.1 2.7 0.2 

Outside 45.9 8.6 90.2 16.9 120.4 22.6 

Total 46.3 2.4 91.8 4.7 123.8 6.4 

 

 

 
 

Figure A.i. The most dominant processes between 1985 and 2000 (A) and 2000 and 2015 (B). 

Adapted from Pierri-Daunt & Silva (2019). Urban growth consists of conversions from various cover 

types into the cover class urban; the process of peri-urban growth consists of conversions from various 

cover types into the cover class peri-urban; forest persistence consists of mature and recovery forest 

maintenance; and the process of deforestation consists of conversions from mature and recovery 

forest into various cover types; previous urban use consists in no changes in urban use from A) 1985-

2000, and B) 2000-2015; other process consist of all other land conversion trajectory. 

  



 

 

B) Driving forces: literature review and variables choices 

In the following section, we provide rationales and background information from the literature 

on the driving forces considered and the respective variables selected  

The Political driving force (hereby DF) has been broadly described as one of the most 

important drivers of landscape changes, although it usually acts indirectly on land changes 

(Hersperger and Bürgi, 2009; Plieninger et al., 2016). Environmental policies can affect land 

availability, land prices, transport network and therefore determine the land use and landscape 

stability (Hersperger and Bürgi, 2009; Jepsen et al., 2015). The Atlantic forest at the Northern Coast 

of São Paulo State (NCSP) is protected by three state parks, the Serra do Mar, Ilhabela and Ilha 

Anchieta, which protect around 70% of the study area. The presence of state parks is suggested as a 

driver of forest persistence. Ecological-Economic Zoning (EEZ) was developed in Brazil during the 

1980s, and is one of the main instruments that regulate land-use change at NCSP (Figure 3, 

manuscript). Developing countries are usually characterized to present fast urban sprawl devoid of 

water access, sanitation and waste service. In order to better understand the role of the public policies 

in NCSP, we quantified the effect of the attendance of these services on urban and peri-urban growth.  

Socio-economic drivers have been broadly described as one of the most important driver of 

landscape changes (Hersperger and Bürgi, 2009; Silva et al., 2016), and population density and 

demographic changes have been already discussed as the main cause of LULC changes (Ellis and 

Ramankutty, 2008) although they are rarely the only or major underlying cause (Lambin et al., 2001). 

Population density, permanent house density and mean income were previously suggested to be a 

driver of deforestation, urban and peri-urban growth. Increased in the percentage of access to basic 

education was suggested to be a driver of forest persistence, but can also be associated with urban 

growth, since the access to education is frequently higher in urban areas in Brazil. 

Topographic measures are frequently modeled as a driver of urban growth (Pazur and Bolliger, 

2017; Schneeberger et al., 2007; Silva et al., 2016). Highest slope values and highest TPI values are 

suggested as drivers of forest persistence, since human settlements are expected to occur at lower 



 

 

densities on these regions. Natural high-risk areas can also influence human settlements.  Due to the 

high escarpment at the study area, the NCSP hosts many landslide-prone areas that can be positively 

correlated with forest persistence, and should be negatively correlated with urban expansion and peri-

urban increase.  

Landscape accessibility, considering terrestrial and marine transportation of people and goods, 

can be considered a very important driver of landscape changes (Antrop, 2005; Bürgi et al., 2017). 

The ports of Ubatuba and São Sebastião have driven village development since the 16th century 

(Campos, 2000; Cunha, 2003; Silva, 1975), and the four highway built in the region are suggested as 

a strong driver of urban expansion since the 1920’s (Buzato, 2012; Pierri Daunt and Silva, 2019). At 

São Sebastião municipality, the presence of the largest Petroleum and Gas Brazilian Company 

(PETROBRAS) plant and the infrastructure to explore and transport petroleum and natural gas has 

been also suggested to be an important driver of changes (Carmo et al., 2012; Teixeira, 2013).  

Cultural factors were also highlighted as dominant drivers of landscape changes (Plieninger 

et al 2016), although they are very complex to measure and act indirectly on land changes (Nassauer, 

1995). In addition to being an important biodiversity hotspot, the Northern Coast of São Paulo State 

also has unique historical and cultural characteristics, currently preserved by indigenous and 

traditional peoples (Ab’Sáber, 1986; São Paulo, 2006), such as the Tupi-Guarani nation and the 

Caiçara and Quilombola ethnicities, which have historically contributed to landscape sustainability 

and multifunctionality (Antrop, 2005; Diegues, 2001). The presence of native people is suggested as 

a driver landscape heterogeneity and diversity increase, and also support a high level of biodiversity 

(Diegues 2001). 

 

  



 

 

C) Data processing and organization 

The explanatory variables for this study were acquired from different sources, reflecting 

different scales of measures. This required many data preparation steps. The following section is 

dedicated to clarify these steps in detail.  

The official limits of the State Parks and the Ecological Economic Zoning were provided by 

the Forestry Foundation of São Paulo and by the São Paulo State Environment Plan Division (CPLA-

SP) in vector format, respectively. We generated presence-absence raster files (30m resolution) in 

QGIS. Slope and Topographic Position Index (TPI) were derived from a digital elevation model (30-

m resolution) produced by the Japanese Space Agency (JAXA) (available at: 

eorc.jaxa.jp/ALOS/en/about/about_index.htm), and were considered constant during the study period. 

Cumulative Cost Distances from main highways, from the two seaports, from the Ubatuba 

airport, from industrial infrastructure, from traditional communities, and from flood and landslide 

high risk areas were calculated in QGIS. The cumulative cost distance data provides the cumulative 

cost for each cell to the nearest source over a cost surface (Environmental Systems Research Institute, 

2016). The source of this dataset is described in Table 1. First, vector files were transformed in 

presence-absence rasters (30-m resolution). Secondly, we produced a multi-criteria cost surface raster 

by combining the topography dataset with the LULC categories dataset. The cost surface raster 

measures the relative cost of traveling through each cell (Environmental Systems Research Institute, 

2016). We considered that slope and LULC information were very important to measure the distance 

from the evaluated drivers. Each of these datasets is in a different measurement system (LULC and 

slope), and must be reclassified to a common scale (Environmental Systems Research Institute, 2016).  

We then reclassified slope and LULC from a 1 to 10 scale. To combine both sources of information 

we gave double of importance (weight) to slope, i.e. an influence of 66% versus LULC influence of 

34%. The detailed description to generate a multi-criteria cost surface raster can be accessed at 

https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/creating-a-cost-surface-raster.htm 

(Environmental Systems Research Institute, 2016). For the 1985-2000 model we used LULC from 

https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/creating-a-cost-surface-raster.htm


 

 

1985, and for the 2000-2015 model, we used LULC from 2000. Finally, we created cumulative cost 

distance raster maps (one for each time step) in the GRASS 7 environment accessed from QGIS 3.1 

software. Additionally, we conduced previous tests with Euclidean Distances and we fund neither 

substantial differences on the model results nor on the importance of the technological drivers. 

Regarding Federal Census data (Table 1, manuscript), we accessed the information for each 

sector/area in a table. We added this information to a vector file provided by the Brazilian Institute of 

Geography and Statistics (IBGE), with the spatial limits of the census sectors for 2000 and 2010. For 

1991, the census only provided spatial descriptions, i.e. the names of neighbourhoods, and data had 

to be aggregated into sub-districts. The variables related with numbers per census sector were 

transformed into density, i.e. population and housing. For each census sector area, we calculate the 

population/housing density for a pixel size of 30m, which gives us a value of population/housing 

number per 30m pixel. Regarding the percentage data, i.e. alphabetization and basic services 

provision, we rasterized them to a 30m pixel raster, and assumed that all pixels inside each census 

area should have the same value. The Federal Census occurred only in 1991, 2000 and 2010. To 

address the gap between the time steps, annual rates of change were calculated for 1985–2000 and 

2000–2015 to allow comparability between LULC periods. The census sector limits of the Brazilian 

National Census changed over time, so we addressed it as follows: for 1991, the census only provides 

spatial descriptions, i.e. the names of neighbourhoods, and data had to be aggregated into sub-districts. 

For 2000, due to an inconsistency in the census sector vector file, it was likewise necessary to 

aggregate some sectors to reorganize the spatially explicit data into sub-districts. For 2010, the vector 

file from IBGE was used to generate the spatially explicit data. The Human Develop Index is available 

at a municipality level. We attributed the HDI for the vector file with the municipality border, and we 

rasterized (30 m resolution) this file in QGIS. 

 



 

 

 
Figure C.i. Examples of the modelled variables in 30 m resolution. A) 1985-2000: B) 2000-2015. 

Waste: annual rates of change in waste collection service % per census sector; Sanitation: annual rates 

of change in sanitation service % per census sector; Water: annual rates of change in water service % 

per census sector; EEZ: 2004 Ecological-Economic Zoning and State parks.; Education: annual rates 

of change in basic education % per census sector; Population: annual rates of change in population 

density per census sector; Income: annual rates of change in mean income per census sector (in Reais); 



 

 

HDI: annual rates of change in Human Development Index per municipality; Highways: cumulative 

cost distance from principal highways (m); Slope (°). Traditional communities: location of the 

traditional communities. Description at Table 1 of the manuscript. 
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