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Abstract. The snow cover spatial variability in moun-
tainous terrain changes considerably over the course of a
snow season. In this context, fractional snow-covered area
(fSCA) is an essential model parameter characterizing how
much ground surface in a grid cell is currently covered by
snow. We present a seasonal fSCA algorithm using a re-
cent scale-independent fSCA parameterization. For the sea-
sonal implementation, we track snow depth (HS) and snow
water equivalent (SWE) and account for several alternat-
ing accumulation–ablation phases. Besides tracking HS and
SWE, the seasonal fSCA algorithm only requires subgrid
terrain parameters from a fine-scale summer digital eleva-
tion model. We implemented the new algorithm in a multi-
layer energy balance snow cover model. To evaluate the spa-
tiotemporal changes in modeled fSCA, we compiled three
independent fSCA data sets derived from airborne-acquired
fine-scale HS data and from satellite and terrestrial imagery.
Overall, modeled daily 1 km fSCA values had normalized
root mean square errors of 7 %, 12 % and 21 % for the three
data sets, and some seasonal trends were identified. Com-
paring our algorithm performances to the performances of
the CLM5.0 fSCA algorithm implemented in the multilayer
snow cover model demonstrated that our full seasonal fSCA
algorithm better represented seasonal trends. Overall, the re-
sults suggest that our seasonal fSCA algorithm can be ap-
plied in other geographic regions by any snow model appli-
cation.

1 Introduction

In mountainous terrain, the large spatial variability in the
snow cover is driven by the interaction of meteorological
variables with the underlying topography. Over the course
of a winter season, the dominating topographic interac-
tions with wind, precipitation and radiation vary consider-
ably, generating characteristic seasonal dynamics of spatial
snow depth variability (e.g., Luce et al., 1999). This spatial
variability, or how much of the ground is actually covered
by snow, is typically characterized by the fractional snow-
covered area (fSCA). The fSCA is a crucial parameter in
model applications such as weather forecasts (e.g., Douville
et al., 1995; Doms et al., 2011), hydrological modeling (e.g.,
Luce et al., 1999; Thirel et al., 2013; Magnusson et al., 2014;
Griessinger et al., 2016, 2019) and avalanche forecasting
(Bellaire and Jamieson, 2013; Horton and Jamieson, 2016;
Vionnet et al., 2014), and it is also used for climate scenarios
(e.g., Roesch et al., 2001; Mudryk et al., 2020).

The fSCA can be retrieved from various satellite sensor
images, including Moderate Resolution Imaging Spectrora-
diometer (MODIS) or Sentinel-2 (e.g., Hall et al., 1995;
Painter et al., 2009; Drusch et al., 2012; Masson et al., 2018;
Gascoin et al., 2019). Nevertheless, solutions are required
to correct for temporally and spatially inconsistent coverage
due to time gaps between satellite revisits, data delivery and
the frequent presence of clouds (Parajka and Blöschl, 2006;
Gascoin et al., 2015). Though fine-scale spatial snow cover
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models provide spatial snow depth distributions that could
be used to derive coarse-scale fSCA, applying such models
to larger regions is generally not feasible. This is in part due
to computational cost, a lack of detailed input data and limi-
tations in model structure or parameters. While some of these
limitations can be overcome using current snow cover model
advances applying data assimilation routines (e.g., Andreadis
and Lettenmaier, 2006; Nagler et al., 2008; Thirel et al.,
2013; Griessinger et al., 2016; Huang et al., 2017; Baba et al.,
2018; Griessinger et al., 2019; Cluzet et al., 2020), the inher-
ent uncertainties in input or assimilation data still remain.
Computationally efficient subgrid fSCA parameterizations,
accounting for unresolved snow depth variability, are there-
fore still the method of choice for coarse-scale model sys-
tems, such as weather forecast, land surface and earth system
models. Furthermore, fSCA parameterizations are essential
when assimilating satellite snow-covered area data in model
systems (e.g., Zaitchik and Rodell, 2009).

Several compact, closed-form fSCA parameterizations
were suggested for coarse-scale model applications (e.g.,
Douville et al., 1995; Roesch et al., 2001; Yang et al., 1997;
Niu and Yang, 2007; Su et al., 2008; Zaitchik and Rodell,
2009; Swenson and Lawrence, 2012). Some parameteriza-
tions introduced subgrid terrain parameters (e.g., Douville
et al., 1995; Roesch et al., 2001; Swenson and Lawrence,
2012). The heuristic tanh form, suggested by Yang et al.
(1997), was later confirmed by integrating theoretical log-
normal snow distributions and fitting the resulting paramet-
ric depletion curves using the spatial snow depth distribution
(σHS) in the denominator of fitted fSCA curves (Essery and
Pomeroy, 2004). Through advances in remote sensing tech-
niques, fine-scale spatial snow depth (HS) data became more
readily available, allowing for the empirical parameteriza-
tion of σHS in complex topography at peak of winter (PoW)
or during accumulation (Helbig et al., 2015b; Skaugen and
Melvold, 2019). By parameterizing σHS using subgrid terrain
parameters, Helbig et al. (2015b) expanded the tanh fSCA
parameterization of Essery and Pomeroy (2004) to account
for topographic influence. Recently, Helbig et al. (2021a)
re-evaluated this empirically derived fSCA parameterization
with high-resolution spatial HS sets from seven different ge-
ographic regions at PoW and made it applicable across spa-
tial scales ≥ 200 m by introducing a scale-dependency in the
dominant model descriptors.

Many studies highlighted that the same mean HS in early
winter or in late spring can lead to substantially different
fSCA (Luce et al., 1999; Niu and Yang, 2007; Magand
et al., 2014). This has led to the introduction of hystere-
sis in some fSCA parameterizations (e.g., Luce et al., 1999;
Swenson and Lawrence, 2012). Previously found interannual
time-persistent correlations between topographic parameters
and snow depth distributions (e.g., Schirmer et al., 2011;
Schirmer and Lehning, 2011; Revuelto et al., 2014; López-
Moreno et al., 2017) suggest indeed that a time-dependent
fSCA implementation might be feasible. However, a seasonal

model implementation of a closed form fSCA parameteriza-
tion also needs to account for alternating snow accumulation
and melt events during the season. Especially at lower ele-
vations and increasingly so with climate change, the separa-
tion of the depletion curve in only one accumulation period
followed by a melting period is no longer applicable (e.g.,
Egli and Jonas, 2009). A seasonal fSCA implementation in
mountainous regions that accounts for these alternating peri-
ods is challenging. While some seasonal fSCA implementa-
tions of varying complexities were previously proposed (e.g.,
Niu and Yang, 2007; Su et al., 2008; Egli and Jonas, 2009;
Swenson and Lawrence, 2012; Nitta et al., 2014; Magnus-
son et al., 2014; Riboust et al., 2019), a detailed evaluation
of seasonally parameterized fSCA with fSCA derived from
high-resolution spatial and temporal HS data or snow prod-
ucts is currently still missing.

Here, we present a seasonal fSCA implementation and
evaluate it with high-resolution observation data in various
geographic regions throughout Switzerland. The algorithm is
based on the fSCA parameterization for complex topography
proposed by Helbig et al. (2015b, 2021a). We apply two dif-
ferent empirical parameterizations for the spatial snow depth
distribution, from Egli and Jonas (2009) and Helbig et al.
(2021a), with seasonal and current HS values to describe the
hysteresis. Snow accumulation and melt events during the
season are accounted for by tracking the history of HS and
snow water equivalent (SWE) values throughout the snow
season. We implemented the algorithm in a multilayer en-
ergy balance snow cover model (modified JIM, the JULES
investigation model by Essery et al., 2013) which we ran with
COSMO-1 (operated by MeteoSwiss) reanalysis data, mea-
sured HS and RhiresD precipitation data (MeteoSwiss). The
seasonal performance of this algorithm was evaluated using
fSCA data sets from terrestrial cameras, airborne surveys and
satellite imagery. This allowed us to assess modeled fSCA
using independent HS data sets with high spatial resolution
and snow products with high temporal resolution. We further
implemented the Community Land Model (CLM5.0) fSCA
algorithm accounting for hysteresis in accumulation and ab-
lation (Lawrence et al., 2018), which is based on the work of
Swenson and Lawrence (2012), in the multilayer energy bal-
ance snow cover model. Modeled fSCA from the CLM5.0
fSCA algorithm was also assessed with the measured fSCA
data sets and the performances compared to those of our sea-
sonal fSCA algorithm.

2 Fractional snow-covered area algorithm

In the following, we introduce the seasonal fSCA algorithm
in two parts. First we present the closed-form fSCA parame-
terization derived by Helbig et al. (2015b). This formulation
uses the spatial subgrid variability in snow depth (σHS) and
snow depth HS of a grid cell. To derive σHS, we used two dif-
ferent statistical parameterizations. Second, we describe our
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seasonal fSCA algorithm, i.e., how we handle the distinctly
different paths between σHS and HS during accumulation and
melt periods, i.e., the hysteresis.

2.1 The fSCA parameterization

The core of our seasonal algorithm is the PoW parameteriza-
tion of Helbig et al. (2015b) relating fSCA to HS and σHS:

fSCA = tanh
(

1.3
HS
σHS

)
. (1)

By including both HS and σHS, this formulation accounts for
the close link between spatial subgrid snow depth variability
and topography in fSCA. Although Eq. (1) was derived for
PoW, in our seasonal fSCA algorithm we apply it throughout
the entire snow season by using two different parameteriza-
tions for σHS, one accounting for subgrid topography (Helbig
et al., 2021a), while the second only depends on HS (Egli and
Jonas, 2009).

2.1.1 The σHS parameterization accounting for
topography

We use the PoW subgrid parameterization for σHS in moun-
tainous terrain originally developed by Helbig et al. (2015b)
and later extended by Helbig et al. (2021a). This parameter-
ization accounts for the impact of topography on the spatial
snow depth distribution at PoW:

σ
Helbig
HS = HScµd exp[−(ξ/L)2] . (2)

The parameterization contains two scale-dependent parame-
ters c and d:

c = 0.5330 L0.0389,

d = 0.3193 L0.1034 .
(3)

This σHS subgrid parameterization is generally valid for do-
main sizes (i.e., the coarse grid cell size) L≥ 200 m. Besides
domain size L, Eq. (3) requires snow depth HS and sub-
grid summer terrain parameters µ and ξ . The mean-squared-

slope-related parameter µ =
{
[(∂xz)2+ (∂yz)2]/2

}1/2
is de-

rived using partial derivatives of subgrid terrain elevations z,
i.e., from a summer digital elevation model (DEM). The cor-
relation length ξ =

√
2σz/µ is derived for each L using the

standard deviation σz of terrain elevations z. The L/ξ ratio
in Eq. (3) describes the frequency of topographic features
of length scale ξ in a domain L. All terrain parameters are
derived on linearly detrended summer DEMs (Helbig et al.,
2015b). More details on Eqs. (2) and (3) can be found in Hel-
big et al. (2015b, 2021a).

2.1.2 The σHS parameterization not accounting for
topography

The second σHS parameterization was developed by Egli and
Jonas (2009) by fitting daily spatial HS means and stan-
dard deviation of HS from 77 weather stations distributed

throughout the Swiss Alps over six consecutive winter sea-
sons during accumulation season. The resulting parameteri-
zation uses HS and a constant fit parameter:

σ
Egli
HS = HS0.839 . (4)

This parameterization does not account for the impact of to-
pography on σHS.

2.2 Seasonal fSCA algorithm

To use the above fSCA formulation (Eq. 1) throughout an
entire snow season, we track changes in HS with time. This
is done to account for the fact that after a snowfall, fSCA
can dramatically increase. Once the new snow has settled or
started to melt, fSCA values then generally return to similar
values as before. We account for this by computing two fSCA
values in parallel, namely a seasonal fSCA (fSCAseason) and
a new snow fSCA (fSCAnsnow). The fSCAseason accounts for
the entire history of the snow season up to the current time
step and thus all processes shaping the spatial snow depth
distribution. It is therefore computed using σHelbig

HS (Eq. 3),
which accounts for subgrid topography. The fSCAnsnow only
accounts for contributions from recent snowfall. As a snow-
fall generally covers most of the topography within a grid cell
(i.e., all surfaces are initially covered by snow), we use σEgli

HS
(Eq. 4), which does not account for subgrid topography.

2.2.1 fSCAseason

To compute fSCAseason, we use extreme HS values at each
time step per grid cell (Figure 1a). It is important to note that
we identify these extremes using SWE rather than HS as, due
to snow settlement, HS values can peak even before a pre-
cipitation event has ended. However, as our fSCA algorithm
requires HS as input, we search for extreme SWE values in
time and use the corresponding HS values. In the following
we will not specify this anymore, and we only refer to ex-
treme values of HS. To compute fSCAseason we use σHelbig

HS
(Eq. 3) in the fSCA formulation (Eq. 1) as follows:

fSCAseason = tanh

(
1.3

HSpseudo-min

σ
Helbig
HSmax

)
. (5)

Here, HSpseudo-min is the current HS value or a recent mini-
mum (pink dots in Figure 1a), and σHelbig

HSmax
is computed using

the current seasonal maximum snow depth HSmax, i.e., the
maximum in HS from the start of the season up to the cur-
rent time step (green dots in Fig. 1a). We call HSpseudo-min
a pseudo-minimum as it is not the absolute seasonal mini-
mum. At each time step, HSpseudo-min and HSmax are updated
to compute fSCA. Note that after the PoW, HSmax and σHelbig

HSmax
remain constant.

For the rare, completely flat grid cells, i.e., a subgrid mean
slope angle of zero, Eq. (2) would always result in fSCA= 1.
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Figure 1. Schematic representation of snow depth HS extreme values used to compute fSCA for a grid cell. (a) To determine fSCAseason,
extremes in HS (black line) are tracked over the entire season. When HS decreases, the seasonal maximum snow depth HSmax (green dots)
remains constant until a new maximum is reached with subsequent snowfalls. The pseudo-minimum HSpseudo-min (pink dots) decreases when
HS decreases until the next snowfall. It then remains constant until HS either exceeds HSmax or decreases below the previous minimum.
(b) To determine fSCAnsnow, several extremes in HS (black line) are tracked within the last 14 d (dashed black lines in a): the current value
HScurrent (blue dot), the minimum within the last 14 d HS14 d

min (pink dot), the maximum within the last 14 d HS14 d
max (green dot) and the

minimum prior to the most recent snowfall HSrecent
min (yellow dot).

In those cases, we therefore use Eq. (4) instead of Eq. (2) to
compute fSCAseason.

2.2.2 fSCAnsnow

To account for possible increases in fSCA after recent snow-
falls, we evaluate fSCA (Eq. 1) using σEgli

HS (Eq. 4) computed
with differences in snow depth dHS (only positive changes)
within the last 14 d (Fig. 1b). We use dHS rather than HS to
only account for the contribution of new snow on changes
in fSCA, thus as if the new snow fell on bare ground. A time
window of 14 d provided reliable fSCA results after intensive
testing, but the length of this period may require further in-
vestigation once more is known about changes in snow depth
distributions in mountainous terrain after snowfall.

Within the 14 d time window, we compute two different
fSCA values and then retain the maximum value. First, we
evaluate fSCA14 d

nsnow using the largest positive change in snow
depth within the last 14 d:

fSCA14 d
nsnow = tanh

1.3

(
HScurrent−HS14 d

min
)

σ
Egli
dHS14 d

 . (6)

Here, HScurrent is the snow depth at the current time step (blue
dot in Figure 1b), HS14 d

min is the minimum snow depth in the
last 14 d (pink dot in Fig. 1b), and σEgli

dHS14 d is computed using

the maximum difference in snow depth dHS14 d
= HS14 d

max−

HS14 d
min in the last 14 d, with HS14 d

max the maximum snow depth
in the last 14 d (green dot in Fig. 1b).

Second, we evaluate fSCArecent
nsnow using only the most recent

change in snow depth within the last 14 d:

fSCArecent
nsnow = tanh

(
1.3

dHSrecent

σ
Egli
dHSrecent

)
. (7)

Here, dHSrecent
= HScurrent−HSrecent

min is the change in snow
since the most recent snowfall, where HSrecent

min is the mini-
mum snow depth prior to the snowfall (yellow dot in Fig. 1b).
The fSCArecent

nsnow avoids spatial discontinuities: without this
implementation, grid cells with HS> 0 m prior to a recent
snowfall may have a lower fSCA value than grid cells where
the same amount of new snow has fallen on the bare ground.

Finally, the maximum of fSCA14 d
nsnow and fSCArecent

nsnow gives
fSCAnsnow for the current time step and a grid cell.

2.2.3 Seasonal algorithm

Over the course of the snow season, we derive fSCAnsnow
and fSCAseason for each time step and grid cell (Fig. 2). The
final fSCA was then obtained by taking the maximum of
both values. This full seasonal fSCA algorithm, i.e., includ-
ing the tracking of HS and SWE, was implemented in a dis-
tributed snow cover model. The code is publicly available on
the WSL/SLF GitLab repository (see Code availability sec-
tion). The data sets used to evaluate the performance of this
algorithm are described in the next section.

3 Data

3.1 Modeled fSCA and HS maps

We model the snow cover evolution using the JULES in-
vestigation model (JIM). JIM is a multi-model framework
of physically based energy-balance models solving the mass
and energy balance for a maximum of three snow layers
(Essery, 2013). While the multi-model framework JIM of-
fers 1701 combinations of various process parameterizations,
Magnusson et al. (2015) selected a specific combination that
performed best for snowmelt modeling for Switzerland. The
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Figure 2. Illustration of modeled fSCArecent
nsnow, fSCA14 d

nsnow and
fSCAseason for one grid cell over a season. The fSCA is the
maximum for each time step from fSCAnsnow =max(fSCArecent

nsnow,
fSCA14 d

nsnow) and fSCAseason. All terms are described in Sect. 2.2.

latter model combination is used to predict daily snow mass
and snowpack runoff for the operational snow hydrology ser-
vice (OSHD) at WSL Institute of Snow and Avalanche Re-
search SLF. We ran JIMOSHD at 1 km resolution with hourly
meteorological data from the COSMO-1 model (operated by
MeteoSwiss) for Switzerland. We used a reanalysis product
of daily observed precipitation (RhiresD) from MeteoSwiss,
as well as COSMO-1 data. Daily HS measurements from
manual observers, as well as from a dense network of auto-
matic weather stations (AWSs), were used to correct precip-
itation data via optimal interpolation (OI) (Magnusson et al.,
2014), which is a computationally efficient data assimilation
approach. Using OI in JIMOSHD, Griessinger et al. (2019)
obtained improved discharge simulations in 25 catchments
over 4 hydrological years.

To describe the subgrid snow cover evolution in mountain-
ous terrain, our seasonal fSCA algorithm was implemented
in JIMOSHD. As daily values, we used model output gener-
ated at 06:00 (UTC). In the following, modeled fSCA and
HS maps refer to daily fSCA and HS from JIMOSHD model
output.

We also computed the snow cover evolution using
JIMOSHD with various simplifications in the seasonal fSCA
algorithm, as well as with the fSCA parameterizations imple-
mented in CLM5.0 (Lawrence et al., 2018), which are based
on Swenson and Lawrence (2012) (see Table 1 for more
details). This latter fSCA algorithm also accounts for hys-
teresis in accumulation and ablation by using two different
fSCA parameterizations and by tracking the seasonal max-
imum SWE. While subgrid topography is accounted for in
the fSCA parameterization during ablation via σz, topogra-
phy is not accounted for during snowfall events. The algo-
rithm of Swenson and Lawrence (2012) was derived by link-
ing daily satellite-retrieved fSCA to snow data. We imple-
mented this algorithm in JIM using our snow tracking algo-
rithm, i.e., the corresponding HS values such as HSpseudo-min
(see Sect. 2.2). This was done to solely evaluate the differ-
ences in the fSCA parameterizations. In total, we performed

four additional snow cover simulations: JIMseason
OSHD, JIMcurr

OSHD,
JIMallHelbig

OSHD and JIMSwenson*
OSHD (see Table 1).

3.2 Evaluation data

3.2.1 ADS fine-scale HS maps

We used fine-scale spatial HS maps gathered by airborne dig-
ital scanning (ADS) with an optoelectronic line scanner on an
airplane. Data were acquired over the Wannengrat and Dis-
chma area near Davos in the eastern Swiss Alps during win-
ter and summer (Bühler et al., 2015). We used ADS-derived
HS maps at three points in time during one winter season,
namely during accumulation on 26 January (acc), at approx-
imate peak of winter on 9 March (PoW) and during ablation
season on 20 April 2016 (abl) (Marty et al., 2019). We used
a summer DEM from ADS to derive the snow-free terrain
parameters.

Each ADS data set covers about 150 km2 at 2 m spatial res-
olution. Compared to TLS-derived (terrestrial laser scan) HS
data, the 2 m ADS-derived HS maps had a root mean square
error (RMSE) of 33 cm and a normalized median absolute
deviation (NMAD) of 24 cm (Bühler et al., 2015).

3.2.2 ALS fine-scale HS maps

We used fine-scale spatial HS maps gathered by airborne
laser scanning (ALS). The ALS campaign was a Swiss
partner mission of the Airborne Snow Observatory (ASO)
(Painter et al., 2016). Lidar setup and processing standards
were similar to those in the ASO campaigns in California.
Data were acquired over the Dischma area near Davos in the
eastern Swiss Alps (see Fig. 3a in Helbig et al., 2021a). We
used ALS-derived HS maps at three points in time during one
winter season, namely at the approximate peak of winter on
20 March (PoW) and during the early and late ablation sea-
son on 31 March and 17 May 2017 (abl), respectively. We
used a summer DEM from ALS from 29 August 2017 to de-
rive the snow-free terrain parameters.

Each ALS data set covered about 260 km2. The original
3 m resolution was aggregated to 5 m horizontal resolution.
Comparing the ALS-derived HS data to manual snow prob-
ing within forest but outside canopy (i.e., not below a tree),
Mazzotti et al. (2019) reported a RMSE of 13 cm and a bias
of −5 cm for 20 March 2017.

3.2.3 Terrestrial camera images

We used camera images from terrestrial time-lapse photog-
raphy in the visible band. The camera (Nikon Coolpix 5900
from 2016 to 2018, Canon EOS 400D from 2019 to 2020)
was installed at the SLF/WSL in Davos Dorf in the eastern
Swiss Alps (van Herwijnen and Schweizer, 2011; van Her-
wijnen et al., 2013). Photographs were taken of the Dorfberg
in Davos, which is a large southeast-facing slope with a mean
slope angle of about 30◦ (see Fig. 1 in Helbig et al., 2015a).
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Table 1. Details of the different fSCA algorithms that are compared to the full fSCA algorithm in JIMOSHD.

Algorithm name fSCAseason fSCAnsnow Tracking HS and SWE (Sect. 2.2)

JIMOSHD Eq. (5) Eqs. (6) and (7) Season and 14 d
JIMseason

OSHD Eq. (5) – Season

JIMcurr
OSHD tanh

(
1.3 HScurrent

σ
Helbig
HScurrent

)
– –

JIMallHelbig
OSHD Eq. (5) Eqs. (6) and (7) with σHelbig

HS Season and 14 d
JIMSwenson*

OSHD Eq. (8.2) in Eq. (8.1) in Season and 14 d
Lawrence et al. (2018) Lawrence et al. (2018)

To obtain fSCA values from the camera images, we followed
the workflow described by Portenier et al. (2020). We used
the algorithm of Salvatori et al. (2011) to classify pixels in
the images as snow or snow-free. Though images are taken
at regular intervals (between 2 and 15 min, depending on the
year), we used the image at noon to derive fSCA for that
day. We evaluated images from five winter seasons (2016,
2017, 2018, 2019 and 2020) every time from 1 November to
30 June.

The resulting snow/no-snow map of the camera images
had a horizontal resolution of 2 m. The field of view (FOV)
overlaps with four 1× 1 km JIMOSHD grid cells with pro-
jected visible fractions between 9 % to 40 % in each grid cell.
The camera FOV covers about 0.76 km2.

3.2.4 Sentinel-2 snow products

We used fine-scale snow-covered area maps obtained from
the Theia snow collection (Gascoin et al., 2019). The satel-
lite snow products were generated from Sentinel-2 L2A and
L2B images. We used Sentinel-2 snow-covered area maps
over one winter season from 20 December 2017 to 31 Au-
gust 2018 for Switzerland. We further used Sentinel-2 snow
maps over the Dischma area near Davos close to or on
the date of the three ALS scans (18 and 28 March and
17 May 2017) and over the Dorfberg area in Davos Dorf from
1 November 2017 to 30 June 2018.

The horizontal resolution of the snow product is 20 m.
While the spatial coverage of the Sentinel-2 snow-covered
area maps in Switzerland varies every time step, Sentinel-
2 may cover several thousand square kilometers. A valida-
tion of the Theia snow product with snow depth from AWSs,
through a comparison to snow maps with higher spatial res-
olution, as well as by visual inspection, indicated that snow
is well detected, although there is a tendency to underdetect
snow (Gascoin et al., 2019). The main difficulty of satel-
lite snow products is to avoid false snow detection within
clouds. Furthermore, snow omission errors may occur on
steep, shaded slopes when the solar elevation is typically be-
low 20◦.

3.3 Derivation of 1 km fSCA evaluation data

For pre-processing, we masked out forest, rivers, glaciers
or buildings in all fine-scale measurement data sets. Optical
snow products that were obscured by clouds were also omit-
ted. In all fine-scale HS data sets, we neglected HS values
that were lower than 0 or above 15 m. We used a HS threshold
of 0 m to decide whether or not a 2 or 5 m grid cell was snow-
covered. This threshold could not be better adjusted due to a
lack of independent observations.

We then aggregated all fine-scale snow data, as well as the
snow products from optical imagery, in squared domain sizes
L in regular grids of 1 km aligned with the OSHD model do-
main. For the spatial averages, we required at least 70 % valid
data for the fine-scale snow data and at least 50 % valid for
the satellite-derived fSCA data in each 1 km grid cell. We ex-
cluded 1 km grid cells with spatial mean slope angles larger
than 60◦ and spatial mean measured or modeled HS< 5 cm.
We further neglected 1 km grid cells with forest fractions
larger than 10 %, derived from 25 m forest cover data. Over-
all, this led to a variable number of 1 km valid grid cells for
the different data sets (Table 2). For the fine-scale snow data
sets, this number ranged from 69 to 157 with a total of 668
valid 1 km grid cells. After cloud and forest removal, on av-
erage, every second day we had some valid Sentinel-2 data in
Switzerland (153 valid days from the 255 calendar days). For
the time period from 20 December 2017 to 31 August 2018,
this resulted in 216 896 valid 1 km grid cells from a total of
2 274 991 valid OSHD grid cells in Switzerland, i.e., about
9.5 %.

These valid 1 km grid cells covered terrain elevations from
174 to 4278 m, subgrid mean slope angles from 0 to 60◦

and all terrain aspects. We used three of the four grid cells
covered by the FOV of the terrestrial camera since one grid
cell had a forest fraction larger than 10 %. On average, every
fourth day we had valid camera data (337 valid days from
the 1212 calendar days). Valid camera-derived fSCA for five
seasons and the three grid cells covered by the FOV resulted
in 931 valid 1 km grid cells from a total of 3018 valid OSHD
grid cells, i.e., 31 %. The three grid cells have terrain eleva-
tions of 2077, 2168 and 2367 m and slope angles of 27, 34
and 39◦. The diversity in each of the evaluation data sets af-
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Figure 3. Probability density functions after preprocessing for all valid 1 km (a) fSCA, (b) snow depth and (c) elevation per measurement
data set. All densities were normalized with the maximum in each data set. Colors represent the different measurement platforms as detailed
in Sect. 3.2.

Table 2. Details of the valid 1 km fSCA evaluation data sets after pre-processing as described in Sect. 3.3.

Geographical region Remote Spatial Temporal σfSCA Mean fSCA
sensing method coverage coverage

[km2] [days]

Wannengrat and Dischma area (eastern CH) ADS 232 3 0.05 0.98
Dischma and Engadin area (eastern CH) ALS 436 3 0.08 0.96
Davos Dorfberg (eastern CH) Terrestrial camera 931 337 0.23 0.81
Switzerland Sentinel-2 216 896 153 0.18 0.93

ter pre-processing is indicated in Table 2 and is also shown
for valid 1 km domains by means of the probability density
function (pdf) for fSCA, HS and terrain elevation z in Fig. 3.

3.4 Performance measures

To evaluate the performance of modeled fSCA compared to
the measurements, we used three measures: the root mean
square error (RMSE), the normalized root mean square error
(NRMSE; normalized by the mean of the measurements) and
the mean percentage error (MPE; defined as measured minus
modeled, normalized with the mean of the measurements).

4 Results

We present the evaluation of our seasonal fSCA algorithm
in three sections: evaluation with fSCA derived from fine-
scale HS maps near Davos, evaluation with fSCA from time-
lapse photography in Davos Dorf and evaluation with fSCA
from Sentinel-2 snow products over Switzerland. We further
present some additional comparisons with Sentinel-2 snow
products in the first two sections when Sentinel-2 data were
available in the Davos area (see Sect. 3.2.4).

4.1 Evaluation with fSCA from fine-scale HS maps

Modeled fSCA compared well with fSCA derived from all
six fine-scale HS data sets. Overall, we obtained a NRMSE
of 7 %, a RMSE of 0.07 and a MPE of 0.7 % (Table 3). The
best performance was for the two dates at the approximate
PoW (NRMSE of 2 %, a RMSE of 0.02 and a MPE of 0.3 %),
while the performance was somewhat lower during the abla-
tion and accumulation periods.

To investigate the influence of elevation, we binned the
data in 200 m elevation bands for the ADS and ALS data
sets separately (Figs. 4 and 5). For ADS data, elevation-
dependent modeled fSCA values were comparable to the
measurements at PoW and early ablation, while the differ-
ences during accumulation were more pronounced (compare
red and black dots in Fig. 4). There was also no consistent
elevation trend, as during accumulation differences between
modeled and measured fSCA increased with elevation, while
during early ablation the opposite was true. For the ALS
data, measurements were only available at PoW and dur-
ing ablation. Overall, modeled fSCA values were again in
line with the measurements (compare red and black dots in
Fig. 5). The largest difference was observed for the lowest-
elevation bin (0.15 at PoW at 1800 m; Fig. 5a), and for the
late ablation data, modeled fSCA was consistently lower than
ALS-derived fSCA, in particular for the lower-elevation bins
(Fig. 5c).
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Table 3. Performance measures for modeled fSCA with (I) fSCA
derived from all fine-scale HS maps (combined ADS- and ALS-
derived fSCA) and (II) Sentinel-derived fSCA (only available for
ALS dates). Additionally, performance measures are shown for
ALS-derived fSCA with Sentinel-derived fSCA (III) and for mod-
eled fSCA using JIMSwenson*

OSHD (IV). Given statistics are NRMSE,
RMSE and MPE. For all differences we computed measured minus
modeled values respectively Sentinel-derived fSCA minus ALS-
derived fSCA for III. The different points in time of the season are
specified in Sect. 3.2.

fSCA NRMSE RMSE MPE

[%] [%]

I JIMOSHD vs. ADS&ALS

All dates 7 0.07 0.7
Accumulation date 8 0.08 −3.8
PoW dates 2 0.02 0.3
Ablation dates 8 0.08 1.8

II JIMOSHD vs. Sentinel-2 (at ALS dates)

All dates 9 0.08 −1.4
PoW dates 3 0.03 2.5
Ablation dates 9 0.08 −1.5

III Sentinel-2 vs. ALS

All dates 11 0.10 3.1
PoW date 9 0.08 −5.9
Ablation dates 11 0.10 3.4

IV JIMSwenson*
OSHD vs. ADS&ALS

All dates 14 0.14 −1.2
Accumulation date 9 0.09 −6.1
PoW dates 6 0.06 −0.6
Ablation dates 18 0.18 −0.7

Valid Sentinel-2 data were only available on dates close
to the ALS measurements (green dots in Fig. 5), not to the
ADS measurement dates. Overall, modeled and Sentinel-
derived fSCA values were in good agreement for the three
ALS dates (II in Table 3), there was no clear elevation de-
pendence (compare green and red dots in Fig. 5), and dif-
ferences were at most 0.05 (for elevations between 2300 and
2500 m in Fig. 5c). The Sentinel-derived fSCA values can
also be compared to those from the ALS scans. In this case,
the performance measures were somewhat lower (compare II
and III in Table 3), and Sentinel-derived fSCA values were
especially lower than the ALS data in late ablation (compare
green and black dots in Fig. 5c).

Our seasonal fSCA algorithm is implemented in a com-
plex operational snow cover model framework (Sect. 3.1).
Uncertainties related to input or model structure therefore
impact modeled HS and fSCA values. To investigate the
influence of these uncertainties more closely, we also de-
rived two benchmark fSCA models based on Eq. (1) using
measured rather than modeled HS data. The first benchmark
fSCAmeasured

curr (light blue stars in Figs. 4 and 5) uses measured
HS and σHS from the current scan. The second benchmark

fSCAmeasured
PoW (orange stars in Figs. 4 and 5) combines cur-

rent HS measurements with σHS values measured at PoW.
At PoW, fSCAmeasured

PoW and fSCAmeasured
curr are the same, and

fSCAmeasured
PoW can only be derived at or after PoW. Results

obtained with both benchmark models were similar except
for the lowest-elevation bin in the ALS data set (Fig. 5b and
c). Overall, the values of fSCAmeasured

curr were somewhat closer
to the measured fSCA values (e.g., Figs. 4c or 5b). Both
benchmark models were closest to the measured fSCA val-
ues during the ablation season (Figs. 4c and 5c), and overall
the agreement was better for higher-elevation bins. Our sea-
sonal fSCA implementation (red dots in Figs. 4 and 5) was
also similar to both benchmark models. The largest differ-
ences were during the accumulation period (Fig. 4a).

As a final benchmark, we also compared our seasonal
fSCA implementation with the parameterizations imple-
mented in CLM5.0 (see Table 1). Modeled fSCA us-
ing JIMOSHD performed better than that modeled with
JIMSwenson*

OSHD (compare I and IV in Table 3). During most of
the season, fSCA values from JIMSwenson*

OSHD were close to 1
and showed little elevation dependence (blue stars in Figs. 4
and 5). The only exception was during the late-ablation sea-
son, when fSCA values from JIMOSHD and from JIMSwenson*

OSHD
were very similar (red dots and dark blue stars in Fig. 5c).

To investigate the origin of the discrepancies between
modeled and observed fSCA values more closely, we com-
pared modeled and measured HS in 200 m elevation bins
for the ADS and ALS data sets separately (Figs. 6 and 7).
For both data sets, modeled HS was substantially lower than
measured HS at higher elevations. The only exception was
for the accumulation date, when modeled and measured HS
values were in good agreement for all elevations (Fig. 6a).
For all dates and data sets, the NRMSE between modeled
and measured HS was 12 %, and the MPE was 14 %. Note
that seasonal variations in ALS HS across all elevations were
generally much lower than those in the ADS HS data. This
was in part because the time intervals between the three
ALS scans (20 March, 31 March and 17 May 2017) were
shorter than for the ADS scans (26 January, 9 March and
20 April 2016), and there were also some snowfall events
during the ALS ablation period (spring 2017).

4.2 Evaluation with fSCA from camera images

The high temporal resolution of camera-derived fSCA al-
lowed us to evaluate the seasonal model performance. The
seasonal trend in modeled fSCA using JIMOSHD was gen-
erally in line with that from camera-derived fSCA (compare
red and black dots in Fig. 8). For the grid cell at 2168 m, how-
ever, the agreement was somewhat poorer as there was a de-
lay in the modeled start of the ablation season, and modeled
fSCA values were too high during accumulation (Fig. 8b, e).

For all winter seasons (2016 to 2020) and for the three grid
cells, we obtained a NRMSE of 21 %, a RMSE of 0.17 and a
MPE of −7 % (I in Table 4). Note that the inter-annual per-
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Figure 4. Modeled and ADS-derived fSCA in 200 m elevation bins for three dates: (a) during accumulation, (b) at approximate peak of
winter (PoW) and (c) during ablation. Two benchmarks based on Eq. (1) are shown where applicable: fSCAmeasured

PoW (orange stars) uses HS
form from the current ADS scan and σHS from the ADS scan at PoW, while fSCAmeasured

curr (light blue stars) uses HS and σHS from the current
ADS scan. The bars show the valid data percentage per bin.

Figure 5. Modeled and ALS-derived, as well as Sentinel-derived, fSCA in 200 m elevation bins for three dates: (a) at approximate PoW,
(b) during early ablation and (c) during late ablation. The same two benchmarks based on Eq. (1) as in Fig. 4 are also shown where applicable.
Sentinel-derived fSCA (green dots) was available 2 d before the PoW scan, 3 d before the early ablation scan and on the same day as the late
ablation scan. The bars show the valid data percentage per bin.

formance varied substantially, as did the performance among
the three grid cells. For instance, for all three grid cells, the
overall best performance was for the season 2018 (NRMSE
= 14 %, RMSE = 0.11, MPE =−4 %), while the worst per-
formance was for the season 2019 (NRMSE = 25 %, RMSE
= 0.2, MPE =−12 %).

For winter season 2018, we used Sentinel-derived fSCA
to evaluate modeled and camera-derived fSCA values. While
overall the agreement between modeled and Sentinel-derived
fSCA was good (NRMSE 2 % and MPE of 1 %), the
agreement between camera- and Sentinel-derived fSCA was
poorer (NRMSE = 12 %, MPE = 5 %). The latter per-
formance values were, however, comparable to the agree-
ment between modeled and camera-derived fSCA for days
with valid Sentinel-derived data (NRMSE = 12 %, MPE =
−4 %).

The camera-derived fSCA was also used to evaluate the
relevance of applying our full seasonal fSCA algorithm as
opposed to simplifications and JIMSwenson*

OSHD (see Table 1 for
details). While overall fSCA from JIMseason

OSHD and JIMOSHD

agreed well, there were substantial differences after snow-
fall events on partly snow-free ground (compare orange stars
and red dots in Fig. 8). Specifically, after such a snowfall
event, modeled fSCA using JIMOSHD generally increased,
while JIMseason

OSHD remained constant. Using JIMcurr
OSHD, mod-

eled fSCA values were less in line with those from JIMOSHD
(compare light blue stars and red dots in Fig. 8). While dis-
crepancies were again large after snowfall events, they were
also pronounced during the ablation periods. In general, with
JIMcurr

OSHD the ablation season started later and was followed
by a much steeper melt-out period. Using JIMcurr

OSHD can result
in a substantially shorter snow season compared to JIMOSHD,
with a maximum difference of 21 d at 2168 m in the season
2017. Overall, compared to camera-derived fSCA, both sim-
plified models performed less well than JIMOSHD (Table 4).
The performance using JIMallHelbig

OSHD was very similar to fSCA
from JIMOSHD; i.e., applying σ

Helbig
HS instead of σEgli

HS for
fSCAnsnow did not substantially affect model performance.
On the contrary, fSCA from JIMSwenson*

OSHD had the worst over-
all performances when compared to camera-derived fSCA
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Figure 6. Modeled and ADS-derived HS in 200 m elevation bins for three dates: (a) during accumulation, (b) at approximate PoW and
(c) during ablation.

Figure 7. Modeled and ALS-derived HS in 200 m elevation bins for three dates: (a) at approximate PoW, (b) during early ablation and
(c) during ablation.

(VII in Table 4). Similar to JIMcurr
OSHD, using JIMSwenson*

OSHD con-
siderably delayed the ablation season, followed by a much
steeper melt out. The snow season was substantially short-
ened again by at most 32 d in the 2017 season at 2077 m.
Modeled fSCA using JIMSwenson*

OSHD also largely overestimates
fSCA during the accumulation period (blue dots in Fig. 8).
Overall, using JIMSwenson*

OSHD led to much steeper increases
and decreases in fSCA, i.e., an almost binary seasonal fSCA
trend that was not in line with camera-derived fSCA.

4.3 Evaluation with fSCA from Sentinel-2 snow
products

Overall, modeled fSCA using JIMOSHD compared well with
Sentinel-derived fSCA throughout the season (I in Table 5).
To investigate the elevation-dependent differences between
modeled and Sentinel-derived fSCA in more detail, we
binned the data in 250 m elevation bands for each day
throughout the entire season (Fig. 9). To estimate the end
of the accumulation (1 April 2018) and ablation season
(30 June 2018), we used the spatial mean HS (solid black line
at bottom of Fig. 9). Overall, differences in performance be-
tween the accumulation and the ablation period were small (I
in Table 5). However, there were marked differences with el-

evation throughout the season. Up to the end of the accumu-
lation period, the largest differences between modeled and
Sentinel-derived fSCA were at elevations lower than 1500 m,
whereas at elevations above around 3000 m, the agreement
was good (Fig. 9a). During the ablation period, most of the
snow at lower elevations was gone, and modeled fSCA was
generally larger than Sentinel-derived fSCA at higher eleva-
tions (> 2500 m), in particular towards the end of the abla-
tion season. During the summer (30 June to 30 August 2018),
i.e., after the end of the ablation season, modeled fSCA was
larger than Sentinel-derived fSCA at the highest elevations
(> 3500 m), whereas between the snow line and these high-
est elevations, modeled fSCA was generally lower.

Given the high temporal resolution of the Sentinel-derived
fSCA data set, we again evaluated the fSCA algorithm sim-
plifications and JIMSwenson*

OSHD (see Table 1). Compared to our
seasonal implementation, the overall performance values of
the fSCA algorithm simplifications were similar except for
JIMcurr

OSHD and JIMSwenson*
OSHD (Table 5). Modeled fSCA val-

ues with JIMcurr
OSHD and JIMSwenson*

OSHD were generally larger
than Sentinel-derived fSCA, resulting in larger MPE values
with the largest ones for JIMSwenson*

OSHD (compare I, III and V
in Table 5). This is also clearly reflected in the elevation-
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Figure 8. Modeled and camera- and Sentinel-derived fSCA for the three 1 km grid cells within the field of view of the camera for two
seasons: (a–c) winter 2017 and (d–f) winter 2018.

dependent differences between fSCA using JIMSwenson*
OSHD and

Sentinel-derived fSCA throughout the season (Fig. 9b).

5 Discussion

5.1 Fractional snow-covered area fSCA algorithm

Our seasonal fSCA algorithm is based on the closed-form
fSCA parameterization of Helbig et al. (2015a) (Eq. 1) and
combines two statistical parameterizations for σHS, together
with a tracking method, to account for changes in maxi-
mum snow depth and precipitation events. The algorithm is
modular, meaning that individual parts can easily be com-
plemented or replaced with new parameterizations, e.g., for
fSCAnsnow. Overall, our algorithm only requires subgrid cell
summer terrain parameters, which are a slope-related param-
eter and the terrain correlation length, and tracking snow in-
formation.

We evaluated the performance of our seasonal fSCA im-
plementation in Switzerland. We could not explicitly eval-
uate the performance for completely flat grid cells, i.e., grid
cells with a subgrid mean slope angle of zero. After removing
rivers/lakes, we only had five 1 km grid cells for Switzerland
with a subgrid mean slope angle of zero, i.e., 0.01 % of all
grid cells. For these grid cells, using σHelbig

HS (Eq. 2) always
results in a fSCA of 1. As a first approach, we therefore pro-
posed to use σEgli

HS (Eq. 4). Although we see no reason why
our fSCA algorithm could not be used in other geographic
region, it remains unclear at this point if our seasonal fSCA
implementation can also be used in flat regions.

We used σEgli
HS (Eq. 4), which does not account for subgrid

topography, to derive fSCAnsnow. We did this to account for
uniform blanketing after a snowfall, i.e., to account for pos-
sible increases in fSCA after a recent snowfall. When sub-
stituting σEgli

dHS with σHelbig
dHS in Eqs. (6) and (7) (JIMallHelbig

OSHD ;
see Table 1), the overall performance was very similar (Ta-
bles 4 and 5). Thus, while applying σEgli

dHS might not describe
the true spatial new snow distribution in mountainous ter-
rain, the formulation is simple and is therefore used here as
a first approach. Based on the modular algorithm setup, dif-
ferent closed-form fSCA parameterizations can be applied
in our seasonal algorithm, e.g., for a flat grid cell or for
fSCAnsnow (for some empirical examples, see Essery and
Pomeroy, 2004).

5.2 Evaluation

5.2.1 Evaluation with fSCA from fine-scale HS maps

The evaluation of the seasonal fSCA algorithm with fSCA
from fine-scale HS maps showed that overall the model per-
formed well, especially at PoW (I in Table 3). Modeled
fSCA using JIMSwenson*

OSHD , on the other hand, generally over-
estimated fSCA (MPE< 0). This algorithm intercomparison
shows that the seasonal fSCA evolution is better captured by
JIMOSHD most likely because the JIMSwenson*

OSHD model does
not sufficiently account for the high spatial variability in
snow distribution in complex terrain.

During accumulation at higher elevations, modeled fSCA
using JIMOSHD overestimated ADS-derived fSCA even
though modeled HS agreed reasonably well with the mea-

https://doi.org/10.5194/tc-15-4607-2021 The Cryosphere, 15, 4607–4624, 2021



4618 N. Helbig et al.: A seasonal algorithm of the snow-covered area fraction for mountainous terrain

Figure 9. Difference between Sentinel-derived and modeled fSCA for Switzerland as a function of date and elevation z (in 250 m elevation
bins) for available satellite dates for (a) JIMOSHD and (b) JIMSwenson*

OSHD . Daily spatial mean snow depth HS is also shown (solid black line).
The vertical lines indicate the dates for the end of accumulation (dashed) and ablation (line with stars) seasons.

Table 4. Performance measures for (I) modeled fSCA using
JIMOSHD and camera-retrieved fSCA for the winter seasons 2016
to 2020, (II) modeled fSCA using JIMOSHD and Sentinel-derived
fSCA for the three grid cells for the winter season 2018, (III)
camera-derived fSCA with Sentinel-derived fSCA for the three grid
cells, and (IV to VII) all JIM-modeled fSCA versions (for details
see Table 1), namely for JIMseason

OSHD, JIMcurr
OSHD, JIMallHelbig

OSHD and
JIMSwenson*

OSHD , with camera-derived fSCA.

fSCA NRMSE RMSE MPE

[%] [%]

I JIMOSHD vs. camera

21 0.17 −7.1

II JIMOSHD vs. Sentinel-2

2 0.02 0.8

III Camera vs. Sentinel-2

12 0.11 5.0

IV JIMseason
OSHD vs. camera

22 0.18 −6.1

V JIMcurr
OSHD vs. camera

26 0.21 −9.2

VI JIMallHelbig
OSHD vs. camera

21 0.17 −7.6

VII JIMSwenson*
OSHD vs. camera

30 0.25 −10.6

surements (Figs. 4a and 6a). We also used a different model
configuration (JIMallHelbig

OSHD in Table 1), yet fSCA values
did not substantially change for the accumulation date (not
shown). Based on this we assume that both σHS parameteri-
zations cannot sufficiently describe snow redistribution dur-
ing accumulation likely due to periods with strong winds fol-
lowing snowfall. The description of σHS during the accumu-
lation period thus needs to be improved. This will, however,
require more than one spatial HS data set during accumula-
tion.

At PoW and during the ablation season, JIMOSHD mostly
underestimated fSCA compared to fSCA from fine-scale HS
maps, without a clear elevation trend (Figs. 4 and 5). Dis-
crepancies between modeled and measured HS, on the other
hand, generally increased with elevation (Figs. 6 and 7). Ob-
viously for larger snow depth, correctly modeling HS has
little effect on fSCA. The overall underestimated modeled
fSCA values were likely a consequence of the HS threshold
of 0 m we used to decide whether a 2 or 5 m grid cell was
snow-covered or not. In reality, due to measurement uncer-
tainties, both small positive or negative measured HS values
can still be associated with snow-free areas. When arbitrar-
ily increasing the HS threshold to ±10 cm for the ALS data,
modeled 1 km fSCA values were rather larger than the mea-
surements (not shown). This is not contradictory but empha-
sizes the need to accurately model HS along snow lines, in
which small inaccuracies in HS can have large impacts on
fSCA. For instance, during early ablation modeled and mea-
sured fSCAs are larger in the lowest-elevation bin than at
higher elevations (see Fig. 4c). Unfortunately, we currently
do not have detailed snow observations available to define
robust HS threshold values which take into account the dif-
ferent points in time of the season, as well as the influence of
terrain and ground cover. However, the overall good agree-
ment between Sentinel- and ALS-derived fSCA (Fig. 5 and
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Table 5. Performance measures (I) for modeled fSCA using
JIMOSHD and Sentinel-retrieved fSCA for the winter season 2018
for all valid 1 km grid cells of Switzerland and for all dates (20 De-
cember 2017 to 30 June 2018), for the accumulation period (20 De-
cember to 1 April), and for the ablation period (1 April to 30 June),
as well as (II to V) for all JIM-modeled fSCA versions (for de-
tails, see Table 1), namely for JIMOSHD, JIMseason

OSHD, JIMcurr
OSHD,

JIMallHelbig
OSHD and JIMSwenson*

OSHD .

fSCA vs. Sentinel-2 NRMSE RMSE MPE

[%] [%]

I JIMOSHD

All dates 12 0.11 0.4
Accumulation period 11 0.11 0.3
Ablation period 14 0.12 0.5

II JIMseason
OSHD

All dates 12 0.12 0.4
Accumulation period 11 0.11 0.3
Ablation period 14 0.12 0.5

III JIMcurr
OSHD

All dates 14 0.13 −0.8
Accumulation period 11 0.11 0.1
Ablation period 18 0.16 −2.4

IV JIMallHelbig
OSHD

All dates 12 0.11 0.3
Accumulation period 11 0.11 0.2
Ablation period 14 0.12 0.5

V JIMSwenson*
OSHD

All dates 18 0.17 −1.8
Accumulation period 17 0.16 −0.7
Ablation period 21 0.19 −3.6

III in Table 3) provides some confidence in the fine-scale HS
data-derived fSCA used here to evaluate modeled fSCA.

The two benchmark fSCA models based on Eq. (1) us-
ing measured rather than modeled HS data (fSCAmeasured

curr and
fSCAmeasured

PoW ) generally showed similar trends as HS-derived
and modeled fSCA (Figs. 4 and 5). At PoW, fSCAmeasured

curr
agreed less well with measured fSCA than our seasonal im-
plementation (see Figs. 4b and 5a). This may indicate un-
certainties in the empirical fSCA parameterization (Eq. 1),
which requires the further investigation of spatial HS data
sets during accumulation. During ablation, we expected
that fSCAmeasured

PoW would be closer to measured fSCA than
fSCAmeasured

curr , which was, however, not the case (see Figs. 4c
and 5b). Since the true PoW date is elevation and aspect de-
pendent, we cannot assume that one date for PoW is repre-
sentative for the entire catchment, covering several hundred
square kilometers and large elevation gradients. Thus, mea-

sured σHS at the date we defined as PoW might not have been
representative for the true σHSmax in each grid cell as required
by Eq. (5). Besides possible uncertainties in the empirical
fSCA parameterization (Eq. 1), we assume this is the main
reason why these two benchmark models using measured HS
data did not outperform our seasonal implementation. Over-
all, these comparisons emphasize the need for tracking snow
information per grid cell, as is done by our seasonal fSCA
algorithm.

5.2.2 Evaluation with camera-derived fSCA

The evaluation with fine-scale HS maps revealed overall
good model performance at six points in time. It was, how-
ever, not possible to comprehensively evaluate the perfor-
mance over the season. For this, we used daily camera-
derived fSCA, showing that the modeled seasonal fSCA
trend was mostly in line with observations (Fig. 8).

Model performance compared to the camera-derived
fSCA values was overall worse than when comparing to HS-
derived fSCA (e.g., NRMSE of 21 % for I in Table 4 com-
pared to NRMSE of 7 % for I in Table 3). Since the higher
temporal resolution of the camera data set leads to the largest
spread in fSCA values compared to the other two data sets
(see Table 2 and Fig. 3), a larger portion of intermediate
fSCA values (e.g., close to the snow line) are included which
are generally more difficult to model correctly than fSCA
values close to 1. The poorer model performance is, how-
ever, likely also due to the overall lower accuracy of camera-
derived fSCA. For instance, the projection of the 2D cam-
era image to a 3D DEM may introduce errors and distor-
tions. Furthermore, when deriving fSCA from camera im-
ages, clouds/fog and uneven illumination, for instance due
to shading or partial cloud cover, may deteriorate the accu-
racy (e.g., Farinotti et al., 2010; Fedorov et al., 2016; Härer
et al., 2016; Portenier et al., 2020). Another factor affecting
the performance measures was the threshold for the number
of valid fine-scale data per 1 km grid cell. When aggregating
to 1 km fSCA maps for the Sentinel-derived values, we re-
quired at least 50 % valid fine-scale data. This requirement
could not be met for camera-derived fSCA as the projected
fractions of the camera FOV on the 1 km model grid cells
were only 9 %, 13 % and 14 %. This is reflected in the bet-
ter agreement between modeled and Sentinel-derived fSCA
than between camera- and Sentinel-derived fSCA (NRMSE
of 2 % vs. 12 % in Table 4). Finally, as the camera was in-
stalled at valley bottom, steep slope sections cover larger
areas of the FOV, while flatter slope parts remain invisible.
This likely led to underestimated fSCA values. On the other
hand, valid Sentinel-derived fSCA has a much lower tempo-
ral resolution and did not cover the entire ablation period.
Instead, Sentinel-derived fSCA was often available through-
out the period when fSCA was rather close to 1 (see Fig. 8d,
e). Thus, while there is likely more uncertainty in camera-
derived fSCA, the high temporal resolution of this product
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still provides valuable information on model performance
throughout the season.

We used the camera-derived fSCA to also evaluate sim-
plifications of our seasonal fSCA algorithm, as well as
JIMSwenson*

OSHD (Table 1). Compared to our seasonal fSCA im-
plementation, the more simple implementations did not cap-
ture the seasonal variation as well (Fig. 8). With JIMcurr

OSHD,
the start of the ablation season was delayed, and the abla-
tion season was also considerably shortened by up to 21 d.
In this respect, the results for JIMSwenson*

OSHD were very simi-
lar as overall the increases and decreases in fSCA were very
steep, leading to shortened snow seasons and poorer perfor-
mances (see Table 4). In principle, JIMcurr

OSHD considers each
day as PoW, leading to rapid changes in fSCA, in particu-
lar when HS values are low (i.e., early accumulation or ab-
lation season). In JIMseason

OSHD, the seasonal maximum value of
HS was additionally tracked, substantially improving the sea-
sonal fSCA trend, in particular during the ablation season.
However, changes in fSCA due to snowfall events were still
not captured well with this implementation, showing that our
new snow tracking algorithm further improves the overall
model performance. Since the impact of using JIMallHelbig

OSHD
on modeled fSCA is mainly restricted to snowfall follow-
ing melt periods, overall performances were very similar to
JIMOSHD (see Tables 4 and 5). This again indicates that the
description of σHS following snowfall events requires further
investigation.

5.2.3 Evaluation with Sentinel-derived fSCA

By including Sentinel-derived fSCA in our evaluation, we
added a data set with both a high temporal resolution and
a much larger spatial coverage (see Table 2). The Sentinel-
derived fSCA data set comprised about 217 000 1 km grid
cells covering a wide range of terrain elevations, slope angles
and terrain aspects.

For the investigated winter season, results showed an
overall good seasonal agreement across Switzerland, though
there was some elevation-dependent scatter (Fig. 9a). Dis-
crepancies during accumulation occurred mostly along the
snowline at lower elevations, where lower spatial HS values,
as well as more cloudy weather, prevail during accumulation.
Both can lead to inaccurate modeled and Sentinel-derived
fSCA. Furthermore, we assume that some of the overestima-
tions in modeled fSCA at higher elevations during accumu-
lation could also stem from underestimated σHS during peri-
ods when strong winds follow snowfall events, as was also
observed in the HS data sets (Fig. 4a and Sect. 5.2.1). The
scatter at high elevations during ablation and summer likely
originates from lower modeled fSCA due to underestimated
precipitation as there are fewer AWSs at high elevations for
data assimilation in our model.

Performance measures were somewhat poorer than those
from fine-scale HS maps (e.g., NRMSE of 12 % for Sentinel
vs. 7 % for fSCA for HS data). Uncertainties introduced by

reduced visibility in the snow products of Sentinel-2 are the
most likely reason for this. Both our camera and the Sentinel-
2 data sets cover long time periods at higher temporal res-
olution; i.e., they include also periods under unfavorable
weather conditions. On the contrary, clear sky dates were
carefully selected for the on-demand high-quality data acqui-
sitions from the air for our fSCA data sets derived from fine-
scale HS maps. Nevertheless, the camera and the Sentinel-2
data sets enabled us to evaluate seasonal fSCA model trends
which would not have been possible from only six fSCA data
sets derived from HS data.

When evaluating the simplified fSCA algorithms and
JIMSwenson*

OSHD , model performance measures were compara-
ble to our seasonal implementation except for JIMcurr

OSHD and
JIMSwenson*

OSHD (Table 5), as was also the case for the compari-
son with camera-derived fSCA (Table 4). For Sentinel- and
camera-derived fSCA, the main reason is likely the limited
availability of fSCA data during or shortly after snowfall due
to bad visibility and clouds. Additionally, for the Sentinel-
derived fSCA, local performance differences across Switzer-
land are likely averaged out. Nevertheless, fSCA values when
using JIMSwenson*

OSHD were overestimated compared to Sentinel-
derived values (Fig. 9b, and negative MPE for V in Table 5).
Similar results were also observed when using JIMcurr

OSHD (see
negative MPE for III in Table 5). These biases are most likely
related to the rather steep increases and decreases in mod-
eled fSCA over the season, as we also observed with the
camera-derived fSCA (Fig. 8). We further assume that over-
estimated fSCA using JIMSwenson*

OSHD at higher elevations due
to underestimating spatial snow depth variability in complex
terrain may have compensated for other modeled fSCA er-
ror sources (e.g., from underestimated precipitation input at
these elevations), leading to an overall lower bias at higher el-
evations during accumulation compared to our fSCA imple-
mentation. Finally, note that the scatter above zero between
Sentinel-derived and JIMSwenson*

OSHD fSCA (Fig. 9b) almost dis-
appears when we neglect all 1 km domains with modeled
HS< 5 cm using JIMSwenson*

OSHD (not shown). While the over-
all NRMSE values for JIMSwenson*

OSHD are then comparable to
our seasonal implementation (e.g., NRMSE of 12 % for all
dates instead of 18 %; see V in Table 5), it reveals the overall
overestimation of JIMSwenson*

OSHD (e.g., increased negative MPE
of −4.1 % for all dates instead of −1.8 %). Clearly, our sea-
sonal fSCA implementation is better suited to more realisti-
cally represent seasonal changes in mountainous terrain, in
particular following snowfall and during the ablation period.

6 Conclusions

We presented a seasonal fractional snow-covered area
(fSCA) algorithm based on the fSCA parameterization of
Helbig et al. (2015b, 2021a). The seasonal algorithm is based
on tracking HS and SWE values accounting for alternating
snow accumulation and melt events. Two empirical parame-
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terizations were used to describe the spatial snow depth dis-
tribution: one for mountainous terrain and one not accounting
for subgrid topography. An implementation in a multilayer
energy balance snow cover model system (JIMOSHD; JIM,
JULES investigation model; Essery et al., 2013) allowed us
to evaluate seasonally modeled fSCA for Switzerland.

Compiling independent fSCA data sets with different spa-
tiotemporal characteristics enabled a thorough analysis of
the seasonal fSCA algorithm in mountainous terrain of daily
1 km fSCA values. While the evaluation with the three data
sets showed overall good seasonal performance, each of
the evaluation data sets allowed specific conclusions to be
drawn. The evaluation with fine-scale spatial HS-derived
fSCA showed that HS uncertainties along the snow line
likely contributed most to the underestimation of fSCA dur-
ing ablation and PoW, emphasizing the need to accurately
model HS along snow lines. The camera-derived fSCA data
set with the highest temporal resolution confirmed the need
for tracking HS over the season, as well as accounting for in-
termediate snowfalls, to avoid a delayed melt start and a dras-
tic shortening of the ablation season. The Sentinel-derived
fSCA data set, with the largest spatial coverage, together
with a rather high temporal resolution, demonstrated that the
seasonal fSCA algorithm performs well across a range of
elevations, slope angles, terrain aspects and snow regimes.
This comparison showed that there were some differences
at low elevation or along the snowline coinciding with low
HS, while discrepancies occurred mostly at high elevations
towards the end of the season during summer.

Overall, NRMSEs for seasonally modeled fSCA increased
from 7 % for HS data-derived fSCA to 12 % for Sentinel-
derived fSCA and to 21 % for camera-derived fSCA. While
the large variation in performance measures is likely tied to
the various temporal and spatial resolutions of the data sets
and measurement uncertainties, it also demonstrates the dif-
ficulties in drawing conclusions when evaluating a model al-
gorithm with evaluation data from different acquisition plat-
forms. Nevertheless, this comparison with data covering a
wide range of spatiotemporal scales allowed us to obtain a
comprehensive overview of the strengths and weaknesses of
our seasonal fSCA implementation. We are not aware of any
seasonal fSCA implementation that has been evaluated in
such detail by exploiting independent HS and snow product
data sets at high spatial and temporal resolution.

By implementing the fSCA parameterizations applied in
CLM5.0 (Lawrence et al., 2018) in JIMOSHD, we also eval-
uated modeled fSCA using JIMSwenson*

OSHD . This showed that
our seasonal fSCA algorithm captures the seasonal varia-
tion best and that seasonal variation in JIMSwenson*

OSHD was lim-
ited. JIMSwenson*

OSHD resulted in often overestimated fSCA val-
ues likely because the high spatial variability in snow depth
distribution in complex terrain is not sufficiently described.

The implementation of the seasonal fSCA algorithm in a
model only requires subgrid terrain parameters from a fine-
scale summer DEM in combination with tracking HS and

SWE for coarse grid cells. The algorithm is set up such that
improvements or adaptations of individual algorithm parts
can easily be implemented. The PoW fSCA parameteriza-
tion of Helbig et al. (2015b) forms the centerpiece of the
presented seasonal fSCA algorithm. The recent re-evaluation
with various spatial PoW snow depth data sets from seven
geographic regions showed an overall NRMSE of only 2 %
(Helbig et al., 2021a). This detailed evaluation at PoW in dif-
ferent geographic regions, together with the seasonal assess-
ment with the three fSCA data pools presented here, sug-
gests that the seasonal fSCA algorithm may also be used
in other geographic regions. However, further investigations,
once more spatial HS data sets before and after snowfalls
in complex topography become available, would be advan-
tageous for improvements of our seasonal fSCA algorithm,
especially during the accumulation period.
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