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Abstract 21 

The ongoing increase in global temperature affects biodiversity, especially in mountain regions 22 

where climate change is exacerbated. As sessile, long-lived organisms, trees are especially 23 

challenged in terms of adapting to rapid climate change. Here, we show that low rates of allele 24 

frequency shifts in Swiss stone pine (Pinus cembra) occurring near the treeline result in high 25 

genomic vulnerability to future climate warming, presumably due to the species’ long 26 

generation time. Using exome sequencing data from adult and juvenile cohorts in the Swiss 27 

Alps, we found an average rate of allele frequency shift of 1.23×10-2/generation (i.e. 40 years) 28 

at presumably neutral loci, with similar rates for putatively adaptive loci associated with 29 

temperature (0.96×10-2/generation) and precipitation (0.91×10-2/generation). These recent 30 

shifts were corroborated by forward-in-time simulations at neutral and adaptive loci. 31 

Additionally, in juvenile trees at the colonisation front we detected alleles putatively beneficial 32 

under a future warmer and drier climate. Notably, the observed past rate of allele frequency 33 

shift in temperature-associated loci was decidedly lower than the estimated average rate of 34 

6.29×10-2/generation needed to match a moderate future climate scenario (RCP4.5). Our 35 

findings suggest that species with long generation times may have difficulty keeping up with 36 

the rapid climate change occurring in high mountain areas and thus are prone to local extinction 37 

in their current main elevation range. 38 

Keywords: Allele frequency shift, Alps, climate change, conifer, ecological genomics, 39 

genomic offset, local adaptation, risk of non-adaptedness  40 



Introduction 41 

Climate change has manifold effects on biodiversity (Scheffers et al., 2016). Increasing 42 

temperature and changes in precipitation affect the sustainability of alpine ecosystems 43 

(Ernakovich et al., 2014) and in some cases pose a considerable challenge to the competitive 44 

ability and physiological limits of organisms (Alexander, Diez, & Levine, 2015). As a result, 45 

plant populations have to migrate beyond their current range or adapt to changing 46 

environmental conditions to avoid local extinction (Chen, Hill, Ohlemüller, Roy, & Thomas, 47 

2011; Cotto et al., 2017; Steinbauer et al., 2018). These evolutionary trajectories are partly 48 

governed by the adaptive potential of species, especially the amount of standing genetic 49 

variation that confers putatively beneficial variants for climate-related traits (Barrett & 50 

Schluter, 2008). Moreover, the ratio between generation time and the pace of climate change 51 

is critical because it can impose an adaptational lag (Aitken, Yeaman, Holliday, Wang, & 52 

Curtis-McLane, 2008). Evaluating associations of allele frequencies in fitness-relevant genes 53 

with the local environment (Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015) can 54 

provide the basis for determining the degree of genomic vulnerability (i.e. genomic offset) of 55 

species and help to predict the required response to future climate conditions (Fitzpatrick & 56 

Keller, 2015; Gárate-Escamilla, Hampe, Vizcaíno-Palomar, Robson, & Benito Garzón, 2019; 57 

Pina-Martins, Baptista, Pappas, & Paulo, 2018). Although it has been shown that the alpine 58 

flora responds to climate warming through both accelerated elevational changes and increased 59 

growth of plant communities (Pauli et al., 2012; Steinbauer et al., 2018), little is known about 60 

how populations of species with long generation times, such as trees, cope with rapid climate 61 

change. 62 

Swiss stone pine (Pinus cembra L.) is an emblematic keystone species of the treeline 63 

ecotone (Körner, 2012) and occurs in the subalpine vegetation zone throughout the Central 64 

European Alps and the Carpathian Mountains (Fig. 1a). Due to its low competitive ability, the 65 

species is largely restricted to high elevations along the upward colonisation front of trees (Fig. 66 

1b; Lingua, Cherubini, Motta, & Nola, 2008), where extreme climate events, such as severe 67 

frost, strong wind desiccation or recurrent heat waves, can occur (Gruber, Zimmermann, 68 

Wieser, & Oberhuber, 2009; Wieser, Gruber, & Oberhuber, 2014). The species is common 69 

across the central parts of its distribution, although it has experienced substantial range 70 

contractions over the last two centuries due to the decline of its main dispersal vector, the 71 

Eurasian Nutcracker (Nucifraga caryocatactes (Linnaeus, 1758); Neuschulz, Merges, 72 

Bollmann, Gugerli, & Böhning-Gaese, 2018), in combination with high grazing and harvesting 73 



pressures from Alpine pasture farming (Vittoz, Rulence, Largey, & Freléchoux, 2008). As a 74 

result, its range is fragmented, particularly in peripheral parts, but populations still show high 75 

levels of gene flow facilitated by wind pollination (Salzer & Gugerli, 2012). Swiss stone pines 76 

reach maturity after 40–60 years in natural stands and viable cones are produced irregularly 77 

over the years (Zong et al., 2010). Selection is expected, as in most trees (Petit & Hampe, 78 

2006), to be strongest in the earliest life stages, both in established stands (i.e. rejuvenation) 79 

and above the treeline (i.e. colonisation; Savolainen, Kärkkäinen, & Kuittinen, 1992). Swiss 80 

stone pines are among the oldest trees of the Alpine Arc (i.e. frequently older than 500 years; 81 

Zhao et al., 2018) and they grow in heterogeneous habitats, making the species an ideal study 82 

system for addressing the impact of climate change on the adaptive response of alpine species 83 

with long generation times. For this purpose, we reconstructed past climate conditions of Swiss 84 

stone pine populations (Fig. 1c–e) and investigated the genomic basis of climate adaptation 85 

using environmental association analysis (EAA; Rellstab et al., 2015) through space and time. 86 

We determined rates of historical allele frequency shifts (i.e. absolute difference in allele 87 

frequency between age cohorts) over two centuries and compared them with the estimated 88 

shifts needed to cope with projected future warmer and drier conditions (Fig. 1e–g). With this 89 

approach, we could assess the potential adaptational lag of Swiss stone pine under different 90 

future climate scenarios and evaluate the species’ vulnerability to local extinction. 91 

Materials and methods 92 

Sampling design 93 

In summer and fall 2014, we sampled seven populations of P. cembra growing under a broad 94 

range of environmental conditions and covering the two main phylogeographic lineages of the 95 

species in Switzerland (Fig. 1c). At each locality, we haphazardly sampled 20 georeferenced 96 

trees, minimum 30 metres apart, from each of three cohorts: an adult (LA) and a juvenile (LJ) 97 

cohort at low elevation (main elevation range), and a juvenile cohort at high elevation (HJ) at 98 

the colonisation front around 350 m above the low-elevation cohorts (Fig. 1d, Table S1). With 99 

this sampling design, we were able to address whether genetic variation is associated with 100 

contrasting environmental conditions and to quantify differences in allele frequencies (AFs) 101 

between age cohorts (LA–LJ, LA–HJ) and between juvenile cohorts at different elevations 102 

(LJ–HJ; Fig. 1d). The ages of adult trees were estimated by taking increment cores and counting 103 

the annual rings of each tree using a binocular microscope. For juvenile trees, ages were 104 



estimated in the field by counting annual shoot increments, and saplings with an age of 10–20 105 

years were selected. In total, we collected needles of 420 trees for molecular analyses. 106 

Pooled exome capture sequencing and filtering of putatively paralogous genes 107 

We performed DNA extraction, library preparation and exome capture as described by 108 

Rellstab, Dauphin, Zoller, Brodbeck, & Gugerli (2019). This study originally targeted ~25,000 109 

mostly annotated contigs based on a 69.4 Mbp transcriptome, obtained sequence information 110 

of around ~15,000 contigs after basic filtering, and finally identified a well-supported set of 111 

4,950 single-copy contigs containing almost 15,000 single-nucleotide polymorphisms (SNPs). 112 

 In short, DNA was extracted from 15–20 mg of desiccated needle samples, and 55 ng 113 

of high-quality DNA from every sample was used to produce equimolar DNA pools (n = 20 114 

individuals for each of the 21 cohorts, 1100 ng in total per cohort pool). We generated barcoded 115 

libraries (average size 550 bp) using the NEBNext Ultra II DNA Library Prep Kit for Illumina 116 

(New England Biolabs, Ipswich, MA, USA) and subsequently performed probe hybridisation 117 

using the MYcroarray myBaits Custom Capture Kit (Arbor Biosciences, Ann Arbor, MI, 118 

USA), including a PCR amplification step of 14 cycles. The 21 hybridised libraries were 119 

submitted for sequencing on three lanes of an Illumina HiSeq 4000 (paired-end reads of 150 120 

bp) at the Functional Genomics Center Zurich (FGCZ, Zurich, Switzerland) and Fasteris 121 

(Geneva, Switzerland; Table S2). We trimmed and filtered raw reads with TRIMMOMATIC 122 

0.35 (Bolger, Lohse, & Usadel, 2014), mapped the remaining reads back to the transcripts of 123 

the reference transcriptome that contained probe bases using Bowtie 2.3.0 (Langmead, 124 

Trapnell, Pop, & Salzberg, 2009), and performed the SNP calling using GATK 3.8 (McKenna 125 

et al., 2010) with ploidy set to 40, a depth ≥ 40×, and a mapping quality/depth ratio ≥ 0.25. AF 126 

estimates of pooled sequencing data were validated using two individually sequenced HJ 127 

cohorts (Rellstab et al., 2019). To conduct subsequent analyses, we created four SNP datasets 128 

(all cohorts, HJ + LJ, HJ + LA, and LJ + LA; Table S3). To remove weakly supported SNPs 129 

and SNPs in putatively paralogous genes, we applied three additional filters to assemble the 130 

final SNP datasets (Table S3). We removed SNPs: (i) from putatively paralogous contigs 131 

(Rellstab et al., 2019) using the HDplot approach (McKinney, Waples, Seeb, & Seeb, 2017) 132 

based on excess heterozygosity and deviation from usual allele balance, (ii) with missing data 133 

> 3 (pools, i.e. 14%), and (iii) with a minor allele frequency (MAF) ≤ 2.5% in at least one 134 

population (i.e. at least one chromosome in one of the pools). In downstream analyses, we used 135 

these four SNP datasets in either AF or read count data format. 136 



Genetic structure and diversity 137 

To characterise neutral genetic variation among populations, we performed a principal 138 

component (PC) analysis from AFs of all cohorts using the prcomp function from the stats 139 

package in R (R Development Core Team, 2020). Next, we carried out a hierarchical clustering 140 

analysis from the dissimilarity matrix Omega (dij = 1−ρij) generated with BAYPASS 2.1 141 

(Gautier, 2015; see below) using the hclust function from the stats R package. We assessed 142 

genetic diversity within each cohort by calculating the proportion of polymorphic loci (PPL) 143 

and expected heterozygosity He (Fischer et al., 2017), and we tested for significant differences 144 

among cohorts using a paired t test from the stats R package (Table S4). Pairwise genetic 145 

differentiation (FST; Table S5) among cohorts was estimated from read count data with the 146 

poolfstat R package (Hivert, Leblois, Petit, Gautier, & Vitalis, 2018), and pairwise geographic 147 

distances were calculated from latitude and longitude using the geosphere R package (Hijmans, 148 

Williams, Vennes, & Hijmans, 2017). Using these two distance matrices, we then tested for 149 

patterns of isolation by distance for each cohort (IBD, FST/[1–FST] ~ ln[distance], Fig. S2; 150 

Rousset, 1997) with 500 permutations in a Mantel test using the vegan R package (Oksanen, 151 

Blanchet, Kindt, Legendre, & O’Hara, 2011). 152 

Environmental change over time 153 

For each sampling location, we compiled four datasets to characterise the environmental 154 

conditions that cohorts encountered during the time of their establishment (see Table S1 for 155 

age estimates) and will encounter in the future. For data on the current climate, we used 156 

CHELSA V.1.2 (reference period 1979–2013; http://chelsa-climate.org/future/; Karger et al., 157 

2017) with a spatial resolution of about 650 m × 650 m over the European Alps (i.e. horizontal 158 

grid spacing of 0.00833° or 30 arc-seconds). From the centroid of each cohort, we derived 159 

yearly climate variables, as well as monthly values for the period corresponding to the growing 160 

season (May–October) of the species: mean/maximum/minimum temperature and precipitation 161 

sum. We also considered all bioclimatological variables for habitat characterisation that are 162 

supplied by CHELSA V.1.2 (Karger et al., 2017). For past environmental data corresponding 163 

to the period when adult cohorts established, we used long-term series of HISTALP (period 164 

1780–2014; Chimani, Böhm, Matulla, & Ganekind, 2011; Chimani, Matulla, Böhm, & 165 

Hofstätter, 2013) for spatial and temporal downscaling of CHELSA V.1.2 temperature and 166 

precipitation data using a combination of climatologically aided interpolation (Willmott & 167 

Robeson, 1995) and the change factor method (Anandhi et al., 2011). We defined the past 168 

reference period of each adult cohort as the average age of adult trees (sample year [2014] – 169 



mean cohort age ± 17 years, corresponding to the duration of the reference period 1979–2013; 170 

Table S1), or as the oldest period available when their age exceeded the start of temperature 171 

and precipitation time series. We first calculated the delta (anomaly) of the monthly mean 172 

temperature and precipitation sum of the HISTALP time series for every low- and high-173 

elevation site as: ∆𝑇# = 𝑚𝑒𝑎𝑛(𝑇#) − 𝑇# (1) and ∆𝑃# = 𝑚𝑒𝑎𝑛(𝑃#) − 𝑃# (2), where TH is the 174 

monthly mean temperature and PH the monthly precipitation sum derived from the HISTALP 175 

data. Then, we performed the downscaling of the CHELSA V.1.2 data as follows: 176 

𝑇-./012345- = 𝑚𝑒𝑎𝑛(𝑇6) − ∆𝑇# (3) and 𝑃-./012345- = 𝑚𝑒𝑎𝑛(𝑃6) − ∆𝑃# (4), where TC is the 177 

monthly mean temperature and PC the monthly precipitation sum from the CHELSA V.1.2 178 

data. 179 

From these downscaled CHELSA V.1.2 time series, we derived four climate variables 180 

to retrace past conditions during the establishment of today’s adult trees: yearly mean 181 

temperature and precipitation sum, and mean temperature and summed precipitation over the 182 

growing season (May–October). For future data, we used the CHELSAcmip5ts (available for 183 

RCP4.5 and RCP8.5; Karger, Schmatz, Dettling, & Zimmermann, 2020) based on the five most 184 

informative models (Sanderson, Knutti, & Caldwell, 2015) in the Alps for the reference period 185 

2061–2080. Projected future climate variables were taken from five global circulation models 186 

(GCMs), which were downscaled to 1 km × 1 km resolution using an additive (for temperature), 187 

or multiplicative (for precipitation) change factor method using CHELSA V.1.2 as a baseline. 188 

The five selected models originate from the CMIP5 collection of model runs used in the IPCC’s 189 

5th Assessment Report (Stocker et al., 2013). GCMs are, however, often based on similar code 190 

which consequently results in similar outputs. We therefore chose models with only a small 191 

amount of interdependence to include a realistic representation of uncertainty in climate 192 

projections. Model selection was based on model interdependence in ensembles (Sanderson et 193 

al., 2015). The five models from which data were taken are: CESM1-BGC, run by the National 194 

Center for Atmospheric Research (NCAR), Boulder, CO, USA; CMCC-CM, run by the Euro-195 

Mediterranean Center on Climate Change (CMCC), Lecce, Italy; MIROC5, run by the 196 

University of Tokyo, Japan; ESM-MR25, run by the Max Planck Institute for Meteorology 197 

(MPI-M), Hamburg, Germany; and ACCESS1-0, run by the Commonwealth Scientific and 198 

Industrial Research Organisation (CSIRO) and Bureau of Meteorology (BOM), Australia. The 199 

representative concentration pathway (RCP) trajectory accounts for anthropogenic activities, 200 

i.e. RCP4.5 (radiative forcing of 4.5 W/m2 in 2100) represents a scenario with the peak of 201 

greenhouse gas (GHG) emissions in 2040 followed by a decline, while RCP8.5 (radiative 202 



forcing of 8.5 W/m2 in 2100) models GHG emissions that continue to rise up to 2100 without 203 

mitigation measures. 204 

To characterise topography, we derived ten variables (Leempoel et al., 2015) at the 205 

individual tree level from the SwissALTi3D using SAGA 6.2 (Conrad et al., 2015): elevation, 206 

aspect, slope, profile curvature, morphometric protection index, vector ruggedness measure, 207 

visible sky, diffuse and direct solar radiation, and topographic wetness index. Because we 208 

assessed genomic data at the cohort level (i.e. AFs from pooled exome capture; see above), we 209 

averaged topographic variables from the 20 individuals of each cohort to account for the habitat 210 

variance and spatial heterogeneity. In total, we examined 35 climate variables and 10 211 

topographic variables. To avoid redundant information and minimise multicollinearity in EAA 212 

(see below), we performed pairwise Pearson’s correlations between the 45 environmental 213 

variables and applied several rules for retaining independent variables: (i) maximum Pearson’s 214 

correlation coefficient r was set to |0.7| (Dormann et al., 2013), (ii) yearly variables that were 215 

highly correlated (r ≥ |0.7|) with monthly (growing season, May–October) average variables 216 

were removed, (iii) when two monthly average variables were highly correlated (r ≥ |0.7|), we 217 

selected the one we considered biologically more relevant to test our hypotheses (e.g. monthly 218 

mean temperature instead of monthly minimum temperature), and (iv) secondary variables (e.g. 219 

morphometric protection index) that were highly correlated (r ≥ |0.7|) with primary variables 220 

(e.g. slope) were removed (Fig. S3, Tables S6, S7). For EAA, we kept only the two variables 221 

monthly mean temperature and monthly precipitation sum over the growing season (May–222 

October), which showed a consistent trend (positive or negative) across cohorts when 223 

comparing LA with LJ and LJ with HJ, using the wilcox.test function from the stats R package. 224 

Detecting putatively adaptive loci 225 

Adaptive genetic variation was investigated with EAA using both continuous and categorical 226 

explanatory variables (Table S8). For the first type of analyses (continuous variables), we tested 227 

for a linear correlation between either of the two environmental descriptors selected above 228 

(monthly mean temperature and monthly precipitation sum over the growing season) and 229 

pooled AFs with LFMM 2.0 (Caye, Jumentier, Lepeule, & François, 2019) or pooled read 230 

counts with BAYPASS 2.1 (Gautier, 2015). LFMM integrates neutral genetic structure as K 231 

latent (random) factors and is combined with rigorous statistics that take into account false-232 

positive associations (François, Martins, Caye, & Schoville, 2016). We imputed missing data 233 

with the function imputePCA (Josse & Husson, 2016) to generate a complete matrix for 234 

assessing the singular value deposition. We ran lfmm_ridge with the analytical algorithm from 235 



K = 1 to K = 6 for each of the two environmental variables and assessed the genomic inflation 236 

factor (l) for each K value (Table S8). Then, based on true AFs without imputed missing data, 237 

the z scores were calculated with latent factors using the function lm, and P values were 238 

adjusted based on l and the c2 distribution (François et al., 2016). To take into account false 239 

discoveries, we applied the Benjamini-Hochberg algorithm with a false discovery rate (FDR) 240 

of 0.05 (Benjamini & Hochberg, 1995). l differed only slightly among Ks using unadjusted P 241 

values. Therefore, based on the number of genetic clusters visualised in the first three principle 242 

components (Fig. S1) and the hierarchical clustering tree (Fig. S4), we chose K = 4 as the 243 

optimal number of latent factors. BAYPASS can also handle data generated from pooled 244 

sequencing and evaluates the strength of associations with the log-transformed Bayes Factor 245 

(BF). This method has been shown to be robust because it accounts for size and read depth in 246 

pools, and because it takes population genetic structure into account using the scaled 247 

covariance matrix Ω (Fig. S4; Gautier, 2015). We therefore analysed the read count datasets 248 

under the core model that identifies overly differentiated SNPs based on the XTX genetic 249 

differentiation statistics (Günther & Coop, 2013), and subsequently, the auxiliary model that 250 

tests for associations between corrected AFs (Ω) and each environmental variable. To identify 251 

“significant” associations, we followed Jeffreys’ rule (Jeffreys, 1961), where BF > 10 is 252 

considered significant (“strong evidence”). We performed 10 independent runs (with different 253 

initial seeds) under the auxiliary model for each covariable and computed the median of BF 254 

through 10 convergent analyses. We visually inspected the congruence between independent 255 

runs and the median and calculated the pairwise Pearson correlation coefficient r for 256 

comparison. 257 

For the second type of analyses (categorical variable, i.e. age cohort or elevation), we 258 

applied three different EAA methods. First, we tested the significance of AF differences 259 

between LA and LJ and between LJ and HJ cohorts using LFMM and BAYPASS with the 260 

auxiliary covariate model, as described above. We coded age and elevation as binary variables, 261 

with values –1 (young; low, referring to warm or dry) or +1 (adult; high, referring to cold or 262 

wet) for each sample. Further, we investigated adaptive genetic variation with a sign test to 263 

track consistent AF differences between LA and LJ cohorts and between LJ and HJ cohorts. 264 

For the sign test, we used transformed AFs (corrected for population structure) from the scaled 265 

covariance matrix Ω generated with BAYPASS. Only loci with a consistent median AF 266 

difference (positive or negative) between the respective cohorts were kept. We then illustrated 267 

overlap among the five EAAs and temporal/elevational analyses (Fig. S5) using the 268 



VennDiagram R package (Chen & Boutros, 2011), but used the combination (i.e. union) of 269 

putatively adaptive SNPs for further analyses. Conversely, we generated a putatively neutral 270 

dataset comprising those SNPs that were not detected as putatively adaptive in the analyses 271 

described above. We annotated top candidate genes associated with temperature and 272 

precipitation based on the P. cembra transcriptome (Rellstab et al., 2019) and inspected their 273 

gene ontology (GO) terms in view of local adaptation to abiotic variables (Tables S9–S10). 274 

Observed allele frequency shift over time 275 

We visualised the absolute difference in AFs in putatively neutral and adaptive loci between 276 

old and young cohorts in each site and their relationship with time (age of LA minus age of LJ 277 

or age of HJ). The LA–LJ comparison reflects a pure temporal effect within a given location 278 

(Figs. 1d, 2), while LA–HJ combines a temporal and spatial (elevational) effect on the AF shift 279 

(Figs. 1d, S6, S7). We expressed the AF shift as the variation per year (DAF / year; Tables 280 

S11–S13) or generation (DAF / generation, where generation time corresponds to 40 years) and 281 

inferred linear regressions (DAF ~ Dage) for the putatively neutral loci and for the temperature- 282 

and precipitation-associated loci (LA + LJ dataset; Table S3). 283 

Simulated allele frequency shift in response to climate change 284 

We used forward-in-time, stochastic, individual-based simulations with Nemo-age (Cotto, 285 

Schmid, & Guillaume, 2020) to model the neutral and adaptive evolutionary dynamics of P. 286 

cembra for three selected populations with a computationally implementable population size 287 

(EN, EC, and WN) since early postglacial colonisation (i.e. from ~12,000 years ago to present 288 

day; Vescovi et al., 2007). Using this theoretical framework, we intended to demonstrate 289 

conceptually that the observed AF responses are realistic and reproducible. We accounted for 290 

the specific life history of P. cembra and density-dependent processes using key demographic 291 

properties similar to natural populations, in particular generation time and number of adult trees 292 

(Fig. S8). Populations were modelled at neutral and adaptive loci. Seedlings were subjected to 293 

selection by two abiotic environmental factors, temperature (T) and precipitation (P), which 294 

changed over time based on empirical data (see above for climate reconstruction). 295 

Environmental change over time triggered quantitative trait evolution, and ultimately fed back 296 

on population density (i.e. hard selection). At the end of the simulations, genotypes of the entire 297 

populations were stored and the AF shift was analysed similar to the empirical (observed) 298 

approach. In total, we simulated all 18 combinations of 3 selection intensities, 2 quantitative 299 

trait architectures (levels of redundancy), and 3 population-specific climate scenarios for 300 



12,223 years (see below), with 10 replicates per combination. Each year, the following life-301 

cycle events took place in the order listed: density regulation (removal of seedlings and juvenile 302 

trees depending on adult tree number), stage transitions (according to the matrix population 303 

model), mating (sexual reproduction of hermaphroditic adult trees), and viability selection (on 304 

seedlings). 305 

The life history was simulated as comprising three stages (Fig. S8), with seedlings (n1, 306 

one year old), non-reproducing juveniles (n2, 2–41 years old), and sexually reproducing adults 307 

(n3, older than 41 years; Tomback, Holtmeier, Mattes, Carsey, & Powell, 1993; Zong et al., 308 

2010). Stage transitions were based solely on the individuals’ ages. Yearly survival rates were 309 

estimated from other Pinus life histories provided on COMPADRE (Salguero-Gómez et al., 310 

2015), and adjusted for computational efficiency. To do so, we used increased seedling survival 311 

(σ1 = 1) and reduced fecundity (φ = 50) to reach a reasonable number of surviving individuals 312 

within the range of values provided by COMPADRE (e.g. 3–1700 for fecundity). We also 313 

chose values for the survival rates (in the absence of competition and selection) for juveniles 314 

(σ2 = 0.9) and for adult trees (σ3 = 0.99) within the range of COMPADRE values, while keeping 315 

σ2 < σ3, as in natural tree populations. This adjusted life cycle led us to consider only those 316 

seeds which survived predation and diseases, eventually germinated, and had a realistic chance 317 

of reaching adulthood, while avoiding to create seeds that died immediately when reaching the 318 

seedling stage. With this life history conceptualisation, we were able to recover key 319 

demographic properties similar to those estimated from tree ring data, i.e. most adult trees were 320 

between 100 and 200 years old and only a few trees were older than ~300 years (Table S1). 321 

Each population reached a carrying capacity through intra-specific density regulation when 322 

seedling and juvenile survival declined with increasing adult number (n3), following the -323 

Ricker function (Ricker, 1954): 𝑐8 = 𝑎 × 𝑒:;0<(=)  (5), where a is a constant equal to 1 and b is 324 

the competition coefficient. By adjusting the strength of intra-specific competition (b), we 325 

could align the total number of adult trees at equilibrium to meet empirical conditions (Table 326 

S14). To do so, we used the known density and population size of the Rautialp site (EN; Salzer, 327 

2011), with its uneven cohort structure, and extrapolated the number of non-reproducing 328 

juvenile and reproductive adult trees for the two other populations based on aerial photos 329 

delineating their occurrence areas (Table S14). We utilised a geographic information system 330 

(ArcMap, ESRI, CA, USA) to conduct the spatial analysis of populations. 331 

We simulated each population from post-glacial colonisation to the present day and 332 

exposed it to yearly climate conditions (i.e. temperature and precipitation). We started with 333 



burn-in simulations over 12,000 years, with constant average climate conditions, but between-334 

year climatic fluctuations around the mean. Each year, a random value was picked from a 335 

normal distribution as follows: ∆𝜃 = 𝑁(0, 𝜀C) (6), which was added to the average climate 336 

condition of the respective trait and population. As a result, climatic fluctuations were 337 

independently and identically distributed for simplicity. After 12,000 years, we used the yearly 338 

temperature and precipitation data (Fig. 1e) and simulated an additional 233 years (1780–339 

2013). Climate data were rescaled for uniform inter-annual variance to ensure meaningful 340 

comparisons between traits and populations. While temperature data covered the period 1780–341 

2013, precipitation data were only available for 1801–2013. We therefore generated 342 

precipitation data for 1780–1800 using the population-specific mean and variance. 343 

We simulated the evolution of single quantitative traits in response to climate change 344 

(z1 for temperature, and z2 for precipitation) by applying viability selection on seedlings (n1) 345 

using a Gaussian fitness function as follows: 𝑤E(𝑧) = 𝑒
G(HIGJ)
K×LK  (7). Individual seedling survival 346 

(w1(z)) was maximised when a seedlings’ trait value (z) was identical to the phenotypic 347 

optimum (θ), and declined with increasing distance between z and θ depending on the variance 348 

of the fitness function ω2 (which is inversely related to the strength of selection). We used 349 

rescaled temperature and precipitation data as our phenotypic trait optima (θ) such that 350 

environmental change over time translated into changes in the phenotypic optima and 351 

eventually caused trait evolution. We simulated three scenarios with increasing selection 352 

intensity: ω2 = 1, ω2 = 0.1, and ω2 = 0.01 (Table S15). Each quantitative trait (z1 and z2) was 353 

controlled by 50 unlinked, additive, bi-allelic loci, and individual trait values were obtained by 354 

adding up allelic effects across all 50 loci and both homologue copies, without random 355 

environmental effects for simplicity. We modelled quantitative trait loci with a mutation rate 356 

of µq = 10–7 and a house-of-card mutation model such that the same two allelic effect sizes were 357 

present at all 50 loci: 𝛼NO0 and 𝛼N3P (8). The choice of the allelic effect sizes controlled the 358 

maximum range of potential phenotypes, the redundancy of the quantitative trait, and thus AF 359 

responses to selection. The difference between the two effect sizes (𝛼N3P − 𝛼NO0) determined 360 

the range of possible phenotypes, 𝑧-OQ = 𝑧N3P − 𝑧NO0 (9), that could be reached when either 361 

all small-effect alleles were fixed, 𝑧NO0 = 50 × 2 × 𝛼NO0 (10), or all large-effect alleles, 362 

𝑧N3P = 50 × 2 × 𝛼N3P (11). This maximum range of phenotypes (zdiv) was further indicative 363 

of the genetic redundancy (polygenicity) of our quantitative traits, as the number of loci 364 

necessary to realise a certain trait change Δz, which fed back on the selection strength per locus 365 

(Yeaman, 2015). When redundancy was small, i.e. small allelic effects 𝛼N3P, more pronounced 366 



AF shifts were necessary at each locus to reach a new trait optimum θ because it would then 367 

lie closer to 𝑧N3P and less genotypes exist to reach it (see also Láruson, Yeaman, & Lotterhos, 368 

2020). We simulated two scenarios of quantitative trait architectures, a high- and a low-369 

redundancy scenario with zdiv = 10 and zdiv = 5, respectively. We initialised each population 370 

with trait values very close to the local phenotypic optima, such that populations were locally 371 

adapted and did not experience directional selection before anthropogenic climate change took 372 

place. To do so, we initialised the frequency of large-effect alleles with random samples from 373 

empirical AFs (LA cohort) of the respective population and trait. We also had to adjust allelic 374 

effect sizes for each trait, each population, and each genetic architecture separately to reach zini 375 

= θini, while maintaining a constant zdiv. 376 

In addition to adaptive loci, we simulated 100 unlinked, bi-allelic neutral loci with a 377 

mutation rate of µn = 10–7 to mimic neutral SNPs. Initial AFs were randomly sampled from the 378 

empirical, population-specific AFs of LA at presumably neutral loci. As AFs of neutral and 379 

adaptive loci in our simulations were nearly stable over time given the large population sizes, 380 

we could recover neutral and adaptive AFs at the end of our simulations for comparison with 381 

empirical data. 382 

Tendency in observed allele frequencies 383 

From the results of the five EAA approaches (only temporal analysis, LA–LJ), we assembled 384 

a unified list of putatively adaptive SNPs and used untransformed AFs to quantify the degree 385 

of similarity between HJ and LA or LJ for each temperature- and precipitation-associated locus. 386 

We defined THJ, which is the tendency of a locus in HJ to be similar to LJ (compared to LA) as 387 

𝑇#T =
C×UVWXY:

Z[\Z]Z[\Y
K ^

VW\Z:VW\Y
 (12), where AF is the allele frequency averaged over the cohort. In 388 

equation 12 (illustrated in Fig. S12), THJ is positive when AFHJ is closer to AFLJ than to AFLA, 389 

THJ is negative when AFHJ is closer to AFLA than to AFLJ, and THJ is zero when AFHJ is exactly 390 

between AFLA and AFLJ. Knowing that LA individuals experienced colder and wetter 391 

conditions during their establishment period than did LJ, we assumed that the most frequent 392 

alleles of the LA cohorts are putatively beneficial under a colder and wetter climate. 393 

Conversely, frequent alleles of the LJ cohorts are considered beneficial under warmer and drier 394 

conditions. THJ therefore depicts whether a locus in HJ is rather beneficial under a warmer and 395 

drier climate (as in LJ) or beneficial under a colder and wetter climate (as in LA, and similarly 396 

expected in HJ under current conditions). A large number of loci with a positive THJ therefore 397 

indicates that these loci were already subject to selection by a warmer and drier climate, similar 398 



to what LJ cohorts currently experience. We present these tendency values across loci on a 399 

decimal logarithmic scale to better compare the patterns between temperature- and 400 

precipitation-associated loci. Furthermore, we indicate the sum of loci above and below the 401 

95% confident interval from a normal distribution using the qnorm R function. 402 

Genomic vulnerability under future climate conditions 403 

To evaluate the genomic vulnerability (i.e. genomic offset) to future climate conditions of 404 

juvenile cohorts growing within the main elevation range (low elevation, LJ), we calculated 405 

the risk of non-adaptedness (RONA; Rellstab et al., 2016). This value quantifies the theoretical 406 

AF shift needed to cope with climate change, using past, present, and future data of monthly 407 

mean temperature and precipitation sum during the growing season. To calculate RONA 408 

values, a linear relationship between AFs at significantly associated loci and environmental 409 

variables from EAA is first established using linear regressions. In a second step, the AFs 410 

theoretically needed to cope with future climate conditions are calculated and the difference 411 

between present and theoretically needed AFs is determined. We implemented this method in 412 

R (customised R script). Unlike in the original publication on RONA (Rellstab et al., 2016), 413 

we used all loci that were significant in the EAA to compare with the past AF shifts at 414 

temperature- and precipitation-associated loci with the same sample sizes (i.e. number of loci). 415 

We used data on all 14 cohorts (LA and LJ) in the linear regressions with the respective climate 416 

values during their establishment, thereby accounting for the temporal trends in climate 417 

conditions. For each locus, population and climate variable, we calculated RONA for the two 418 

greenhouse gas emissions scenarios (RCP4.5 and RCP8.5) and calculated weighted averages 419 

(from the R2 of linear regressions; Pina-Martins et al., 2018) for each population, climate 420 

scenario and environmental variable (Fig. S13). Next, we checked for homoscedasticity of the 421 

resulting RONA values with a Bartlett’s test and transformed the data to account for normality 422 

of residuals using the natural logarithm. We performed a two-way analysis of variance 423 

(ANOVA) with cohorts and climate scenarios, and their interaction, as independent variables 424 

(Table S16) using the stats R package. Climate models were nested within climate scenarios. 425 

To put RONA values into perspective with the past realised AF shifts, we time-corrected the 426 

historical AF shift (DAFcorr_time) for each population as:  427 

𝛥𝐴𝐹2.bb_8ON5 =
N530(∆VW)
N530	(∆Ve5)

× f𝑅𝑒𝑓ij8jb5 − 𝑚𝑒𝑎𝑛k𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡	𝑡𝑖𝑚𝑒sjQ50O451tu (13), 428 

where DAF is the average absolute difference of AFs between LA and LJ, DAge is the average 429 

difference between the age of juvenile (LJ) and adult trees (LA), Reffuture is the median of the 430 



reference period of future scenarios (the year 2070), and Establishment timejuveniles is the 431 

estimated year of birth of juvenile trees (LJ). 432 

Results 433 

Genetic structure and diversity 434 

From the pooled exome capture sequencing, we obtained 167,438 SNPs (in 14,937 contigs) in 435 

420 individuals from 21 cohorts (i.e. 20 individuals per cohort) of seven populations. Of these, 436 

we retained, depending on the dataset, 7,382–10,036 SNPs in 3,069–3,612 contigs (20–24%) 437 

after reducing to the single-copy contigs identified by Rellstab et al. (2019) based on 438 

heterozygote excess and deviation from allele balance (McKinney et al., 2017), and filtering 439 

for missing data (NAs ≤ 3) and minor allele frequency (≥ 2.5%; Tables S2, S3). Average 440 

sequencing depth per cohort was 182.2×, with a range of 40 to 4865×. Population genetic 441 

structure was consistent with the biogeographic origin of cohorts (Höhn et al., 2009); the two 442 

major lineages (east and west) separated along the first axis in the principal component (PC) 443 

analysis (PC1 = 14.2%; Fig. S1). Genetic diversity, measured as the proportion of polymorphic 444 

loci (PPL, 0.536–0.724) and expected heterozygosity (He, 0.079–0.098), was similar across 445 

populations and cohorts, and exhibited no reduction for juvenile cohorts (HJ) at high elevation 446 

(i.e. colonisation front; Table S4). Pairwise genetic differentiation (FST) between locations was 447 

low (< 0.001–0.099; Table S5) and significantly correlated with geographic distances, 448 

indicating isolation by distance (Mantel r = 0.402–0.573, P < 0.05; Fig. S2a–c). 449 

Environmental change over time 450 

We characterised past, present, and future climate conditions at the location of each cohort by 451 

applying climatologically aided interpolation downscaling (Anandhi et al., 2011; Willmott & 452 

Robeson, 1995). Multivariate analyses showed that habitat characteristics were independent of 453 

biogeographic origin (Fig. S3). Next, environmental variables with inconsistent signs across 454 

paired cohorts (positive or negative difference in comparisons LA–LJ and HJ–LJ) were 455 

excluded, leaving monthly mean temperature and precipitation sum during the growing season 456 

(May–October) for subsequent environmental association analysis (EAA). As expected, LJ 457 

cohorts experienced warmer and drier conditions than HJ cohorts during the period when they 458 

both established, 12–16 years ago (ya), and also compared with LA cohorts during the time 459 

when these adult trees established 110–240 ya (Fig. 1f,g; Table S1). 460 



Detecting putatively adaptive loci 461 

In the EAAs using continuous environmental variables, we found 118 and 105 SNPs 462 

significantly associated with temperature, and 506 and 362 SNPs with precipitation for the 463 

temporal (LA–LJ) and elevational (HJ–LJ) comparisons, respectively (Fig. S5a–d). 464 

Additionally, in the EAAs using categorical variables, we found 40 and 38 SNPs significantly 465 

associated with age and elevation for the temporal (LA–LJ) and elevational (HJ–LJ) 466 

comparisons, respectively (Fig. S5a–d). Finally, we detected 367 SNPs with consistent AF 467 

shifts for LA–LJ, and 410 for HJ–LJ, representing additional loci putatively under selection. 468 

Using all associated SNPs from these five EAA approaches, we obtained a modest overlap of 469 

SNPs associated with the environment between temporal and elevational comparisons (Fig. 470 

S5e–f), suggesting distinct selective pressures between temporal (LA–LJ) and spatial (HJ–LJ) 471 

environmental comparisons. The 204 SNPs shared between the two comparisons were located 472 

in 129 genes, some of them with a link to abiotic factors such as water deprivation, heat stress 473 

or light intensity (Tables S9, S10). 474 

Observed allele frequency shift over time 475 

To quantify AF shifts at the local scale, we investigated AF differences between co-occurring 476 

adult (LA) and juvenile (LJ) cohorts, which reflects a pure temporal effect, and between LA 477 

and HJ cohorts, which captures a temporal and elevational effect in the AF shifts. Combining 478 

the two comparisons (LA–LJ and LA–HJ), we determined an average rate of AF shift between 479 

age cohorts (AF shift hereafter) of 1.26×10-2 per generation (i.e. 40 years, SD = 0.38×10-2) at 480 

presumably neutral SNPs (i.e. loci not significantly associated in EAAs; Table S11). For the 481 

purely temporal analysis (LA–LJ), we found an average AF shift of about 1.23×10-2/generation 482 

(SD = 0.36×10-2) for the 8,687 presumably neutral SNPs (Table S11). The 504 temperature-483 

associated SNPs had a slightly higher average rate of AF shift (0.96×10-2/generation for LA–484 

LJ, SD = 0.44×10-2) than the 884 precipitation-associated loci (0.91×10-2/generation for LA–485 

LJ, SD = 0.35×10-2; Tables S12, S13), but both groups of loci behaved similarly to neutral loci 486 

as seen from the similar L-shaped histograms (Figs. 2a–c, S6, S7). Note that the empirical 487 

neutral SNP set may still comprise loci under selection, e.g. related to selective—including 488 

biotic—drivers unaccounted for in our study. It is such potentially adaptive loci still occurring 489 

in the putatively neutral SNP set that may underlie the extended tail in the histogram of the 490 

neutral AF shifts, leading to a slightly higher average AF shift in putatively neutral than in 491 

associated SNPs. Overall, this pattern conforms to the assumption of polygenic adaptation 492 



(Csilléry, Rodríguez-Verdugo, Rellstab, & Guillaume, 2018) to warmer and drier conditions, 493 

with many loci of minor effect involved in the adaptive response. 494 

Simulated allele frequency shift in response to climate change 495 

To demonstrate that our empirical results are realistic and reproducible, we carried out forward-496 

in-time individual-based simulations with Nemo-age to model the neutral and adaptive 497 

evolutionary dynamics in three selected populations (EN, EC, and WN) of Swiss stone pine 498 

since early postglacial colonisation into our study area (i.e. from ~12,000 years ago to present 499 

day; Vescovi et al., 2007). Accounting for the species’ life history and estimated current 500 

population census sizes (Fig. S8, Table S14), we found AF shifts between paired cohorts (i.e. 501 

LA–LJ) that were similar to empirical observations (Fig. 2d–f), especially with a medium 502 

selection intensity (ω2 = 0.1) and a high-redundancy genetic architecture (i.e. a polygenic 503 

response; Figs. S9–S11, Table S15). As expected, at temperature- and precipitation-associated 504 

loci, simulated AF shifts among paired cohorts slightly increased with stronger selection 505 

intensity (ω2 = 0.01), but its overall effect in combination with genetic architecture was modest 506 

(Figs. S10, S11). Specifically, the WN (Kandersteg) population showed the highest rate of AF 507 

shift (ω2 = 0.1, high redundancy) at temperature-associated loci, and the EC (Davos) population 508 

exhibited the highest shift (ω2 = 0.01, high redundancy) for precipitation-associated loci (Figs. 509 

S10, S11). The AF shift at neutral loci was uniform across populations (Fig. S9). 510 

Tendency in observed allele frequencies 511 

To observe whether HJ cohorts at the upper colonisation front already experienced selection 512 

for alleles beneficial under warmer and drier conditions (i.e. those more frequent in LJ), or/and 513 

whether they harbour parental alleles formerly selected for colder and wetter conditions (i.e. 514 

those more frequent in LA), we investigated the degree of similarity in AF among age cohorts 515 

for each climate-associated locus based on the temporal EAA (LA–LJ; N = 504 and 884 for 516 

temperature and precipitation, respectively). We calculated a tendency index THJ (see Methods 517 

and conceptual diagram in Fig. S12), which indicates whether the AF at a given locus in HJ is 518 

closer to LJ (THJ > 0; warmer and drier) or to LA (THJ < 0; colder and wetter), and to what 519 

extent adaptive signals vary over space and time among cohorts. We found symmetric 520 

distributions of THJ values in HJ, with a small excess of cold-related (Fig. 3a) and dry-related 521 

alleles (Fig. 3b) for temperature- and precipitation-associated loci, respectively. In other words, 522 

we found alleles in HJ that are beneficial under the current colder and wetter climate 523 



characteristic of high elevations, as well as alleles that are beneficial under the warmer and 524 

drier climate expected under future climate change. 525 

Genomic vulnerability under future climate conditions 526 

To evaluate genomic vulnerability of populations to climate change, we quantified the 527 

theoretical AF shift needed to cope with projected future scenarios, based on the observed shift 528 

in the past. To do so, we assessed the risk of non-adaptedness (RONA; Rellstab et al., 2016) of 529 

each LJ cohort for temperature and precipitation under two future greenhouse gas emissions 530 

scenarios (2061–2080, RCP4.5 and RCP8.5; Karger et al., 2017). We found significant 531 

differences in RONA estimates among populations (cohort comparison: ANOVA P < 0.01; 532 

Fig. S13, Table S16). In the case of temperature (Figs. 4a, S14), our results indicate substantial 533 

genomic vulnerability even for the emissions scenario RCP4.5, which includes modelled 534 

mitigation measures to limit temperature increase. Under this scenario, we determined a 535 

required AF shift that is at least three-fold higher (mean = 6.29×10-2/generation) than the rate 536 

at which populations have shifted their AFs for neutral (2.17×10-2/generation) or putatively 537 

temperature-associated loci (1.69×10-2/generation) in the past. As expected, this trend was 538 

exacerbated under a scenario without mitigation measures (RCP8.5; mean required AF shift = 539 

9.91×10-2/generation). These two scenarios equally affected LJ cohorts throughout our study 540 

range (Fig. S14, Table S16). Although precipitation anomalies have increased in the last 541 

decades (Scherrer, Begert, Croci-Maspoli, & Appenzeller, 2016), our results only partially 542 

captured these events (Fig. 1e–f). In fact, predictions about future precipitation based on the 543 

two RCP scenarios were very similar, which is the likely reason why we found only small 544 

differences in the respective RONA values. Moreover, RONA values for precipitation-545 

associated loci were substantially lower than those projected from temperature-induced 546 

responses (Figs. 4b, S14), being at most twice as high as the realised AF shift of the past (mean 547 

required AF shift = 3.36×10-2/generation for RCP4.5 and 3.58×10-2/generation for RCP8.5). 548 

Discussion 549 

Allele frequency shifts over time 550 

Adaptation to environmental change can occur rapidly within natural populations (Shaw & 551 

Etterson, 2012), but this has to be put into perspective with species’ generation times (Aitken 552 

et al., 2008; Jump, Hunt, Martínez-Izquierdo, & Peñuelas, 2006). Long-lived organisms with 553 

long generation times are often subject to an adaptational lag to current (Browne, Wright, Fitz-554 

Gibbon, Gugger, & Sork, 2019) or future climate conditions (Wilczek, Cooper, Korves, & 555 



Schmitt, 2014). By combining dendrochronological measurements, climate modelling and 556 

extensive exome sequencing, our study is, to our knowledge, the first to empirically quantify 557 

shifts of allele frequency (AF) at neutral and adaptive loci in a long-lived species. We report 558 

these generational shifts in Swiss stone pine, a keystone species of the treeline ecotone, and 559 

show that AF shifts at putatively adaptive loci are small, i.e. in the same range as at presumably 560 

neutral loci, which are not significantly associated in environmental association analysis (EAA; 561 

Fig. 2a–c, Tables S11–S13). Consistent with studies of other tree species, climate adaptation 562 

appears to be a genome-wide process, largely involving subtle shifts in AFs of many genes 563 

(Hornoy, Pavy, Gérardi, Beaulieu, & Bousquet, 2015; Lind et al., 2017). Importantly, our 564 

findings are corroborated by forward-in-time simulations that conform to the presumably 565 

polygenic nature of climate adaptation (Csilléry et al., 2018), with small effects in AFs at a 566 

relatively large number of loci (Fig. 2d–f). This also suggests possible redundancy in the 567 

adaptive response to climate change, whereby several genes or pathways may contribute to 568 

eco-physiological responses (Yeaman, 2015). Our annotation of candidate genes significantly 569 

associated with temperature and precipitation reveals a large variety of biological functions 570 

involved in responses to biotic and abiotic stressors, as well as in mechanisms for regulating 571 

gene expression (e.g. resistance to disease and heat stress; Tables S9, S10). This finding 572 

highlights the importance of climate-induced stresses for juvenile trees at low and high 573 

elevations and corroborates the physiological responses (e.g. in growth and establishment) 574 

previously observed under climate change in natural stands (Vittoz et al., 2008). Looking at 575 

population-specific patterns of simulated data, the strength of selection at medium intensity (ω2 576 

= 0.1) led to the highest AF shifts between age cohorts at precipitation-associated loci, while 577 

differences in temperature-associated loci were mostly influenced by the genetic architecture 578 

(i.e. EN and WN populations; Figs. S7, S9–S11). 579 

Genomic vulnerability under future climate change 580 

Understanding the genetic basis of adaptation to climate change remains a major task (Franks 581 

& Hoffmann, 2012), and evaluating genomic vulnerability can help determine the possible fate 582 

of natural populations under scenarios of future climate change (Fitzpatrick & Keller, 2015). 583 

Our estimates of the risk of non-adaptedness (RONA) for temperature and precipitation show 584 

that the rates of AF shift theoretically required to cope with predicted future conditions are 585 

substantially higher than those that have been realised in the past. Even under a moderate future 586 

climate scenario including mitigation measures (RCP4.5), the estimated mean AF shift 587 

required for the temperature-associated loci is at least three-fold higher than the rate at which 588 



populations have shifted their AFs in the past (Fig. 4a). Although the AF shift was not 589 

specifically related to time, and while climate zones are difficult to compare, previous studies 590 

looking at a predictive time-span of 95–140 years estimated similar RONA values for a 591 

projected composite climate measure (0.05–0.48 for Betula nana; Borrell, Zohren, Nichols, & 592 

Buggs, 2020) or for a projected mean temperature (0.10–0.30 for Eucalyptus microcarpa 593 

[RCP8.5; Jordan, Hoffmann, Dillon, & Prober, 2017], 0.09–0.30 for Quercus spp. [scenario 594 

A1B; Rellstab et al., 2016], and 0.07–0.38 for Quercus suber [RCP8.5; Pina-Martins et al., 595 

2018]). However, the age at which these species start to reproduce varies substantially, and the 596 

mismatch between generation time and pace of climate change has strong consequences on the 597 

coincidence of a species’ realised versus fundamental ecological niche (Rumpf et al., 2019). 598 

Note that the polygenic nature of adaption is only partly captured in this study, and beneficial 599 

alleles with small effect sizes may temper RONA estimates, as they are largely unaccounted 600 

for in these calculations. 601 

According to future climate scenarios (Stocker et al., 2013), models predict a 602 

temperature increase of about 1.5–3.5°C in the European Alps by the end of the century. Given 603 

an average temperature lapse rate of 0.6°C/100 m (i.e. moist adiabatic) of elevational increase, 604 

and assuming that Swiss stone pine cannot adapt through AF shifts alone, this situation requires 605 

a considerable acceleration of upward movement for the species, in the range of what has been 606 

reported in other shorter-lived alpine species (Pauli et al., 2012; Steinbauer et al., 2018). 607 

Overall, our findings suggest that species with long generation times may have difficulty 608 

keeping up with the rapidly changing climate, due to their low rates of AF shift, even though 609 

they exhibit high levels of standing genetic variation (Savolainen, Lascoux, & Merilä, 2013). 610 

Combined with limited migration potential, as in the bird-dispersed Swiss stone pine 611 

(Neuschulz et al., 2018), such genomic vulnerability implies a high risk of local extinction in 612 

its current main elevation range. 613 

Adaptive alleles at the species’ colonisation front 614 

A way for species to cope with environmental change is to migrate to new areas with more 615 

suitable habitats under the changed environmental conditions. As recently reported, terrestrial 616 

species showing migration along elevational gradients are too slow to follow the pace of 617 

isotherm changes, especially in regions with warm climates (Lenoir et al., 2020). In addition, 618 

uphill migration in mountain ecosystems is particularly limited by heterogeneous topography, 619 

shallow soil for seed germination and root development, and the negative effect of competition 620 

in a reduced area (Lingua et al., 2008). Phenotypic plasticity plays a prominent role in the 621 



evolutionary response, especially in long-lived organisms, but can also promote the persistence 622 

of old individuals that are maladapted to current environmental conditions (Maherali, Caruso, 623 

Sherrard, & Latta, 2010; Oostra, Saastamoinen, Zwaan, & Wheat, 2018). Many long-lived 624 

organisms are sessile and require a dispersal vector (e.g. birds, insects, water, and wind) for 625 

migration. Although the Eurasian nutcracker as the natural vector of Swiss stone pine mostly 626 

disperses seeds locally (Neuschulz et al., 2018), juvenile trees—with low density at the 627 

colonisation front—show similar levels of overall (i.e. neutral) genetic diversity (Dauphin et 628 

al., 2020) as the adult and juvenile cohorts in the main elevation range (Table S4). This was to 629 

be expected, as juvenile trees at high elevation most likely reflect the first generation of adult 630 

progenitors at lower elevations, and thus have not yet undergone major long-term demographic 631 

processes (e.g. genetic drift) that would reduce overall genetic diversity (Elleouet & Aitken, 632 

2019). However, as a result of selection imposed by the changing climate, alleles beneficial 633 

under warmer and drier conditions compared with those the progenitors of high-elevation 634 

juveniles experienced during their establishment are already found uphill at the colonisation 635 

front (Fig. 3). This illustrates the spatio-temporal interplay between migration and adaptation 636 

at the local scale and shows that both evolutionary forces are relevant for species with long 637 

generation times in the context of climate change. In this study, we put into perspective the 638 

evolutionary potential of newly selected trees at the colonisation front to overcome, at the 639 

species level, the ongoing rapid warming. We highlight the substantial genomic vulnerability 640 

of juvenile cohorts occurring in the current main elevation range, implying a high risk of local 641 

extinction under projected future conditions.  642 
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Figure legends 896 

Figure 1 Geographic and climatic characterisation of locations of cohorts sampled to 897 

investigate adaptive genetic variation in the alpine tree species Pinus cembra. a, Distribution 898 

range of P. cembra in the European Alps and Carpathian Mountains (grey area; Caudullo, 899 

Welk, & San-Miguel-Ayanz, 2017) and study sites (squares) within its Swiss range (rectangle). 900 

b, Typical habitat of P. cembra along the Aletsch glacier (population WZ, western 901 

Switzerland). Photo credit: Felix Gugerli. c, Locations of sampling sites (squares) of P. cembra 902 

within its native Swiss range (solid black lines denote northern and southern range limits). The 903 

digital elevation model originates from SwissALTi3D (www.geoadmin.ch). The dashed line 904 

represents the contact zone of the two main genetic lineages of P. cembra found in the Swiss 905 

Alps (Fig. S1; Höhn et al., 2009). d, Sampling design within locations, considering elevational 906 

and temporal contrasts and their combination; HJ = high-elevation juvenile cohort, LJ = low-907 

elevation juvenile cohort, and LA = low-elevation adult cohort. Ages refer to estimates 908 

averaged over sampled trees (Table S1). e, Time series of temperature and precipitation data at 909 

locations of low-elevation cohorts, with the interpolated tendency over two centuries, including 910 

predictions for the future (greenhouse gas emissions scenarios with [RCP4.5] and without 911 

[RCP8.5] anthropogenic mitigation; Karger et al., 2017). f–g, Comparison of monthly mean 912 

temperature and monthly precipitation sum during the growing season (May–October; log-913 

transformed values for precipitation); f, between low-elevation adult (LA) and juvenile (LJ) 914 

cohorts, and g, between juvenile cohorts from low (LJ) and high elevations (HJ), depicted with 915 

different colours and symbols. Temperature and precipitation data in f and g represent 916 

conditions during the respective establishment periods of adult and juvenile trees. 917 

Figure 2 Observed and simulated allele frequency shifts over time for neutral and putatively 918 

adaptive loci in Pinus cembra. Histograms of absolute values and averages (inset) of observed 919 

allele frequency shifts in all paired cohorts at low elevation (LA–LJ) for presumably a, neutral 920 

loci (N = 8,687), b, temperature-associated loci (504), and c, precipitation-associated loci 921 

(884). P values represent the significance for linear regressions between mean cohort age and 922 

mean allele frequency shift per year (i.e. corrected for age). Absolute values of allele frequency 923 

shifts at low elevation (LA–LJ) are simulated for three selected populations, Davos (EC), 924 

Rautialp (EN), and Kandersteg (WN), based on medium selection intensity (ω2 = 0.1) and a 925 

high redundancy of genetic architecture. Histograms of the three merged populations represent 926 

d, neutral loci (N = 6,000), e, temperature-associated loci (1,500), and f, precipitation-927 



associated loci (1,500). Allele frequency shifts refer to the absolute difference in allele 928 

frequency between age cohorts. 929 

Figure 3 Allele frequency tendencies for putatively adaptive loci in high-elevation juvenile 930 

cohorts. Tendency of allele frequencies in high-elevation juvenile cohorts (HJ), a, at 931 

temperature-associated loci (N = 504) and b, at precipitation-associated loci (884) compared 932 

with low-elevation adult cohorts (LA; negative values) and low-elevation juvenile cohorts (LJ; 933 

positive values). Associated loci are based on the temporal EAA only (Fig. S5a,c). Details on 934 

the calculation of the tendency index (THJ) are given in Fig. S12. Numbers indicate the sum of 935 

loci above and below the 95% confidence interval (dashed lines), and light and dark colours 936 

refer to the values within and outside the confidence interval, respectively. 937 

Figure 4 Risk of non-adaptedness (RONA) of Pinus cembra in low-elevation juvenile cohorts. 938 

RONA represents the theoretically required allele frequency shift to match future climate 939 

conditions. Shown are average RONA values across putatively adaptive loci for the low-940 

elevation juvenile (LJ) cohorts under two different climate scenarios (RCP4.5 and RCP8.5; 941 

during the growing season May–October). RONA of each cohort to a, future mean temperature 942 

based on 504 associated loci and b, future precipitation sum based on 884 associated loci. Error 943 

bars represent the standard error of the mean (SE). Horizontal lines represent the past realised 944 

allele frequency shifts (time-corrected) for neutral (dashed grey) and adaptive loci (dashed-945 

dotted black). 946 




