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A B S T R A C T   

The increasing availability of remote sensing data allows the quantification of biodiversity in space and time. In 
particular, spectral diversity, defined as the variability of electromagnetic radiation reflected from plants, can be 
assessed with remote sensing. Plant traits vary diurnally and seasonally due to plant phenology and land man-
agement. This results in strong temporal variation of spectral diversity, which cannot be accurately represented 
by remotely sensed data collected at a single point in time. However, knowledge of how datasets sampled at 
multiple points in time should best be used to quantify spectral diversity is scarce. To address this issue, we first 
introduced a new approach using spatio-temporal spectral diversity based on the dissimilarity measure Rao’s 
quadratic entropy index (RaoQ). Thereby, we demonstrated how RaoQ can be used to partition the total spectral 
diversity of a region (γSD) into additive alpha (αSD, within communities) and spatio-temporal beta (βSD; be-
tween communities) components, allowing the calculation of βSD from community mean spectral features, in-
dependent from αSD. Second, we illustrated our methodological approach with a case study in which βSD is 
calculated from Sentinel-2 satellite data at high temporal resolution for managed grasslands which differ across a 
large gradient of environmental properties. We were able to show differences in βSD and separate its components 
into phenological and management effects. Furthermore, the contribution of different plant communities to βSD 
was assessed, and the results were validated against a dataset of in-situ measured β diversity from plant surveys. 
Compared to spatial dissimilarities from distinct stages of the growing season, using spatio-temporal dissimi-
larities between communities produced a more accurate estimation of the uniqueness of a community. This study 
shows how to account for temporal variations in the spectral diversity of plant communities and demonstrates 
that this improves the estimation of plant biodiversity through remote sensing. Spectral diversity in space and 
time makes it possible to assess mechanisms that drive biodiversity and identify plant communities relevant for 
conservation purposes.   

1. Introduction 

The worldwide loss of biodiversity (Barnosky et al., 2011; Ceballos 
et al., 2017) and the associated decline of ecosystem services call for a 
comprehensive monitoring of biodiversity (Gossner et al., 2016; Hautier 
et al., 2009; Newbold et al., 2016). In particular, plant biodiversity af-
fects productivity and stability of an ecosystem, and plays a critical role 
in maintaining ecosystem functions (Díaz et al., 2006; Hautier et al., 
2014; Tilman et al., 1996; Tilman et al., 2006). Yet, measuring plant 
diversity across large scales in the field requires a high investment of 

human and financial resources and suffers from biases due to environ-
mental conditions and the person in charge (Jetz et al., 2016; Lõhmus 
et al., 2018). Seasonality of plants, observer experience and perceptions, 
as well as physical exhaustion in challenging working environments, are 
possible reasons for biases in botanical surveys (Burg et al., 2015; Rich 
and Woodruff, 1992). 

New methods of assessing plant diversity via spectral diversity ob-
tained from remote sensing (Wang and Gamon, 2019) can provide a 
straightforward large-scale continuous estimation of biodiversity at 
relatively high spatial and temporal resolution (Cawse-Nicholson et al., 
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2021; Pettorelli et al., 2018). The variability in spectral reflectance from 
plant communities found in spectral data, known as the spectral di-
versity, is an expression of plant taxonomic, phylogenetic and functional 
diversity (Cavender-Bares et al., 2017; Gholizadeh et al., 2019; Oldeland 
et al., 2010; Ma et al., 2019; Rocchini et al., 2010; Rocchini et al., 2018a; 
Schweiger et al., 2018; Ustin and Gamon, 2010; Wang et al., 2018). 
Spectral diversity can be calculated from different spectral features such 
as the spectral reflectance at a certain wavelength, a combination of 
several wavelengths (Gholizadeh et al., 2019, Rocchini et al., 2004; Ma 
et al., 2019), vegetation indices (Rocchini et al., 2018b) or optical traits 
(Homolová et al., 2013; Ollinger, 2011; Rossi et al., 2020; Ustin et al., 
2009). Thereby, the spatial resolution of the reflectance data (i.e., the 
pixel size) is a critical factor influencing the level of ecological organi-
zation (i.e., species, communities, ecosystems) that can be captured. 
Whittaker (1960) defined that the total diversity, gamma (γ) diversity, 
of a region includes two components: alpha (α) diversity (within com-
munity diversity), and beta (β) diversity (between community di-
versity). Partitioning plant diversity into α and β diversity provides 
deeper insights into plant assembly processes that generate and main-
tain plant biodiversity in ecosystems (Münkemüller et al., 2012). To 
quantify α diversity based on remote sensing data, the spatial resolution 
(pixel size) of these data needs to be equal to or smaller than the average 
size of a plant growing in that community (Hakkenberg et al., 2018). As 
a coarse pixel represents the spectral signal of multiple plant species, β 
diversity between plant communities can be quantified (Rocchini et al., 
2018b; Rossi et al., 2020). However, spatial diversity and its partitioning 
into α and β describe only one part of the overall spectral variability of 
plants. Capturing the temporal variation of spectral data may be more 
important to distinguish between different plant development stages, 
functional groups or management types (Huang et al., 2019), which are 
important for species distribution patterns and their function (Schwin-
ning et al., 2013). For example, spectral data collected over a time- 
period covering multiple flowering phases may allow co-occurring 
plant species to be better differentiated (Nagendra, 2001). 

Similarly, spectral data with high temporal resolution may capture 
inter-annual differences in leaf properties (e.g., water content) that 
result from differences in soil microclimatic properties, phenology or 
nutrient availability over the course of the growing season (Anderegg, 
2015; Chavana-Bryant et al., 2017; Gamon et al., 2019; Gholizadeh 
et al., 2020; McKown, et al., 2013; Wong and Gamon, 2015; Yang et al., 
2016; Meireles et al., 2020). The same holds for capturing different 
ecosystem management states (anthropogenic stressors), such as graz-
ing, mowing or fertilizing (Gómez Giménez et al., 2017; Homolová et al., 
2014). Therefore, to fully capture spectral diversity and to understand 
which processes contribute to biodiversity dynamics, both spatial and 
temporal spectral variation need to be accounted for. 

So far, indices to quantify spectral diversity have been used exclu-
sively to capture spatial variation in reflectance data (Dahlin, 2016; 
Rocchini et al., 2017; Rocchini et al., 2010; Wang et al., 2018) and have 
mostly not considered the level of ecological organization (i.e., species, 
communities, ecosystems). Only recently, Laliberté et al. (2020) pro-
posed an index that allows the partitioning of the total spectral variation 
of a region into independent within (α) and between (β) community 
diversity, and Rocchini et al. (2019) proposed a method to quantify the 
change of spectral diversity in space over time. Lopes et al. (2017) tried 
unsuccessfully to use spatio-temporal spectral diversity to quantify α 
diversity based on coarse spatial resolution data. To our knowledge, no 
study so far has assessed taxonomic diversity through spatio-temporal 
dissimilarities in spectral features between communities and quanti-
fied the importance of spectral variation over both space and time. In 
addition, none of the commonly used spectral diversity indices have 
been implemented in a way that allows spectral diversity to be parti-
tioned into temporal and spatial components. 

In order to fill this gap, we developed a new methodological 
approach and included the spatio-temporal spectral dissimilarity of 
plant communities when calculating Rao’s quadratic entropy index 

(RaoQ) to obtain total γ spectral diversity of an area (γSD). Similar to the 
partitioning proposed by Laliberté et al. (2020), RaoQ was partitioned 
into space and time. Consequently, it was not only possible to quantify α 
spectral diversity (αSD) and β spectral diversity (βSD) separately, but 
also the contributions of space and time, as well as their interaction, to 
βSD. 

We first introduce an implementation of RaoQ that allows spatio- 
temporal variations to be accounted for when quantifying spectral di-
versity (i.e., αSD, βSD and γSD). We then tested our new methodological 
approach specifically for βSD, based on a case study using Sentinel-2 
multispectral and multi-temporal satellite data in grasslands. We (i) 
calculated βSD for differently managed grasslands and partitioned it into 
the contribution of space, time and their interaction, ii) compared how 
the contribution of a community to βSD over space and the entire 
growing season differs from the contribution of a community to βSD in 
space at different stages of the growing season (spatio-temporal versus 
mono-temporal spectral datasets) and (iii) validated the results using in- 
situ measured β diversity from plant surveys. We used our case-study to 
highlight the importance of assessing temporal in addition to spatial 
variations in spectral features when quantifying plant biodiversity. 

2. Spectral diversity over space and time 

Prior to introducing our new methodological approach, the defini-
tion of the term “plant community” as used in this study is explained. 
Here, a plant community is a group of interacting plant individuals 
representing multiple species occurring together in a spatially con-
strained unit (Stroud et al., 2015). The unit equals either; a pixel, an 
aggregation of pixels of remotely sensed data, or plots in field surveys. 
This definition is not free of debate and implies artificially bounded units 
with an overwhelming emphasis on localness (Ricklefs, 2008). However, 
instead of relying on a few individual pixels/plots covering the region of 
interest, remote sensing makes it possible to have the full region covered 
continuously by equally sized pixels/plots. Hence, the geographical area 
of interest can be divided into communities of a specific size and shape 
(e.g., pixel or an aggregation of pixels) depending on the spatial reso-
lution of the remote sensing data and the ecosystem considered (Fig. 1). 
The extent of a community remains an artificial unit, but our approach 
allows us to vary the size of communities, which provides insights into 
scale dependencies of within and between community diversity (Gering 
and Crist, 2002; Laliberté et al., 2020). We assume the region of interest 
contains S plants spread over P communities recorded at D dates, and 
that each community includes the same number of plant individuals Sp 
(Sp = S/P). 

2.1. Using Rao’s quadratic entropy to calculate spectral diversity in space 

Our new methodological approach is based on RaoQ, which is an 
index frequently used to estimate spectral diversity as it is sensitive to 
the number of pixels and their pairwise spectral differences (Khare et al., 
2019; Rocchini et al., 2017; Rocchini et al., 2018a; Rocchini et al., 
2018b; Torresani et al., 2019). Here, we use RaoQ to calculate γSD (Rao, 
1982; Ricotta and Marignani, 2007), which equals the total spectral 
dissimilarity between all plants in the region of interest. We can then 
calculate γSD at a specific time t (γSDt) in the region of interest. Thereby 
we i) assume that the dissimilarity between plants is calculated from the 
mean dissimilarity of spectral features (e.g., reflectance of specific band 
or standardized vegetation indices, Botta-Dukát, 2005), ii) use Euclidean 
distance between spectral features to calculate dissimilarity, and iii) 
assume that all communities and/or plants are equally important. These 
assumptions and the fact that the average of the squared pairwise dif-
ferences of a random variable equals twice the variance of that variable 
(Champely and Chessel, 2002) reduces RaoQ to a spectral variance 
calculation between plant individuals (Eq. (1), Appendix S1 for a proof): 
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γSDt =
1

NS
∑N

k=1

∑S

n=1
(Xntk − X

−

.tk)
2 (1)  

where S is the number of plants in the area of interest, Xntk is the spectral 
feature value k of the nth individual at time t, N is the number of spectral 

features and X
−

.tk is the mean value of spectral feature k across all in-
dividuals in the area of interest at time t. Apart from division by the 
number of observations (i.e., number of plants), the proposed index is 
equal to the spectral variance proposed by Laliberté et al. (2020). 

2.2. Implementation of spectral diversity in time 

So far, only γ spectral diversity in space at a specific time t (i.e., γSDt)

have been considered. Thus, in a next step we calculated γSD by adding 
the temporal variance of spectral features to Eq. (1), similar to what 
Chalmandrier et al. (2015) did with a multiplicative framework using 
Chao’s index applied to functional and phylogenetic data. γSD repre-
sents the total dissimilarity in spectral information between individuals 
regardless of their space and time allocation (Eq. (2)). 

γSD =
1

NDS
∑N

k=1

∑D

t=1

∑S

n=1
(Xntk − X

−

..k)
2 (2)  

where D is the number of images in time, Xntk, is the value of spectral 

feature k of the nth individual at time t and X
−

..k is the mean value of 
spectral feature k across all individuals and images in time in the region 
of interest. Furthermore, γSD can be calculated if each single γSDt is 
known; the total variance (i.e., γSD) is the pooled variance from mono- 

temporal datasets (i.e., γSDt, Rudmin, 2010). 

2.3. Spatio-temporal components of γSD 

Previous studies partitioned γSD, calculated as the sum of squares 
(SS), into different spatial components, i.e., αSD and βSD, analogous to 
an ANOVA (Laliberté et al., 2020). We propose calculating γSD as the 
spectral variance (Eq. (2)), which equals the average of the total sum of 
square (SSTOT divided by the number of observations). ANOVA parti-
tions SSTOT into one component (βSD) capturing the variability between 
group means (e.g., communities), and the variability within a group (e. 
g., a community) into another component (αSD, Pavoine and Dolédec, 
2005). In general, partitioning the SSTOT allows the allocation of the 
overall variance of a dataset to different sources of variability in an 
additive manner (de Bello et al., 2011). Here, for the first time an 
extension of the SS partition to spectral data with a two-way ANOVA 
was applied, examining the influence of two different categorical inde-
pendent variables (factors) on a continuous dependent variable. The 
factors consist of different categories. The combination of two categories 
belonging to different factors represents a group (e.g., community i at 
time t). The SSTOT (Eq. (3)) is partitioned into the SS of the two factors 
SST and SSS, and their interaction (SSTS), as well as the within-group 
component (SSW; Nayak, 1986; Pavoine, 2012). The sum of SST, SSS 
and SSTS equals the between-group SS (SSB). 

SSTOT = SSw + SSS + SST + SSTS

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
SSB

(3) 

Here, the two factors of the two-way ANOVA are space and time with 
different categories, i.e., different plant communities and dates (Fig. 1). 

Fig. 1. Each pixel or aggregation of pixels represents a plant community Pi with a community mean (X
−

it) of a variable X (e.g., vegetation index, the reflectance at a 
certain wavelength or trait). In an ecosystem where an individual plant n matches or is larger than the pixel size (e.g., forests with a data resolution of a couple of 
meters), communities consist of an aggregation of Sp plant individuals and the community mean of X is calculated from the individual values (Xnit). Otherwise, when the 

pixel size matches the community size (e.g., grasslands with a data resolution of several meters), X
−

it is directly derived from remotely sensed values. In this case, only 
βSD can be derived. Adding temporal information from multiple datasets D in time results in a 2-way design with two explanatory variables (i.e., space and time), each 
consisting of different categories (i.e., communities and datasets, respectively), that can be studied with a two-way ANOVA, in conjunction with the response variable X. 
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The SSTOT divided by the number of observations (N * D * S) equals γSD, 
and the categories of the two factors are composed of P communities and 
D repeated measurements in time (Eq. (4)). A group consists of a com-
munity with Sp plants at a certain point in time t (Eq. (4)):  

where Xnitk, is the value of spectral feature k of the nth individual of the 

ith community at time t and X
−

itk is the mean value of spectral feature k of 
the ith community and time t. 

The within-group component SSW divided by the number of obser-
vations corresponds to the average αSD (Eq. (4)), i.e., the mean spectral 

variance over all communities and timesteps. αSD may be quantified for 
datasets with high spatial resolution, where a pixel may represent an 
individual plant. In contrast to a mono-temporal approach, αSD is 
calculated as an average over multiple temporal datasets, yielding a 

more robust representation of the community diversity. 
The between-group component SSB divided by the number of ob-

servations represents βSD (Eqs. (4) and (5)). βSD is the variance of 
between-community mean spectral features over space and time and can 
be partitioned into the components for space (βSDS), time (βSDT) and 
their interaction (βSDTS; Fig. 2, Eq. (5)). 

Fig. 2. Proposed approach for calculating β spectral diversity (βSD) of a region of interest, where a pixel or aggregation of pixels corresponds to a plant community Pi. 

Community mean spectral features for each dataset in time X
−

itk are derived from the measured reflectance spectra. βSD equals the variance of the community spectral 
features over space and time, which corresponds to the pooled spectral feature variance from the single datasets in time. From the partitioning similar to a two-way 
ANOVA of γSD (Eqs. (4) and (5)) three components of βSD emerge: βSDS (spatial), βSDT (temporal), and βSDTS (interaction term). 

γSD =
1

N D S
∑N

k=1

∑D

t=1

∑S

n=1

(

Xntk − X..k

)2
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞

SSTOT

=
1

N D S
∑N

k=1

∑D

t=1

∑P

i=1

∑Sp

n=1

(

Xnitk − Xitk

)2
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞

SSW

+
1

N D S
Sp

∑N

k=1

∑D

t=1

∑P

i=1

(

Xitk − X..k

)2
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞

SSB

(4)   

βSD =
1

N D P

∑N

k=1

∑D

t=1

∑P

i=1

(

Xitk − X..k

)2

=
1

NP

∑N

k=1

∑P

i=1

(

Xi.k − X..k

)2
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞

βSDS=SSS/(NDS)

+
1

ND

∑N

k=1

∑D

t=1

(

X.tk − X..k

)2
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞

βSDT=SST /(NDS)

+
1

NDP

∑N

k=1

∑D

t=1

∑P

i=1

(

Xitk − Xi.k − X.tk + X..k

)2
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞

βSDTS=SSTS/(NDS)

(5)   
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where X
−

i.k is the mean value in time of spectral feature k of the ith 

community and X
−

.tk is the mean value in space of spectral feature k of the 
tth dataset and Sp/S = 1/P. 

βSDS quantifies the diversity between communities after averaging 
their temporal variability. When using a mono-temporal dataset, βSDS is 
the only term that is not zero (βSD = βSDS for D = 1). When using a 
multi-temporal dataset βSDT quantifies the change in diversity between 
mono-temporal datasets, irrespective of the spatial patterns of diversity 
(i.e., averaging over communities). βSDTS can be used to quantify dif-
ferences in spectral features between communities, which are not 
quantified by βSDS and βSDT (Fig. 3). βSDTS delivers additional infor-
mation, because βSDS and βSDT are averaged out at larger spatial or 
temporal scales. 

To summarize, γSD equals the average of αSD in space and time plus 
the three components of βSD (Eq. (6)). 

γSD = αSD+ βSDS + βSDT + βSDTS

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
βSD

(6) 

To calculate αSD a spectral feature per individual plant (Xntk) is 
required, while for βSD only the community mean spectral features for 

each dataset in time X
−

itk is needed. 

3. Calculating βSD from spatio-temporal Sentinel-2 satellite 
data: A case study 

To demonstrate how our new methodological approach works and to 
highlight the advantage of calculating spatio-temporal spectral diversity 
we conducted a case study using Sentinel-2 satellite data. Sentinel-2 data 
for an approximately 1300 km2 area of south-eastern Switzerland 
(latitude 46◦34′ to 46◦54′N, longitude 9◦58′ to 10◦25′E, 
Figure Appendix S2.1a) were obtained. This area contains several 
grassland ecosystems under different management regimes 
(Appendix S2 and Rossi et al., 2020 for a detailed description of the 
study area). Detailed data processing procedures for the Sentinel-2 data 
are provided in Appendix S3. 

A pixel size of 10 × 10 m was used. Hence, based on our earlier 
definition, a pixel represents a grassland community, and spectral fea-

tures of a pixel are representative of the community mean (X
−

itk). The 
coarse spatial resolution of the Sentinel-2 data does not allow a direct 
quantification of αSD and γSD in grasslands (see explanation above), 
thus, we specifically calculated βSD and its components. 

The two-way ANOVA partitioning requires a balanced design, i.e., 
the same number of individuals per community. We therefore assumed 
that each grassland community (i.e., a pixel) contained the same number 

of individual plants. βSD based on pixel values (X
−

itk) was calculated of 
three spectral features, i.e., three vegetation indices (TGI, MTCI, CAI, 
Appendix S4), obtained from ten temporal Sentinel-2 datasets that 
covered the entire growing season (Table 1). 

3.1. βSD and its components for different grassland management types 

We calculated βSD and its components, i.e., time, space and their 
interaction (Eq. (5)) for four grassland management types separately; 
namely, grassland that was 1) mown and fertilized multiple times a year 
with organic or mineral fertilizer (henceforth referred to as “intensive 

Fig. 3. Beta spectral diversity (βSD) and its components, i.e., βSDT (temporal), βSDS (spatial), and βSDTS (interaction term), calculated for simulated and simplified 
landscapes, consisting of 16 communities. Each community can display four possible community mean spectral features (0.25, 0.5, 0.75, 1) over two time periods D1 
and D2. βSDTS equals zero when no spatial or/and temporal dissimilarities between communities or no-interacting spatial and temporal spectral feature dissimilarities 
exist. The case where βSDTS equals zero indicates that there is an identical dissimilarity of spectral features across space and time between communities. βSDTS equals 
βSD (i.e., βSDS = βSDT = 0) when there is a rearrangement of spectral features between communities in time. It is possible to have a situation where βSDS or βSDT is 
zero, while βSDTS is not zero. This is the case when there is a spatial or temporal dissimilarity between communities; however, if averaged respectively over time or 
space, the spectral feature dissimilarities are zero. 

Table 1 
List of Sentinel-2 datasets used in this study, sorted by growing degree days 
(GDD). All images or composite products show low cloud cover for the study 
area (<20%). DOY = day of year (Appendix S3 for details).  

Acquisition date Sensor DOY GDD [◦C-days] Acquisition year 

27 May Sentinel-2A 147 53 2017 
16 June Sentinel-2B 167 195 2018 
26 June Sentinel-2A 177 287 2017 
06 July and 03 July Sentinel-2A 187 343 2017 
16 July Sentinel-2A 197 419 2017 
31 July and 26 July Sentinel-2A and 2B 212 516 2018 
15 August Sentinel-2A 227 646 2017 
27 and 20 August Sentinel-2A 239 736 2018 
09 September Sentinel-2A 252 797 2018 
14 October Sentinel-2A 287 811 2017  
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meadows”), 2) mown with either no fertilization or slightly fertilized 
(once per year or every two years with organic fertilizer; “extensive 
meadows”), 3) protected and not managed (Swiss National Park SNP, 
“protected grassland”), and 4) summer grazing by cattle and/or sheep 
(“summer pasture”; Figure Appendix S2.1b). Mowing takes place be-
tween mid-June and mid-September in all meadows, but the exact 
timing depends on the location and type of meadow. Wild ungulates 
follow high-quality forage at the upper edge of spring green-up in the 
protected areas and stay within the SNP borders until the end of the 
hunting season (beginning of October; Rempfler, 2017). Livestock graze 
on alpine pastures for roughly three months, from mid-June to mid- 
September, with spatial constraints established by shepherds moving 
the animals from one grazing paddock to another. All available grass-
land pixels (i.e., communities) over the entire study area belonging to 
one of the four management types and the magnitude, as well as the 
contribution (in %) of the different spatial and temporal components to 
βSD of each management type were reported. We assumed that man-
agement events (e.g., mowing and grazing) and phenology alter the 
spectral response of a community (Wellmann et al., 2018). Thus, a 
particular community composition of plants, which for its part is stable 
in time, is characterized by multiple spectral responses in time. The 
differences between spectral responses in space and time are responsible 
for βSD and most likely reflect the diversity between communities in 
terms of species composition. 

We found that the spatio-temporal βSD, calculated following our 
proposed approach, varied between management types across the study 
area (Fig. 4). Substantial differences were found in the magnitude and 
contribution of the different components (in %) to βSD between the 
management types (Fig. 4). Protected grasslands had the highest (59%) 
spatial component βSDS, being responsible for an overall high βSD 
(Fig. 4). In contrast, when averaged over time, both extensive and 
intensive meadows had low spatial variances in spectral features, i.e., 
lowest βSDS values. 

The temporal component βSDT was highest for extensive meadows 
and summer pastures (Fig. 4). In particular the datasets obtained late 
(GDD = 811) and early (GDD = 53) in the growing season differed 
strongly from the other datasets (Appendix S4.1) and contributed most 
to βSD (Appendix S6). Phenological differences in spectral features in-
crease βSDT and therefore βSD. In contrary, management events (e.g., 
mowing) that occur heterogeneously in space and time keep the average 
spectral features in space almost even over time, reducing βSDT. 

In the case of heterogeneous management in space and time, a 

rearrangement of spectral features occurs (example in Fig. 3), increasing 
βSDTS. Therefore, it is not a surprise that βSDTS was highest in both 
meadow types experiencing mowing (Fig. 4). In intensive meadows, 
βSDTS contributed most (63%) to the high βSD value, indicating that 
communities changed more in spectral features than expected from the 
averaged temporal trend over the entire study area (βSDT). This in-
dicates potential for including βSDTS as a spatio-temporal component in 
the differentiation between communities. Although βSDTS is sensitive to 
the diversification of management practices, spatio-temporal variations 
could potentially lead to an overestimation of taxonomic or functional β 
diversity through βSD in managed grasslands. The extent to which 
heterogeneity of management in space and time increases biodiversity is 
debatable (Socolar et al., 2016). Nevertheless, compared to the highest 
mono-temporal βSDt|D=1 (D = 1 Eq. (1); Appendix S5), spatio-temporal 
βSD mitigates the effect of high spectral variance occurring just once per 
growing season due to an even spatial distribution of mown and 
unmown meadows. The unmown areas could be mown just a couple of 
days later. The spectral variance captured at an individual date is 
therefore most likely not representative of differences between plant 
communities, since mowing date differences of a few days will not result 
in a diversified plant community composition. 

Although spatio-temporal βSD seems to offer a more consistent 
representation of biodiversity compared to mono-temporal spectral 
variance (βSDt|D=1), quantifying the overall value of βSD could be of 
marginal interest for an ecological application. Quantifying the contri-
bution of individual communities to βSD is, however, of much greater 
interest. Plant communities can contribute to βSD to varying degrees. 
Being able to correctly identify unique communities in an ecosystem is 
of great value for nature conservation. Using our new methodological 
approach, spatial–temporal dissimilarities between communities can 
increase (e.g., unique spectral values in time and space) or decrease (e. 
g., similar spectral values in time and space) the contribution of a 
community to βSD. The following considerations seek to demonstrate 
that our proposed spatio-temporal approach to calculate βSD improved 
the estimation of the community contributions to taxonomic β diversity. 

3.2. Community contributions to βSD: Comparing mono-temporal to the 
proposed spatio-temporal approach 

A main advantage of the proposed methodological approach is its 
ability to assign the overall βSD to different sources of variability, e.g., 
the three components space, time and their interaction. Furthermore, 
βSD may be partitioned into the contributions of specific communities as 
done by Laliberté et al. (2020) for a single dataset in time, which we here 
refer to as the community contribution to βSD of the ith community at 
time t (CCβSDi,t|D=1). We compared community contribution to βSD 
calculated with our spatio-temporal approach, i.e., the contribution in 
space and time of the ith community (CCβSDi, Eq. (7)), to a reference 
contribution to β diversity measured from in-situ plant surveys. Simi-
larly, community contribution to βSD at a specific and thus different 
stage of the growing season (i.e., from a mono-temporal dataset, Eq. (7) 
with D = 1 and βSD = βSDt|D=1) was compared with the in-situ reference. 
In doing so, only spatial dissimilarities between communities were 
considered. 

CCβSDi =
1

βSDNDP
∑N

k=1

∑D

t=1

(

X
−

itk − X
−

..k

)2

(7) 

We calculated βSD on 38 locations (i.e., pixels) distributed across the 
study area (Appendix Fig. S2.1), independently of the management type 
(βSDN=38). Each of these 38 pixels corresponds to the location of an in- 
situ reference plot and was 10 × 10 m in size. The plots were chosen to be 
located in a homogeneous area (i.e., same management type, high 
fractional vegetation cover) of at least 1 ha to avoid edge effects in the 
remotely sensed data. For each pixel, we calculated the community 
contribution to βSDN=38 for the spatio-temporal dataset (CCβSDi, Eq. 

Fig. 4. Barplots representing β spectral diversity (βSD) divided by components 
(Eq. (5)) in different grassland management types (i.e., extensively used 
meadows, intensively used meadows, protected grasslands, summer pastures). 
The contributions percentage of space, time and their interaction to βSD spec-
tral diversity are reported. 
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(7)) and for each of the mono-temporal datasets (CCβSDi,t|D=1). 
The in-situ plant surveys were conducted during summer 2016 and 

2017 along 10 m-long transects in each of the 38 reference plots. We 
calculated the community contribution of each plot to taxonomic β di-
versity (CCβDi; Legendre et al., 2013). In this case, β diversity was 
estimated by the Bray–Curtis dissimilarity (function beta.div, package 
adespatial v0.3–10 in R) using species abundance data (Appendix S8), as 
the Euclidean distance is not appropriate for the analysis of community 
composition data (Legendre et al., 2013). 

To quantify the degree of correlation between the in-situ measured 
CCβDi and the remotely sensed CCβSDi and CCβSDi,t|D=1, the Spearman 
correlation coefficient (ρ) and the root mean square error (RMSE) were 
used. 

We found that the proposed spatio-temporal approach was very 
effective in estimating the measured local taxonomic contribution to β 
diversity (ρ = 0.51, p = 0.0013, RMSE = 0.011, n = 38, Fig. 5a). More 
precisely, we were able to reduce the RMSE by 48% (RMSE from 0.021 
to 0.011) when accounting for spatio-temporal dissimilarities between 
communities over the entire growing season compared to the best mono- 
temporal dataset (Fig. 5). No significant correlation between remotely 
sensed CCβSDi,t|D=1 and locally measured CCβDi was found for six of the 
10 mono-temporal datasets (Fig. 5b, p > 0.05). These results together 
with the high variability observed between mono-temporal spectral 
variances (Figure Appendix S5.1) suggest that spectral dissimilarities 
calculated over both space and time (in contrast to dissimilarities over 
space at a single point in tine) offer a better representation of differences 
between communities experiencing management types and distributed 
over a large elevation gradient inducing high temporal phenological 
variation. 

4. Discussion 

In this study we developed a new methodological approach which 
extended RaoQ to include both spatial and temporal spectral variations 
of remotely sensed data. RaoQ can be used to partition γSD, the spectral 
diversity of a region, into αSD (within community) and βSD (between 
community) components via a two-way ANOVA when using multi- 
temporal data. Partitioning of γSD in space and time can help to 
reveal the scale and extent of a spectral feature, trait convergence and 
divergence (de Bello et al., 2009) and allows βSD to be calculated 
independently as done in the study case. Thereby, we included an 
interaction term between temporal and spatial βSD, unique for a remote 
sensing application, which allowed the quantification of differences in 
plant communities between two individual remote sensing datasets 
obtained at different times. By adding this spatio-temporal perspective, 
our approach can be seen as an extension to the spectral diversity 
approach proposed by Laliberté et al. (2020). 

4.1. βSD and its components 

It is assumed that variation in spectral reflectance is associated with 
differences in plant traits. Plant traits indicate how plants exploit re-
sources and interact with one another (Díaz et al., 2016; Garnier and 
Navas, 2012; Wright et al., 2004). Spectral diversity may therefore 
originate from interactions among co-occurring plants, e.g., by resource 
partitioning (Schoener, 1974). The partitioning of resources may change 
in time as suggested by the theory of temporal variability of the niche 
(Loreau, 2000). The quantification of βSDT and βSDTS is in line with this 
niche concept, which states that temporal niche separation can be esti-
mated by the variance of plant variables in time (i.e., traits and 
phenology; Kearney et al., 2010; Terradas et al., 2009). Furthermore, 
βSDT and βSDTS are compatible with a metric-based measurement of 
phenology (Yan et al., 2015), i.e., the differences in phenology as pair-
wise distances between species or communities (Sapijanskas et al., 
2014). Capturing variation on spectral features across time may there-
fore highlight distinct plant strategies, which determine species 

distribution patterns and their function (Huang et al., 2019; Pesaresi 
et al., 2020; Schwinning et al., 2013). 

If spectral variation in time may highlight the temporal niche sepa-
ration, spectral variation in space (βSDS) reflects the environmental 
heterogeneity, i.e., the number of available niches (Rocchini et al., 
2010). The calculation of βSDS is consistent with the calculation of 
spectral variance proposed by Laliberté et al. (2020), or RaoQ with 
spectral features by Rocchini et al. (2018b). The difference is that βSDS is 
calculated after averaging the spectral features over multiple datasets, 
yielding a more robust spatial diversity quantification. 

Our results suggest that the total βSD is likely related to divergence in 
spectral feature composition resulting from management type or envi-
ronmental properties (e.g., elevation). Management, such as mowing, 
impacts βSD by altering plant traits (Bouchet et al., 2017; McIntyre, 
2008; Pakeman, 2011), or in some systems by accelerating flowering 
(Ollerton and Lack, 1992). In particular, heterogeneous mowing or 
grazing in space and time strongly promotes different life-history traits 
(e.g., time of flowering) and plant structural properties, i.e., short- vs. 
tall-growing plants (Johansen et al., 2019; Klimešová et al., 2010; 
Schütz et al., 2006). In grasslands with low anthropogenic disturbance, 
traits and therefore spectral features reflect conservative resource allo-
cation strategies of plants (Louault et al., 2005; Peco et al., 2005; Rossi 
et al., 2020). Like traits, species composition is strongly dependent on 
the management type (Moog et al., 2002). Essentially, communities with 
similar management or/and environmental properties usually contain 
similar species and trait compositions. Compositional differences will 
become larger with increasing differences in management. As a result, 
management differences drive β diversity (Socolar et al., 2016). As the 
proposed βSD metric is sensitive to management differences in space and 
time, it is suitable for taxonomic or functional β diversity estimations. 

In comparison to Rossi et al. (2020), where a mono-temporal 
approach was used, differences between certain management types (i. 
e., protected grasslands versus summer pasture) were more pronounced 
when accounting for spatio-temporal dissimilarities between commu-
nities. These results reflect the enhanced classification of different eco-
systems and management types using multi-temporal remote sensing as 
reported by previous studies (Alcantara et al., 2012; Immitzer et al., 
2019; Mousivand et al., 2015; Vuolo et al., 2018). However, the degree 
to which temporal variation in spectral features due to management 
reflects taxonomic or functional β diversity needs further investigation. 
In particular, heavily managed systems display high spatio-temporal 
variations in spectral features, which could inflate biodiversity esti-
mates (Gholizadeh et al., 2020). The method proposed here allows 
spatial and temporal variation in βSD to be disentangled, and the 
increasing availability of multi-temporal datasets, this provides an op-
portunity to conduct these studies. 

4.2. Mono- versus multi-temporal approach to quantify community 
contributions to βSD 

Our approach further allows the partitioning of βSD into the con-
tributions of individual plant communities (CCβSD). We consider this as 
one of the major strengths of the presented approach. Such an approach 
could, for example, help conservationists identify areas of particular 
importance for biodiversity. 

The approach, which accounts for spatio-temporal dissimilarities, 
accurately predicted community contributions to taxonomic β diversity. 
In fact, we showed that the RMSE can be reduced by up to 74% (RMSE 
from 0.043 to 0.011, Fig. 5) when estimating in-situ measured commu-
nity contributions to taxonomic β diversity (CCβD) from space by using 
multi-temporal datasets that cover the entire growing season compared 
to using mono-temporal datasets. Accounting for spatio-temporal dis-
similarities between communities was crucial, since spatial dissimilar-
ities between communities calculated by averaging the datasets over 
time only weakly predicted CCβSD (Appendix S7). 

A spatio-temporal approach efficiently mitigates negative effects 
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observed when using mono-temporal datasets, such as i) sub-optimal 
temporal windows not capturing key phenological indicators (i.e., 
flowering or end of season; Cole et al., 2014; Mannel and Price, 2012), or 
ii) the inability to compare the spectral signature of plants at the same 
phenological or management stage in large study areas. Finally, building 
on multiple datasets of differing angular sampling (i.e., solar zenith, 
azimuth angle) may offer a source of complementary reflectance infor-
mation (Huber et al., 2010; Mousivand et al., 2015). 

4.3. Methodological considerations 

4.3.1. Spectral features 
Our approach to calculating spectral diversity is compatible with a 

range of input data, e.g., original spectral bands, a set of vegetation 
indices, as well as spectral or trait features extracted via principal 
component analysis. The selected spectral features depend on the 
research question and available data. The determination of features that 
most effectively highlight differences between species and/or commu-
nities at a certain stage of the growing season is of importance for the 
estimation of biodiversity. Thereby, the composition of a community is a 
key factor. Species or communities displaying similar traits may not be 
distinguishable spectrally. The problem is magnified when only a low 
number of spectral features – or features that are not representative of 
species differences – are used (Rocchini, 2007). In contrast, species with 
highly contrasting evolutionary histories, genetic backgrounds and/or 
environmental conditions, for example species belonging to different 
plant functional types (Schweiger et al., 2017), are distinguishable with 
a much higher success rate (Bahrami and Mobasheri, 2020). Depending 
on the feature type, a standardization (as proposed in the study case) 
should be applied to avoid the disproportionate contribution of certain 
features. Moreover, our method is not limited to remotely sensed data, 
but could also be applied to multi-temporal in-situ plant trait data 
(Kattge et al., 2020). 

4.3.2. Number of datasets 
Plant trait studies recommend that traits are sampled at least three 

times during the growing season (early, middle, late; Fajardo and Sie-
fert, 2016; McKown et al., 2013), allowing sufficient trait variation to be 
captured in order to properly characterize species and communities. 
This recommendation is in line with our results in which spectral 
datasets from early, peak and late in the growing season captured a high 
percentage of variance. However, to better distinguish between com-
munities with different species composition, spectral signatures in time 
covering phenological variations as well as management events are 
needed (Dudley et al., 2015; Pasquarella et al., 2018). 

4.3.3. Spatial resolution 
The availability of higher spatial resolution data than those used in 

our case study (e.g., drone data) would allow the calculation of αSD and 
thus γSD in grasslands. For data with coarser spatial resolution than that 
provided by Sentinel-2, e.g., from the Landsat and MODIS missions, we 
see potential for using our approach to quantify βSD. However, for plant 
ecological applications, plant communities or individual species need to 
be represented by “homogeneous” pixels (i.e., spectral signal) in terms of 

(caption on next column) 

Fig. 5. a) Relationship between remotely sensed community contributions to β 
spectral diversity for our newly proposed approach (CCβSDi), accounting for 
spatio-temporal spectral dissimilarities, and the contribution of the 38 field 
plots to β diversity calculated from species abundance (CCβDi). b) Relationship 
between the remotely sensed community (i.e., plot) contribution to β spectral 
diversity for each mono-temporal dataset (CCβSDi,t|D=1), accounting only for 
spatial dissimilarities, and CCβDi. ρ = Spearman correlation, RMSE = root mean 
square error, GDD = growing degree days; the dashed line represents the 1:1 
line. Linear regression lines were plotted only for significant relations (p 
< 0.05). 
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vegetation cover and management types. Otherwise, spectral unmixing 
techniques may be needed to extract a pure spectral signal (Malenovský 
et al., 2007). Spatial sampling units, such as those provided by MODIS, 
are often only partly covered by vegetation and therefore most likely 
violate the underlying assumption of equally distributed individual 
plants. An uneven spectral representation of individuals per community 
also occurs when shadows or soil fractions are masked out within a 
community. In such cases, SSS and SST overlap (i.e., space and time are 
not independent of each other), and the proposed partitioning would not 
equate to γSD (SSS + SST + SSTS + SSW ∕= STOT in Eq. (3)). Similarly, with 
an unbalanced design, the partitioning into α and β components, as 
proposed in our approach, may lead to average αSD exceeding γSD, as 
demonstrated by de Bello et al. (2010). To prevent this, the contribution 
of αSD within each community can be weighted by a factor that includes 
the contribution of individuals to γSD (Villéger and Mouillot, 2008). In 
order to partition βSD into its components, different types of adjusted SS 
exist for an unbalanced ANOVA (Hector et al., 2010). However, an 
implementation would not be straightforward. Alternatively, a work-
around consisting of a rarefaction procedure to standardise the number 
of pixels per community could be used (Laliberté et al., 2020). Ulti-
mately, if the number of individuals between communities does not 
differ much, partitioning as proposed in in this study (i.e., without using 
a workaround or adjusting SS) remains a good approximation (Hector 
et al., 2010). 

4.3.4. Community size 
When quantifying spectral diversity, important methodological 

considerations should include not only the number of individuals per 
community and the community composition, but also the community 
size. The size of a community influences how much of γSD can be 
explained by αSD and βSD. Small communities with a low number of 
individuals will have a high contribution of βSD and a low contribution 
of αSD to γSD. Laliberté et al. (2020) found that there is a specific 
community size above which the relative importance of β versus α 
components stabilizes. However, this size is most likely dependent on 
the ecosystem and the available spatial resolution of the remotely sensed 
datasets. Using an adjusted SS would allow the application of our pro-
posed method to communities with different shapes and sizes, e.g., those 
derived from image segmentation (sets of pixels, also known as super- 
pixels, Ren and Malik, 2003) or by clustering the region of interest 
into communities based on environmental variables. In addition, the 
concepts of α and β diversity were developed for ecological studies with 
discrete plot data and may be less obvious and discernible on continuous 
scales as provided by remote sensing data. Finally, as pointed out by 
other studies, temporal components as well as spatial components of 
biodiversity can vary with community size (Korhonen et al., 2010; 
Soininen, 2010). Further research is therefore necessary to investigate 
the relationship between α and β diversity on the continuous scales 
provided by remote sensing in space and time. 

5. Conclusions 

The era of openly available satellite data at a high revisit time and 
high spectral resolution offers new opportunities for measuring biodi-
versity from space. In particular, temporal variation in remotely sensed 
spectral features can cast light on ecological processes, including species 
coexistence, environmental filtering and ecosystem functioning. Here, a 
new spatio-temporal approach based on RaoQ that accounts for the 
dissimilarity in spectral features between plants or communities over 
space and time was presented. Our approach allows the quantification of 
βSD in space and time by including differences in phenology and man-
agement practices, which is crucial when assessing biodiversity, espe-
cially in light of on-going global change. As such, it has the potential to 

identify communities of unique species composition and therefore high 
conservation value which could support ecosystem conservation and 
restoration decision-making processes. The approach is not limited to 
satellite data, but can be used with multi-temporal datasets collected 
from platforms carrying flexible spectral imaging devices for small-scale 
applications, i.e., drones. Although more work is required in under-
standing the effect of temporal variation of βSD, we believe that the 
properties of our methodology open up promising avenues for evalu-
ating and testing ecosystem diversity changes across space and time. In 
addition, increased knowledge about temporal variation of spectral di-
versity helps to contextualise and compare a wider range of ecological 
large-scale studies. 

Data availability 

An R package was built to calculate the proposed β spectral diversity 
metrics and the contributions of their components from a stack of raster 
files (R package stdiversity v0.1; https://github.com/RossiBz/stdiversit 
y). The lcd function of the package allows to map the contribution of 
each pixel in a dataset to β spectral diversity. 
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Lavorel, S., 2009. Partitioning of functional diversity reveals the scale and extent of 
trait convergence and divergence. J. Veg. Sci. 20 (3), 475–486. 

de Bello, F., Lavergne, S., Meynard, C.N., Lepš, J., Thuiller, W., 2010. The partitioning of 
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