This document is the accepted manuscript version of the following article:

Sato, Y., Shahi, s., Telengech, P., Hisano, S., Cornejo, C., Rigling, D., .. Suzuki, N. (2022). A new tetra-
segmented splipalmivirus with divided RdRP domains from Cryphonectria naterciae, a fungus found on chestnut
and cork oak trees in Europe. Virus Research, 307, 198606 (11 pp.).
https://doi.org/10.1016/j.virusres.2021.198606

1 A new tetra-segmented splipalmivirus with divided RARP domains from Cryphonectria
2 naterciae, a fungus found on chestnut and cork oak trees in Europe.
3 Yukiyo Sato!, Sabitree Shahi!, Paul Telengech!, Sakae Hisano!, Carolina Cornejo?®, Daniel Rigling®, and
4  Hideki Kondo', Nobuhiro Suzuki®”*
5
6  VlInstitute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
7  ?Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions, Zuercherstrasse 111, CH-
8 8903 Birmensdorf
9

10  Running Title: New splipalmivirus from Cryphonectria naterciae

11

12 *Correspondence may be sent to N. Suzuki

13 IPSR, Okayama University

14  Chuou 2-20-1, Kurashiki, JAPAN

15  Telephone: 81-86-434-1230

16  FAX: 81-86-434-1232

17  E-mail: nsuzuki@okayama-u.ac.jp

18

19

20 EMBL/GenBank/DDBJ Data Library under Accession Nos. LC634419-LC634421 and LC649880

21

22 Manuscript information:

23 Abstract, 272 words; Text, 4,666 words excluding figures legends and references; Figures, 5; Table, 1;
24 Supplementary Figures, 3: Supplementary Tables, 3

25

26

27



28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57

Abstract

Positive-sense (+), single-stranded (ss) RNA viruses with divided RNA-dependent RNA polymerase
(RdRP) domains have been reported from diverse filamentous ascomycetes since 2020. These viruses are
termed splipalmiviruses or polynarnaviruses and have been characterized largely at the sequence level, but
ill-defined biologically. Cryphonectria naterciae, from which only one virus has been reported, is an
ascomycetous fungus potentially plant-pathogenic to chestnut and oak trees. We molecularly characterized
multiple viruses in a single Portuguese isolate (C0614) of C. naterciae, taking a metatranscriptomic and
conventional double-stranded RNA approach. Among them are a novel splipalmivirus (Cryphonectria
naterciae splipalmivirus 1, CnSpV1) and a novel fusagravirus (Cryphonectria naterciae fusagravirus 1,
CnFGV1). This study focused on the former virus. CnSpV1 has a tetra-segmented, (+)ssRNA genome
(RNA1 to RNA4). As observed for other splipalmiviruses reported in 2020 and 2021, the RNA-dependent
RNA polymerase domain is separately encoded by RNA1 (motifs F, A and B) and RNA2 (motifs C and
D). A hypothetical protein encoded by the 5'-proximal open reading frame of RNA3 shows similarity to a
counterpart conserved in some splipalmiviruses. The other RNA3-encoded protein and RNA4-encoded
protein show no similarity with known proteins in a blastp search. The tetra-segment nature was confirmed
by the conserved terminal sequences of the four CnSpV1 segments (RNA1 to RNA4) and their 100%
coexistence in over 100 single conidial isolates tested. The experimental introduction of CnSpV1 along
with CnFGV1 into a virus free strain C0754 of C. naterciae vegetatively incompatible with C0614 resulted
in no phenotypic alteration, suggesting asymptomatic infection. The protoplast fusion assay indicates a
considerably narrow host range of CnSpV 1, restricted to the species C. naterciae and C. carpinicola. This
study contributes to better understanding of the molecular and biological properties of this unique group of

viruses.

HIGHLIGHTS

* A new splipalmivirus (CnSpV1) with divided RdRP was isolated from C. naterciae.

* CnSpV1 has four (+)RNA genomic segments RNA1 to RNA4.

* RNA1 and RNA2 encode divided RARP motifs F, A and B, and C and D, respectively.

* Protoplast fusion assay suggests an extremely narrow host range of CnSpV 1
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1. Introduction

Fungal virus (mycovirus) studies have greatly contributed to enhanced understanding of virus
diversity and evolution. Recent mycovirus hunting has revealed an array of peculiar viruses with new virus
lifestyles and genome organizations in addition to viruses with some resemblance to animal and plant
viruses. Examples include capsidless narna-like viruses and yadokariviruses with a positive-sense (+)
single-stranded (ss) RNA genome, capsidless polymycoviruses with a multi-segmented double-stranded
(ds) RNA genome. Although yadokariviruses show phylogenetic affinity to (+)ssRNA caliciviruses, they
highjack the capsid protein (CP) of corresponding partner dSRNA viruses and are hypothesized to use it as
the replication site, as if they were dsRNA viruses (Hisano et al., 2018; Zhang et al., 2016).
Polymycoviruses are phylogenetically distantly related to caliciviruses but are infectious as deproteinized
dsRNA or associated with virally encoded proline-alanine-serine rich protein (PASrp) (Jia et al., 2017;
Kanhayuwa et al., 2015; Kotta-Loizou and Coutts, 2017; Sato et al., 2020a). Recently, hadakaviruses with
10- or 11-segmented (+)ssRNA genome have been discovered whose genome encodes no PASrp. The
hadakavirus replicative form dsRNA is assumed to be accessible in mycelial homogenates by RNase (Khan
et al., 2021; Sato et al., 2020b).

Another type of recently discovered, unusual virus is the capsidless narna-like viruses, the genomic
RNA of which is expected to be associated with its RNA-dependent RNA polymerase (RdRP), the only
virally encoded protein, as in the case for authentic narnaviruses (family Narnaviridae) (Esteban et al.,
1992; Kadowaki and Halvorson, 1971; Matsumoto et al., 1990; Solorzano et al., 2000; Wickner et al.,
2013). These viruses belong to the phylum Lenarviricota and are characterized by the smallest (+)ssRNA
monopartite genome (2~5 kb) that encode only RdRP (Ayllon et al., 2020; Hillman and Cai, 2013; Wickner
et al.,, 2013). Exceptions to this rule are plant-infecting ourmiaviruses (genus Ourmiavirus, family
Botourmiaviridae) which are thought to have acquired a CP and a movement protein gene from other plant
viruses most likely from a tombus-type virus (the flavi-like virus supergroup) (Rastgou et al., 2009). The
RdRP is a hallmark protein that all RNA viruses (members of the kingdom Orthornavirae in the realm
Riboviria) should have (Koonin et al., 2020; Walker et al., 2020; Wolfet al.,2018). All RARPs of (+)ssRNA
viruses have at least six conserved motifs F, A (DxxxxxD), B (sG---T), C (GDD), D (K/R), and E or motifs
I to VIII residing on one single polypeptide (Bruenn, 2003; Koonin, 1991; Poch et al., 1989). Surprisingly,
a few research groups recently discovered multiple narna-like segments with a size range of 2.1 ~ 2.5 kb
by metatranscriptomic approaches which encode the aforementioned RARP motifs in two separate segments
(Chiba et al., 2021; Jia et al., 2021; Ruiz-Padilla et al., 2021; Sutela et al., 2020). These authors proposed
that the multiple RNA segments represent the genome of single narna-like viruses termed splipalmiviruses
(Sutela et al., 2020), polynarnaviruses (Jia et al., 2021) or binarnaviruses (Ruiz-Padilla et al., 2021). Such

viral or related viral sequences were reported from diverse filamentous fungi, largely from ascomycetes,
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and are increasingly growing in number. The claim that the multiple segments encoding the RARP motifs
represent a single virus and behave as an infectious entity should further be strengthened by experimental
introduction with infectious nucleic acids or other infectious forms or biochemical substantiation of the
replicase complex.

Cryphonectria naterciae, a filamentous ascomycete fungus, is a relatively recently established
member of the genus Cryphonectria (order Diaporthales) that is morphologically and phylogenetically
distinct from other species of the genus including Cryphonectria parasitica (Braganca et al., 2011). C.
naterciae is believed to be much less pathogenic to chestnut than C. parasitica, a destructive pathogen of
American (Castanea dentata) and European chestnut (Castanea sativa) causing blight, but it could be a
secondary pathogen to weakened chestnut trees (Dennert et al., 2020). In fact, C. naterciae isolates were
detected in European chestnut (Castanea sativa) trees severely affected by C. parasitica and cork oak
(Quercus suber) trees with decline syndromes (Braganca et al., 2011). C. naterciae has not yet been
extensively explored as a virus host. We searched a collection of Portuguese isolates of C. naterciae for
mycoviruses several years ago and characterized omnipresent viruses as well as peculiar viruses such as
fusagraviruses (unclassified dsRNA viruses) (Cornejo et al., 2021b).

Here we describe the molecular and biological characterization of a splipalmivirus or
polynarnavirus detected in a Portuguese isolate, C0614, of C. naterciae co-infected with a dsRNA
fusagravirus omnipresent in this fungus. This study focuses on the splipalmivirus and provides evidence of
a tetra-segment nature of the splipalmivirus as the infectious unit that is highly transmissible both laterally

and vertically.

2. Materials and methods

2.1 Fungal isolate, strain and growth conditions

The C. naterciae fungal strains, C0614 and C0754, were previously isolated from cork oak trees in Portugal
by Dr. Helena Braganca at Instituto Nacional de Investigacdo Agraria e Veterinaria (Braganca et al., 2011).
The C0614 strain is a natural fungal host infecting two mycoviruses subjected to this study (a splipalmivirus
and a fusagravirus). C0754 is considered to be virus-free, at least free of these two viruses, the latter of
which is likely to be the most common viral agent in C. naterciae (Cornejo et al., 2021b). These two strains
are vegetatively incompatible with each other (C. Cornejo, unpublished data). An RNA silencing deficient
mutant Adc/2 of C. parasitica was a generous gift from Dr. Donald L. Nuss at the University of Maryland
(Segers et al., 2007). A European strain, DR1 (WSL collection code, M4733), of Cryphonectria radicalis
(Hoegger et al., 2002; Shahi et al., 2021), a Japanese strain JS13 of Cryphonectria carpinicola (Cornejo et
al., 2021a; Liu et al., 2007), a Japanese strain E16 (MAFF code, 410155) of Cryphonectria nitchkei and a
Japanese strain AVCS3 of Valsa ceratosperma (order Diaporthales) (Sasaki et al., 2002) were described
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carlier (Hoegger et al., 2002; Shahi et al., 2021). These fungal strains were grown on Difco potato dextrose
agar (PDA) or potato dextrose broth (PDB) medium (Becton, Dickinson and Co., New Jersey, USA) on the
benchtop at 23-26°C.

2.2 RNA extraction, sequencing and northern hybridization

Three-day old mycelia were used for dsSRNA extraction by a method using cellulose (Advantech, Tokyo,
Japan) (Eusebio-Cope and Suzuki, 2015a). The isolated dsRNA fractions were treated with DNase |
(Qiagen, Hilden, Germany) and SI nuclease (Takara, Shiga, Japan) to digest genomic DNA and ssRNA,
respectively, and analyzed by electrophoretic mobility on 1% agarose gel. Total RNA fractions were
obtained by the method of Eusebio-Cope and Suzuki. Total RNA fractions (approximately 70 pg each)
from this strain, another C. naterciae strain (C0613) and other five Japanese filamentous fungi were pooled
evenly and sent to Macrogen Inc (Tokyo, Japan) for next-generation sequencing (NGS) (Khan et al., 2019).
The five Japanese fungal strains were C. parasitica strains OB5-27, ES18, KZ1-31, and KZ2-39, and C.
nitschkei strain OB4-29 (Liu et al., 2007). The cDNA library was prepared using the TruSeq RNA Sample
Preparation Kit (Illumina, San Diego, CA, USA) and sequenced on the Illumina platform (HiSeq 2500, 100
bp paired-end reads) by Macrogen Inc. Qualified reads (total ~59M reads) were assembled de novo using
CLC Genomics Workbench (version 11, CLC Bio-Qiagen). Local BLAST searches with obtained
assembled fragments (26525 contigs) were performed against the viral reference sequence dataset obtained

from National Center for Biotechnology Information (NCBI).

As described previously (Suzuki et al., 2004), 3'-RNA ligase mediated amplification of cDNA ends
(RLM-RACE) was performed to determine the 5' and 3' terminal sequences using dsSRNA as templates. The
same set of oligonucleotides used as a 3RACE adaptor (5' phosphorylated oligodeoxynucleotide, 5'-POs-
CAATACCTTCTGACCATGCAGTGACAGTCAGCATG-3"), primers for cDNA synthesis and PCR
amplification were used for ligation with the 3' termini of the two dsRNAs with at 16°C for 16—18 hrs using
T4 RNA ligase (Takara Bio, Kyoto, Japan). PCR products amplified with a primer (5'-
TGCATGGTCAGAAGGTATTG-3’) to the ligated adaptor sequence and virus-specific primers (Table S1)
were cloned into pGEM T-Easy (Promega, Madison, WI, USA) for Sanger sequencing. The splipalmivirus-
RNA4 was detected by RT-PCR using primers CnSpV1-F1 (5-CAGCATGAAACTCTTGCGAG-3') and
CnSpV1-R1 (5'-GCGGCCGCTTTTTTTTTTTTTTTTTTTT-3") targeting terminal sequences conserved
among the other viral genomic segments. The integrity of the CnSpV1-RNA4 terminal sequence was
confirmed by RLM-RACE with primers listed in Table S1. The non-viral, underlined nucleotide sequences

in the primers are attached to increase melting temperature.
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Northern blotting of ssRNA-enriched total RNA was performed according to a standard protocol
(Sambrook and Russell, 2001) with modification of gel composition. The modified gel was composed of
1% (w/v) agarose, 1 X MOPS, and 1.85% (v/v) formaldehyde. Specific viral RNA bands were detected with
cDNA probes labeled with Digoxigenin-11-dUTP (DIG) according to the manufacture’s instruction (F.
Hoffmann-La Roche, Ltd.). The cDNA probes labeled with Digoxigenin-11-dUTP (DIG) were prepared by
PCR DIG Labelling Mix (Roche, Basel, Switzerland). with primers listed in Table S1 and viral cDNA

templates cloned into plasmid vectors.

2.3 Bioinformatics and phylogenetic analyses

The virus genome sequences were subjected to computational analyses using GENETYX ver. 19
(GENETYX, Tokyo, Japan). Blast searches were run on the non-redundant (nr) DNA and protein databases
from NCBI (nucleotide or protein collection) (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Phylogenetic tree construction was carried out as described previously (Kondo et al., 2020).
Multiple alignments of deduced amino acid sequences were obtained by using MAFFT ver.7 (Katoh and
Standley, 2013). Unreliable regions of the alignments were removed using Gblocks ver. 0.91b (Talavera
and Castresana, 2007). The trees were then generated by the maximum-likelihood (ML) method using
PhyML 3.0 with model selection by Smart Model Selection (Guindon et al., 2010; Lefort et al., 2017). The
branch probabilities were examined by 100 bootstrap resampling. The phylogenetic trees were visualized

and refined using FigTree ver. 1.3.1.

2.4 Transformation and protoplast fusion

Protoplasts of a virus-free strain, C0754, C. naterciae were prepared by the method for C. parasitica as
described by Eusebio-Cope et al. (Eusebio-Cope and Suzuki, 2015b). The obtained protoplasts were
transformed with pCPXHY3 carrying a hygromycin resistant (HygR) gene (hygromycin B
phosphotransferase) cassette. A single conidial HygR transformant termed C0754-HygR was obtained and
used for protoplast fusion. As mentioned above, protoplasts were obtained from C0614 coinfected by the
two mycoviruses (a splipalmivirus and a fusagravirus). An equal number of protoplasts from C0614 and
C0754-HygR were used for protoplast fusion by using the method of Shahi et al. (Shahi et al., 2019). To
obtain virus-infected isolates with the C0754-HygR, regenerated protoplast fusants were selected on
hygromycin (Hyg)-containing solid media, potato dextrose agar-Hyg (80 pg/ml) as described by Shahi et
al. (Shahi et al., 2019). Regenerated fungal isolates were examined for virus infection by the colony RT-
PCR method (Sato et al., 2020b; Urayama et al., 2015). Primers used for RT-PCR are listed in Table S1.

Virus-infected hygromycin-susceptible colonies were obtained after repeated co-culturing (hyphal
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anastomosis) on PDA with virus-free C0754. Similarly, the fungal strains of C. carpinicola JS13, C.
radicalis DR1, C. parasitica Adcl2, and V. ceratosperma AVCS5 were also tested for their ability to support
the splipalmivirus infection. These fungal strains were transformed with pCPXHY3, excepting Adcl2
carrying the HygR gene and JS13 transformed pCPXNeo (Andika et al., 2019), before being used as

recipients.

3. Results

3.1 DsRNA profiles of strains C0614 and C0754 of C. naterciae

Two strains of C. naterciae, C0614 and C0754 were mainly used in this study. Their colony morphologies
indistinguishable from each other are shown in Fig. 1A. Crude dsRNA-enrched fractions were obtained
from the two strains. Their agarose gel electrophoresis patterns are shown in Fig. 1B. A dsRNA band of
approximately 10-kbp was detectable from strain C0614, whereas no dsRNA band was observed in C0754.
The 10-kbp band represents the genomic dsRNA of a novel fusagravirus termed Cryphonectria naterciae

fusagravirus 1 (CnFGV1) and its details will soon be published (Cornejo et al., 2021b).

3.2 Sequence analysis and genome organization of a novel splipalmivirus

The NGS data of a pooled sample of C. naterciae C0613 and C0614, and five Japanese strains of
Cryphonectria spp. revealed two narna-like contigs, ctg1325 and ctg700, and other virus-like contigs
derived from three fusagravirus strains, Cryphonectria hypovirus 1 (CHV1, a hypovirus), Cryphonectria
nitschkei chrysovirus 1 (CnCV1, an alphachrysovirus) and Cryphonectria parasitica bipartite mycovirus 1
(a dsRNA virus). See Table S3 for detailed local-blast analysis of the NGS data. The novel narna-like virus,
the main subject of this study, was designated as Cryphonectria naterciae splipalmivirus 1 (CnSpV 1) which
shows sequence similarities with members of a newly proposed group, “Splipalmivirus”. CnSpV1 was
detected by RT-PCR only from C0614, but not from the other Cryphonectria strains. “Splipalmivirus” was
named after their divided (split) nature of the RARP palm subdomains (Sutela et al., 2020) that is the most
essential and composed of motifs A to D (Smertina et al., 2019). For this group of viruses, other name
candidates, polynarnavirus and binarnavirus have been proposed. Because multi-segmented narna-like
viruses with the undivided RARP domains have been reported (Charon et al., 2019; Jia et al., 2021; Shi et
al., 2016), we have adopted “splipalmivirus” reflecting this group properly. The ctgl1325 and ctg700 each
harbored single open reading frames (ORFs) that hypothetically encoded N- and C-terminal parts of the
RdRP, respectively, as divided forms (Fig. 2A). The protein encoded by ctgl1325 (CnSpV1-P1) contained
RdRP motif F, A, and B (Fig. S1), while that encoded by ctg700 (CnSpV1-P2) had RdRP motif C and D
(Fig. S2). CnSpV1 probably utilizes the nuclear genetic code, not the mitochondrial one, like narnaviruses

and unlike mitovirids. The known splipalmiviruses are supposed to have bi-, tri-, quad, or septuple-
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segmented genomes (Chiba et al., 2021; Jia et al., 2021; Ruiz-Padilla et al., 2021; Sutela et al., 2020). We
compared global amino acid sequence identity among some of those splipalmiviruses divided RdRPs and
narnaviruses RdRPs (Fig. 2B). CnSpV1-P1 and -P2 showed higher identity to the counterparts of
Aspergillus fumigatus narnavirus 2 (AfuNV2) (Chiba et al., 2021) (44.8% and 41.0%, respectively) than
the other tested proteins (Fig. 2B). Using the splipalmiviral genomes that were available from GenBank in
Apr 2021 as areference, we found an additional splipalmi-like contig, ctgl 142, from the NGS data of strain
C0614 (data not shown). The ctgl142 showed weak homology to a hypothetical protein that was encoded
by RNA3 of the three isolates of AfuNV2 (36.4-37.1% identity under 28% query coverage by BLASTX).
After terminal sequencing by RACE, we named the full-length CnSpV1 genomic RNA segments
corresponding to ctgl325, ctg700, and ctgl 142 as CnSpV1-RNA1, -RNA2, and -RNA3, respectively (Fig.
2A). To investigate whether CnSpV1 had additional genomic segments, we performed RT-PCR with
primers targeting the 5'- and 3'-terminal sequences strictly conserved regions among three RNA segments.
This analysis revealed a new segment termed RNA4 that was also found from NGS data as ctg2558 (data
not shown). RNA4 only possessed a small ORF with no significant sequence similarity to known sequences
(Fig. 2A). The four RNA segments shared the 13 nucleotides at the 5'-terminus, while they had a poly (A)
tail at the 3'-terminus (Fig. 2C). Well-conserved sequence stretches were observed preceding the poly (A)
tail across four CnSpV1 genomic segments (Fig. 2C).

CnSpV1-RNA3 encodes two non-overlapping ORFs that are designated ORF3-1 and ORF3-2 (Fig.
2A and S3A). The hypothetical protein encoded by ORF3-1 showed homology only to a hypothetical
protein encoded by AfuNV2-RNA3, while that encoded by ORF3-2 showed no homology to any protein
by blastp search of the database non-redundant protein sequences (nr) (using algorithm “blastp” with default
settings). ORF3-2 is situated at -2 or +1 frame relative to ORF3-1. There is no typical slippery sequence
(Atkins et al., 2016) that allows for -2 or +1 ribosomal frameshifting at the ORF junction region (Fig. S3B).
If the -2 or +1 frameshift occurs at the site, a fusion protein from the ORF3-1 and ORF3-2 would be
generated (Fig. S3A). However, it is unknown how the second ORF (ORF3-2) is expressed and we cannot
rule out the possibility of other non-cannonical expression strategy. Domain database search (Marchler-
Bauer et al., 2017) revealed that the N-terminal part of the potential fusion protein contained a conserved
domain termed RPP1A (COG2058) (Fig. S3A) found in some eukaryotic ribosomal proteins. RNA3 and
RNAA4 of splipalmiviruses are mono- or poly-cistronic (Fig. S3C). Like CnSpV1-RNA3, AfuNV2-RNA3
has bi- or tri-cistronic ORFs (Chiba et al., 2021). Unlike the case of CnSpV1-RNA3, however, the latter
ORFs of AfuNV2 are located at +0 and -1 frame relative to the former ORF (Fig. S3C). Only the protein
encoded by the first ORF of each CnSpV1-RNA3 and AfuNV2-RNA3 showed a relatively higher global
identity (Fig. S3D), which is consistent with the above-mentioned blast result. The sequence conservation

of the first ORF implies that the protein encoded by that might play some conserved biological role.
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Because an RNA pool from several fungal strains, i.e., C. naterciae strain C0614 and several
Japanese fungal strains was used for next-generation sequencing analysis (see Materials and Methods), we
confirmed that the four segments were from one particular strain. The four segments, i.e., RNA1, RNA2,
RNA3, and RN A4, were present in the original fungal strain C0614, but not from the virus-free strain C0754,
by northern blotting (Fig. 2D).

3.3 Phylogenetic analyses of CnSpV1

The phylogenetic relationships of CnSpV1 with other splipalmiviruses and narna-like viruses were
analyzed based on the deduced amino acid sequence of proteins P1 with the RARP_A and B motifs and
P2 with the RARP_C and D motifs together with corresponding RARP regions of monopartite narna-like
viruses. In both ML trees, the known splipalmiviruses and their candidates form three well-supported clades
highlighted light pink, blue and yellow (Fig. 3). These viruses are distantly related to two monopartite
narna-like virus groups (named as sub-clades 1 and 2) and more distantly related to authentic narnaviruses
represented by Saccharomyces 20S narnavirus (Fig. 3). CnSpV1 falls within one splipalmivirus clade
together with other splipalmivirus candidates previously isolated from Aspergillus and phytopathogenic

fungi.

3.3 Efficient vertical and horizontal transmission of CnSpV1

First, we obtained sub-isolates via single conidial isolation from the original C. naterciae C0614
coinfected with CnSpV'1 and CnFGV1 for two purposes: 1) to identify the infection unit of CnSpV1 and 2)
to obtain virus-free sub-isolates for investigating the effect of CnSpV1 on C. natercia. We tested over 100
sub-isolates for the presence of RNA1 to RNA4 using specific primer sets for each of the four RNA
sequences. One-step colony RT-PCR results showed that all of the tested isolates provided a PCR product
of the expected size for RNA1, RNA2, RNA3, or RNA4 (Table S1), while no amplification was detected
in the negative control strain, C0754, with any of the CnSpV1 primer sets (Fig. 4). In addition, a CnFGV1-
specific fragment of 600 bp was detected in all of the obtained single conidial sub-isolates. Neither virus-
free sub-isolates nor single infectants were observed after screening over 100 sub-isolates (Fig. 4, data not
shown). These indicate the coinfection of all the sub-isolates by both CnSpV1 and CnFGV 1. Importantly,
all the four RNA segments of CnSpV1 were transmitted to each sub-isolate, strongly suggesting that the
four RNA segments represent the infectious entity of CnSpV 1, which is highly transmissible vertically.
However, we could not achieve objective 2, investigation of the possible effect of CnSpV1 on the host.

Next, we performed protoplast fusion between C0614 and a virus-free strain, hygromycin-resistant

C0754-HygR, of C. naterciae, granted that CnSpV 1 could be laterally transmitted between the two strains
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of the same species. C0754-HygR was prepared by transforming C0754-derived protoplasts by pCPXHY 3.
The primary screening was carried out on PDA-Hyg post protoplast fusion (see step 3 of Fig. 1 of Shahi et
al. (Shahi et al., 2019)). All 20 sub-isolates selected on PDA-HygR likely possessed the C0754-HygR
genetic background and harbored both CnSpV1 and CnFGV1 (Table 1). Of these isolates four were co-
cultured with the original hygromycin-susceptible C0754 strain repeatedly (see step 4 of Fig. 1 of Shahi et
al. (Shahi et al., 2019)). All tested recipient strains with the C0754 genetic background were found to be
stably infected by the two viruses (Fig. SA). These results indicate that CnSpV1 can infect another strain
of C. naterciae, and can be efficiently transmitted horizontally via hyphal fusion in C. naterciae. Stable
co-transmission of the four genomic segments of CnSpV1 via the hyphal fusion was observed. C0754-
HygR infected by CnSpV1 and CnFGV1 after the repeated hyphal fusion showed indistinguishable colony
morphology and growth to virus-free C0754-HygR (Fig. 5B).

3.4 An extremely narrow host range of, and possible asymptomatic infection by CnSpV1
Our failure to separately isolate the two coinfecting viruses prompted us to test other fungi as their hosts in
the expectation that they differentially infect them. To this end, five other fungal strains were used as
recipients: C. parasitica Adcl2, C. radicalis DR1, C. carpinicola JS13, C. nitschkei E16 and V.
ceratosperma AVCS3. At least a total of 20 isolates were examined at the primary screening step for
CnSpV1 presence in each assay. However, no CnSpV 1-positive isolates were obtained, in contrast to the
intra-species protoplast fusion between strains C0614 (donor) and C0754HygR (recipient) which provided
100% infection of primarily selected isolates of the recipient isolates (Table 1). This was the case for
protoplast fusion assays between C0614 (donor) and V. ceratosperma AVCS53 (recipient), C. radicalis DR1
(recipient), or C. parasitica Adcl?2 (recipient) lacking the primary antiviral defense. Note that all isolates, in
most cases, derived from protoplast fusion with the tested four strains as recipients were CnFGV 1-positive
(Table 1), and that CnFGV1 infection was maintained in the recipient genetic background even after
repeated co-culturing (Fig. 5C). These results indicate that protoplast fusion occurred and CnFGV1 could
be transferred to the recipient fungal strains. C. carpinicola JS13 (recipient) was different from the above
four strains and was found to receive CnSpV 1 only infrequently via protoplast fusion (Table 1). The genetic
background of the CnSpV 1-positive single-conidial isolate was confirmed by vegetative compatibility with
original virus-free JS13. Once acquired by JS13, CnSpV1 was readily transferred to virus-free JS13.
Taken together, these results suggest that CnSpV1 has a very narrow host range, restricted to the

species C. naterciae, and cannot infect other species even within the genus Cryphonectria.

4. Discussion
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The RNA-dependent RNA polymerase gene is the hallmark for the members of the kingdom
Orthornavirae within the realm Riboviria, regardless of whether their genomes are (+)ssRNA, (-)ssRNA
or dsRNA. RdRPs generally have at least six motifs A through F and are encoded by single genes (Bruenn,
2003; Koonin, 1991; Poch et al., 1989). It is noteworthy that RARPs in a different order of motifs C—A—B
in place of A—B—C, were reported in a few RNA viruses with dsRNA or (+)ssRNA genomes, but reside
on single polypeptides (Gorbalenya et al., 2002; Sabanadzovic et al., 2009). Motifs A to D comprise the
most conserved “palm” subdomain of the right-hand-like structure of RARP, which is responsible for RNA
polymerization. Motifs E and F make up the “thumb” and “finger” subdomains, respectively (Smertina et
al., 2019). In this sense, splipalmiviruses recently discovered from fungi are unique exceptions. All reported
splipalmiviruses including the newly characterized CnSpV1 appear to be variable in genome segment
number from 2 to 7, but commonly encode motifs F, A, and B on RNA1, while motifs C and D are encoded
by RNAZ2. This split motif profile is conserved in all reported splipalmiviruses.

Splipalmiviruses are phylogenetically related to members of the phylum Lenarviricota
accommodating four families Leviviridae, Mitoviridae, Narnaviridae and Botourmiaviridae. Levivirids are
bacterial phages exemplified by Escherichia virus Qbeta, while mitoviruses are mitochondrially replicated
either in fungal or some plant hosts (Hillman and Cai, 2013; Nerva et al., 2019; Nibert et al., 2018).
Members of the other two families are considered to replicated cytosolically in fungal or plant hosts with a
capsidless nature and lack mitochondrial codon usage, i.e., UGA for tryptophan. Splipalmiviruses remain
officially unassigned, but are most closely related to monopartite narna-like viruses exemplified by
Plasmopara viticola associated narnavirus 11 (Chiapello et al., 2020) and likely are classified into a new
class or family within the phylum Lenarviricota (Sutela et al., 2020). Interestingly the two trees based on
RNA1- and RNA2-encoded divided RdARP proteins showed a similar topology (Fig. 3). Reported
splipalmiviruses were grouped into three clades for which three genera “Unuasplipalmivirus”,
“Duasplipalmivirus” and “Triasplipalmivirus” are proposed within the family “Splipalmiviridae” (Fig. 3).
CnSpV1 is most closely related to an Aspergillus virus (AfuNV2) among the splipalmi-related viruses
whose divided RdRP-encoding genomic segments have been revealed (Fig. 2B and Fig. 3). AfuNV2
appears to have three genomic segments homologous to RNA1 to RNA3 of CnSpV1, though its tri-
segmented genome nature unproven biologically.

Genome segmentation of RNA viruses during the course of evolution are occasionally documented.
Examples include monopartite potyviruses and bipartite bymoviruses within the family Potyviridae,
monopartite closteroviruses and bipartite criniviruses within the family Closteroviridae, and many
monopartite rhabdovirids and bipartite dichorhaviruses with the family Rhabdoviridae (Fuchs et al., 2020;
Walker et al., 2018; Wylie et al., 2017). Splipalmiviruses are fundamentally different from these viruses in

two aspects. Firstly, no division of the RARP motifs was observed in such viruses. Therefore, it is of great
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interest to investigate whether the two proteins encoded by RNA1 and RNA2 make up the RARP complex
with the palm domain similar to regular undivided viral RdARPs. Secondly, no unsegmented form of
splipalmiviruses (family “Splipalmiviridae”) has yet been detected. That is, no viruses have been found
with an undivided genome with the coding capacity for Pland P2 or all together with other proteins such
as P3. Capsidless narna- and narna-like viruses and fungal botourmiaviruses are the simplest form of RNA
viruses that encode only RdRPs, and are predicted to have been derived from bacterial phage levivirus after
losing a few genes such as capsid protein genes. Reverse genetics tools demonstrated that the RARP-
encoding segments are sufficient for virus viability in narnaviruses and related eukaryote-infecting viruses
of the phylum Lenarviricota (Esteban and Fujimura, 2003; Esteban et al., 2005; Retallack et al., 2021;
Wang et al., 2020). To investigate the possible biological significance of the multisegment nature of these
viruses will be a future challenge. Further investigation of the functional roles of each segment in virus
replication should be possible after establishment of reverse genetics tools.

Little is known about the biology of splipalmiviruses, i.e., their infectivity, symptomatology, and
transmissibility. In this study, taking advantage of a protoplast fusion protocol (Honda et al., 2020; Shahi
et al., 2021; Shahi et al., 2019) and single spore isolation, we showed that the four segments of the novel
splipalmivirus CnSpV1 behave as an infectious unit and likely causes asymptomatic infection in C.
naterciae (Fig. 5). All of the four segments were transmitted through conidia and fused recipients in an all-
or-none fashion (Figs. 4 and 5), in which no loss of segments was observed unlike multisegmented fungal
viruses (Sato et al., 2018). A bi-segment nature was also confirmed for a splipalmivirus, Botrytis cinerea
binarnavirus 2 via single spore isolation (Ruiz-Padilla et al., 2021). Our observation suggests that all the
segments are essential for the completion of infection cycle. In this study, we could not obtain a virus -free
strain from C0614 despite repeated attempts. Thus, we transferred CnSpV1 to the virus-free strain C0754
of C. naterciae by protoplast fusion. The observation that two isogenic strains, the original C0754 and
CnSpV1-carrying C0754 were indistinguishable in phenotype (Fig. 5) suggest that CnSpV1 causes
symptomless infection on a growth media. However, CnSpV 1-carrying C0754 also harbored CnFGV1,
which necessitates further investigation to draw a decisive conclusion.

There are only a limited number of fungal viruses whose host ranges have been thoroughly
investigated. The prototype hypovirus CHV1 can be replicated in V. ceratosperma, as well as one strain of
Phomopsis G-type (teleomorph Diaporthe Nitschke) (Sasaki et al., 2002), both being members of the family
Valsaceae different from Cryphonectriac accommodating C. parasitica. Several members of the genus
Cryphonectria and related genus Endothia were shown to host CHV1 (Chen et al., 1996). The replication
of a mitochondrially replicating mitovirus, Cryphonectria parasitica mitovirus 1 can be supported only by
some members of the genera Cryphonectria and Valsa (Shahi et al., 2019). The host range of a dsSRNA

chrysovirus CnCV1 is limited to a few members of the genus Cryphonectria, and the virus cannot replicate
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in C. parasitica (Shahi et al., 2021). A fusarivirus, Fusarium graminearum virus DK21 was shown to be
able to replicate in Fusarium spp. as well as in C. parasitica (Lee et al., 2011). Relative to the above viruses,
the host range of CnSpV1 is much narrower and limited to the different strain of the same species, C.
naterciae and C. carpinicola. Other species within the genus Cryphonectria did not allow for CnSpV1
replication. This conclusion was strengthened by the protoplast fusion results in which the co-infecting
CnFGV1 was transferred to Cryphonectria spp. and V. ceratosperma non-host to CnSpV1 (Table 1). These
observations suggest the intimate interactions between CnSpV1 and host factors specifically present in C.
naterciae and C. carpinicola. Of note is that C. naterciae is phylogenetically closer to C. carpinicola than
to C. parasitica or C. nitschkei (Corngjo et al., 2021a).

Virus replication and transmission in general are governed by many factors. Among them is
antiviral RNA silencing which has a negative impact on virus replication, as well as horizontal and vertical
transmission (Chiba and Suzuki, 2015; Sun et al., 2006; Suzuki et al., 2003). It should be noted that a fungal
reovirus, mycoreovirus 2 (MyRV?2), of C. parasitica cannot be stably maintained likely due to antiviral
RNA silencing (Aulia et al.,, 2019; Aulia et al.,, 2021). Only when RNA silencing is deficient or
compromised, MyRV2 can be stably maintained in its host fungus. The inability of CnSpV1 to replicate in
Cryphonectria spp. other than C. naterciae is due unlikely to antiviral RNA silencing. This assumption is
based on the observation that even in the C. parasitica Adcl2, CnSpV'1 was unable to replicate (Table 1 or
Fig. 5). Rather, as aforementioned, CnSpV1 replication necessitates some factors specifically present in C.
naterciae but absent in other Cryphonectiria spp.

This study clearly demonstrated high vertical (Fig. 4) and lateral (Fig. 5) transmission rates of
CnSpV1 in the original host C. naterciae. We failed to obtain virus-free fungal isolates or isolates singly
infected by CnSpV1 from the original strain C0614 doubly infected by CnSpV1 and CnFGV1. However,
CnFGV1 could be replicated in other species of the genus Cryphonectria, indicating its full-fledged nature.
There are different types of interactions between coinfecting viruses as reported for other virus
combinations (Hillman et al., 2018; Sasaki et al., 2016). The co-presence of CnSpV1 and CnFGV1 leads
to the speculation that CnSpV 1 relies on CnFGV1 in some way in its replication cycle. Although we cannot
conclude on the intimate interplay between CnSpV1 and CnFGV1, it may be unlikely because of many

infections by splipalmiviruses without fusagraviruses.

Acknowledgments

This study was supported in part by Yomogi Inc., Joint Usage/Research Center, Institute of Plant Science
and Resources, Okayama University (to CC), the Ohara Foundation for Agriculture Research (to NS),

Grants-in-Aid for Scientific Research (A) and Grants-in-Aid for Scientific Research on Innovative Areas

13



426
427
428
429

430

431

432

433

434
435

436

437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

and Grants-in-Aid for JSPS fellows from the Japanese Ministry of Education, Culture, Sports, Science and
Technology (KAKENHI 21H05035, 21K 18222, 17H01463, 16H06436, 16H06429 and 16K21723 to N.S
and H.K.; 19J00261 to YS). The authors are grateful to Drs. Donald L. Nuss, for generous gifts of the C.

parasitica strain Adcl2. YS and SS are JSPS (Japan Society for the Promotion of Science) fellows.
Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the

authors.

Figure legends

Fig. 1 Colony morphologies and dsRNA patterns of Cryphonectria naterciae strains C0614 and C0754.
(A) Colony morphology of Cryphonectria naterciae strains C0614 and C0754. The fungal colonies were
grown on PDA for six days and photographed. (B) Agarose gel electrophoresis of dsSRNA fractions from
strains C0614 and C0754. A crude dsRNA fraction containing host fungal ribosomal RNA (rRNA) obtained
from fungal mycelia was electrophoresed on a 1% agarose gel. M-dsDNA shows the molecular size of

dsDNA with GeneRuler 1 kb DNA ladder (Thermo Fischer Scientific, Inc., Massachusetts, U.S.A.).

Fig. 2. Genome organization of CnSpV1. (A) Genome map of Cryphonectria naterciae splipalmivirus 1
(CnSpV1). The solid lines indicate positive-sense single-stranded genomic RNA. The colored boxes
indicate hypothetical open reading frames (ORFs). The light-blue bars above the genomic segments show
the position of DIG-labelled probes (Fig. 2D) and RT-PCR fragments (Figs. 4 and 5). The GenBank
accession numbers assigned to the CnSpV 1 genomic segments are LC634419 (RNA1), LC634420 (RNA2),
LC634421 (RNA3) and LC649880 (RNA4). (B) Pairwise percent identity matrix of RdRPs of
splipalmiviruses and narnaviruses. Full names of viruses and accession numbers of their proteins are listed
in Table S2. Left and right panels show the comparison among the divided RdRP of splipalmiviruses
[splipalmi-P1 (containing F/A/B motif) or -P2 (containing C/D motif), respectively] with undivided RARP
of narnaviruses (narna-P1). The identity is based on a global multiple sequence alignment by Clustal Omega
version 1.2.4 (Sievers et al., 2011). The heatmap was drawn by R package “gplots” version 3.1.1. (C)

Comparison of nucleotide terminal sequences among CnSpV1 genomic RNA segments. The full-length
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RNA segments were subjected to the alignment by MUSCLE (Edgar, 2004) in GENETY X-MAC Network
version 20.1.0. Sequence heterogeneity, detected at certain positions among RACE clones, is shown by the
letters D (A, Gor T), B (G, T or C), or W (A or T). (D) Northern blotting of the CnSpV1 genomic RNAs.
SsRNA-enriched total RNA (5 pg per lane) fractions were obtained from two C. naterciae isolates, C0614
and virus-free C0754. M-ssRNA refers to ssSRNA size standards [ssSRNA Ladder (New England Biolabs,
Inc, Massachusetts, U.S.A.)].

Fig. 3 Phylogeny of the RARP of splipalmiviruses and narnaviruses. The maximum likelihood (ML)
trees were constructed using PhyML 3.0 based on the multiple amino acid sequence alignments of
splipalmivirus-P1 with the RARP_A and B motifs (A) or splipalmivirus-P2 with the RARP_C and D motifs
(B), and the corresponding RARP regions of monopartite narna-like viruses. The LG+ 1+ Gand LG+ G
were selected as best-fitting substitution models for the splipalmivirus-P1 and splipalmivirus-P2,
respectively. GenBank accession numbers of viruses are followed by their virus names. A set of
splipalmivirus-like sequences in the Puccinia triticina transcriptomic data (no. GISY01077803 and
GIKZ01037126) was also included in this analysis. The putative phylogroups of splipalmiviruses are shown
with different colored boxes. The two phylogroups for monopartite narna-like viruses, tentatively named
sub-clades 1 and 2, are displayed as collapsed triangles. Their members are listed in the right-side box. Two
narnaviruses, Saccharomyces 23S RNA narnavirus and Saccharomyces 20S RNA narnavirus were used as
the outgroups. Three genera, “Unuasplipalmivirus”, “Duasplipalmivirus”, and “Triasplipalmivirus” and
one family “Splipalmiviridae” have been proposed to accommodate splipalmiviruses. The scale bar

represents amino acid distances. The numbers at the nodes are bootstrap values of >50% in 100 iterations.

Fig. 4. Simultaneous detection of RNA1 to RNA4 of CnSpV1 in single conidial isolates.

Single conidial sub-isolates were obtained from the original CnSpV1-infected strain C0641 and examined
for the virus presence by one-step colony RT-PCR (see Materials and Methods). RT-PCR was set to detect
five different RNA targets: CnSpV1 RNA1, RNA2, RNA3, and RNA4 and CnFGV 1. Amplified fragments
were electrophoresed on a 1.2% agarose gel in a 1 x TBE buffer system. The sequences of primers used are
shown in Table S1. Positions of the RT-PCR amplicons of CnSpV1 are illustrated in Fig. 2A. M refers to
DNA size standards [GeneRuler 1 kb DNA ladder (Thermo Fisher Scientific, Inc.)].

Fig. 5 Horizontal transfer of CnSpV1 in C. naterciae and C. parasitica.
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(A) Colony RT-PCR was performed to detect CnSpV1 and CnFGV1 in C0754-derived fungal recipient
isolates after coculturing with strain C0754-Hyg co-infected with CnSpV1 and CnFGV 1. Primer sets used
in this panel and panel (C) for detection of CnSpV1 and CnFGV1 are shown in Table S1. (B) Colony
growth and morphology were compared between virus-free and -infected strain C0754. The fungal strains
were grown on PDA for four days and photographed and subjected to area measurements by ImagelJ. The
means and standard deviations were calculated from three sub-isolates. (C) RT-PCR products with the

CnSpV1 RNAI- (top panel) or CnFGV 1-specific primer sets (bottom) were electrophoresed as in Fig. 4.

Supplementary figure legends

Fig. S1. Multiple alignment of amino acid sequences of spliparmivirus-P1 (N-terminal part of the
divided RARP) and narnavirus-P1 (undivided RARP). Amino acid sequences were aligned by MAFFT
online version 7.475 with L-INS-i method (Katoh et al., 2019). Part of the alignment is shown. Full names
of the viruses and accession numbers are listed in Table S2. Analyzed viruses are the same as Fig. 2B and

Fig. S2.

Fig. S2. Multiple alignment of amino acid sequences of spliparmivirus-P2 (C-terminal part of the
divided RdRP) and narnavirus-P1 (undivided RdRP). Amino acid sequences were aligned as described
in the legend to Fig. S1. Part of the alignment is shown. Full names of the viruses and accession numbers

are listed in Table S2. Analyzed viruses are the same as Fig. 2B and Fig. S1.

Fig. S3. Hypothetical proteins encoded by CnSpV1-RNA3. (A) Hypothetical frameshift products
encoded by CnSpV1-RNA3. The schematic diagram for the putative -2 and +1 frameshift products from
CnSpV1-RNA3 was shown below its genome map. The hypothetical frameshift products contained RPP1A
(ribosomal protein L12E/L44/L45/RPP1/RPP2, COG2058) domain at the amino acid positions 18-97 with
an e-value 4.71¢. The conserved domain was predicted by DELTA-BLAST search of non-redundant
protein sequences (nr) provided by NCBI. (B) The nucleotide sequence around the intergenic region of the
two hypothetical ORFs on CnSpV1-RNA3. The sequence was visualized in GENETIX-MAC version
20.1.0. (C) Schematic representation of the splipalmiviruses non-RdRP-encoding segments. (D) Pairwise
percent identity matrix of the non-RdRP-proteins of splipalmiviruses. Viruses full names and accession
numbers of the proteins are listed in Table S2. The analysis was performed as described in the legend for

Fig. 2B. The left panel shows the comparison between the CnSpV1-P3-1 and AfuNV2-P3 with MoNV1

16



518
519

520

521

522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

proteins. The right panel shows the comparison between CnSpV1-P3-2 and AfuNV2-P5 with MoNV1

proteins.
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Table 1. Horizontal transfer of CnSpV1 via protoplast fusion

Fungal species

Fungal strain

Donor strain: C. naterciae C0614 carrying CnSpV1 +CnFGV1

Experiment I (detection rate*)

Experiment II (detection rate)

(Recipients)

CnSpV1 CnFGV1 CnSpV1 CnFGV1
C’}y?fli’e"r’sgzm C0754-HygR | 20/20 (100%) | 20/20 (100%) | 20/20 (100%) | 20/20 (100%)
C. parasitica Adel? 0/20 (0%) | 20/20 (100%) | 0/20 (0%) | 20/20 (100%)
C. radicalis DRI 0/20 (0%) | 20/20 (100%) | 0/20 (0%) | 20/20 (100%)
C. carpinicola JS13 0/20 (0%) | 20/20 (100%) | 1/20 (5%) | 20/20 (100%)

C. nitschkei El6 0/20 (0%) 3/20 (15%) 0/20 (0%) 120 (5%)

Valsa
AVCS53 0/20 (0%) | 20/20 (100%) | 0/20 (0%) 19/20 (95%)
ceratosperma

*tested by direct colony one-step RT-PCR
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Supplementary figure legends

Fig. S1. Multiple alignment of amino acid sequences of spliparmivirus-P1 (N-terminal part of the
divided RdRP) and narnavirus-P1 (undivided RdARP). Amino acid sequences were aligned by MAFFT
online version 7.475 with L-INS-i method (Katoh et al., 2019). Part of the alignment is shown. Full names
of the viruses and accession numbers are listed in Table S2. Analyzed viruses are the same as Fig. 2B and

Fig. S2.

Fig. S2. Multiple alignment of amino acid sequences of spliparmivirus-P2 (C-terminal part of the
divided RdRP) and narnavirus-P1 (undivided RdRP). Amino acid sequences were aligned as described
in the legend to Fig. S1. Part of the alignment is shown. Full names of the viruses and accession numbers

are listed in Table S2. Analyzed viruses are the same as Fig. 2B and Fig. S1.

Fig. S3. Hypothetical proteins encoded by CnSpV1-RNA3. (A) Hypothetical frameshift products
encoded by CnSpV1-RNA3. The schematic diagram for the putative -2 and +1 frameshift products from
CnSpV1-RNA3 was shown below its genome map. The hypothetical frameshift products contained RPP1A
(ribosomal protein L12E/L.44/1.45/RPP1/RPP2, COG2058) domain at the amino acid positions 18-97 with
an e-value 4.71e”. The conserved domain was predicted by DELTA-BLAST search of non-redundant
protein sequences (nr) provided by NCBI. (B) The nucleotide sequence around the intergenic region of the
two hypothetical ORFs on CnSpV1-RNA3. The sequence was visualized in GENETIX-MAC version
20.1.0. (C) Schematic representation of the splipalmiviruses non-RdRP-encoding segments. (D) Pairwise
percent identity matrix of the non-RdRP-proteins of splipalmiviruses. Viruses full names and accession
numbers of the proteins are listed in Table S2. The analysis was performed as described in the legend for
Fig. 2B. The left panel shows comparison between the CnSpV1-P3-1 and AfuNV2-P3 with MoNV1
proteins. The right panel shows the comparison between CnSpV1-P3-2 and AfuNV2-P5 with MoNV1

proteins.
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Motif F

———————— SVYERNVMSVRVSLVAELGKFRAITVSHLAHAVLLHVLSHVLLKYL-SAVPS
———————— NIYSSNSMSCRISLVAELGKYRTITVSSLOHALLLHPMSHIGLKIL-EVIPS
——————————— PEDLKRAFVTVVKEPGKGRTVTKASAALKIVLDLVSRLCAEPLKKGIAS
——————————— PEDLKRAFVTVVKEPGKGRTVTKASAALKIVLDEVSRLCAEPMKKGIAS
——————————— RDALKMAFLTVVKEPGKARSVTKARACLKVVLDLVNKICSEPLKKGIKS
——————————— PEELRKVYLTVVREPSKARVVTKGHAALKIVLDTISKICSWPLKKGEFAS
—HLEFMVNGEPYRPPVMDAQIVHISEPGKERNLTKSHAVLAWELTPASKITQGTL-AHLPE
YHRFPTOQVGEYQPDIMNAKIVHISEPGKERNLTKSHATYAWFLTPGAKLSQAIL-AVLPE

*

Motif A
SESGVKAANHAWNFFKRLSHKNPSANFIFG-——f—————"—"—"—"—"—""—"————— DKDVYLFEFSTD
SOSGIGAANHAWNFFKRLSHKNPSASFIFK--—————————————-————— EDIESSVLSTD

SOSGMGKSHHGWNEFELSLMTLEKREELEF-—-AVEKRDQREFAEYIERLDIYADLEVSSTD
SRSGMGKSHHGWNEFELSLMSLENKEDLE---RVAQRDEREFADYVERLDIYADLEVSSTD
SASGMGASNHGWNLEVSMMTEEERADVE-—-DLHSREENAYEGYVERTDTESDLEVASTD
SASGMGKSHHGWNLEKDMTS-EEMADLMFCEDRARRVEDAFNDHIDRTQYWQDLWESSTD

HRAGLLESGHEWRHQKRISALSDESGFIYDPSTGK-————————————— TRWEVRQVFKD
HRAGLLESGHEWRHQKRISPLSDESGFVYDSRTGK-————————————— VYPEIRHVFEKD
VKSGLKADRHLWRFVQKVLNPQSAEWQHLP——————————————————— EGATIYALSTD
VRSGMRADRHLENFVWKDLHPQNTLWDDMGWSYET - ————————————— KGMPIHALSSD
- —-GHAARRRLFKGLRRERRLRDTLKGDFEATTKAF———-—————————— VGCAGTVISSD

* . . *

Motif A

WEQATDYCNOMTAQATILNNLCQV—————-— LGIPGYYROQTCVFALCAPROQIEEI ——————-—
WESATDYCDPYIAGAMLNRLLYR-————- LGVPOWYRETVLFALTAPROVETL—-——————-—
YRTATDYLHHDVAREAGDGWMRK—————— CGIPPILRGIVNMSCYTGRDIYFMGTGPLAQ
YKTATDYLHHDVARELGDAWMRK—————-— CGIPDILRGIVCMTCYTPRNIYFTGTGPLAK
YEEATDRLPHKMGSDLAGMWMRK—————-— CGIPPLLRGIVOQETCEFKPRRVFFYATGVLET
FOEATDRLVHSIAQPIGSAWMKK—-————- CGIPPLLOGIVIGTCFOQPRTVYFTATGPLKH
WTESTDFICKAVGWAHLKALLDY—-—————- IGFPSMYGRLVLKTIVEPOQPVVEVTHRI ——-
WTESTDFISKSVGYVHLRTFEFDY—————-— VAFPAAYGRLILKTIVEPQPVVEVVSHV——-

LSEATDEFGNLTVSROQIWQFLIKLSSV--HEGFPTGLAVLGKTLYNGARFFEFV--=—————
LETATDYANPSVGRQIWDCLISGLEIQYPESSPRALLELCRDLHVGPRTVYY—--=—————

MKSASDL.IPLSVASATVDGLEAS————- GRLLPVEIAGL--RACTGPOQHLVYP-—————-
e o Kk * .
Motif B
————— SQENKTL-ERY----FTTRGELMGDPVTKVILHYYHLVARESAVMA-————————
————— DRNGCPI-EVF----YTSRGVLMGDPVTKVVLHLHHLIGAKIAGLL---——————
IGEAANDLGQNV-RKV----RLVRGVLMGDPLTKVVLHMINILSRTIGVEM-—-———————
YGENADEFGQNI-RRI----RLVRGVLMGDPLTKVVLHMVNICTRTIGVNM-—-———————
IGTAEPTMGIGV-RSV----PLLKGVLMGDPLTKVVLHLTNVITRHLGTRM--———————
IGL--PTGGEDE-NKI----TLRRGVLMGDPLTKVVLHLVNIIIRDLGQGM-—-————-——-

~---QVEGGEDIVEPVEWHGS INEGFMMGNPMTKTILHLVHT SELMVAKEF —————————
~-—--AFDDGDDI-EPVEWTGSINEGFMMGNPITKTILHLVHESEHAVATLY - ————————

————— PDOAGNY-QLV-—---SRORGWMMGDMMTKVILTIAHDAICRMSRLO-——===————
————————————— QKI-FFCTKLRGWLMGDPMTKVILTLAQEYVLFRSNAG-—-—————--R
——————— DGSElI-—-——=-—--TTRRGILMGLPTTWAILNLMHLWCWDSADRQYRLEGHPFR

X e k% * « %
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Motif C Motif D

QODHHYISSEVGDDEETASDSKAFIATQ-QVFHQLYGMKVSLDDTSINSREGNFAEDLIIL
EAFQHIGAEVGDDGIGVSTCPEYPAAELTVESEFLGVKVSEEDTSINPREFGNFAEDLVIL
MPSKADGMEVGDDRVDTSRSALTLARILVVQERKVLGMSTSWEDTLISKRIYNEFCEVTNSL
TIQGKAVGMEVGDDRVDTSRSAPTLGRVLSVQERVMGMRTSWEDTVISKRIHNFCEVTNSL
QGASLIGEEVGDDRCDRTRDPGRAATALVVQEAVMEMKTSEMDTEFISRHYEFNEFCEVTSTV
ATSKVVGREVGDDRACLCRTVEPLVASLMAQEKVVHMVTSWPDTS IRRKSWNECETTSGP
RDLHLIQSVVGDDEHTTTDSISLGPCLIGEFGPVINGIKLSWKDTGISPYVGNYAEGWILV
RNLHVIKSVVGDDEYTTTDSISLGPALIGFGPIINGIKLSEKDAGISKYIGNYAEGWVIN
————— VYSLVGDDEIALSASTHQLEMNISNLOT I --FKVSEEDTYISCHLAFYCEEGTLV
PTGRLVGSIVGDDLVILSRLRHHLGWYLDDLRSL-DFRVSDDDTEFISSDEMEYCEETSRV
ATVRSDCRVCGDDLIGVGPDSLLRSYDRNLG--LVGMILSPGKHFRSNRRGVFLERLLEF

* kK * . %

PDGYGQTYLSSRKTGAYLDMSEF-IDIPKIRLAIDIRPMRM-DHSATNDG--KAQMIGSR-
PDGCEQTYRYAQQTSDFRNMAF-LDVPKLRLATIDIRPGRM-NHSSTNDG--KAGMLGSR-
PADPDGSEFDVCRRTGDEFSKLEY-TDAVILRITIIDCSKGES-SHSSTAVG--KAGMLAAR-
PTDPNGSEFDICRRIGDFSKLEY-TDAVILRITIIDCSKGEA-SHSSTAVG--KAGMLASR-
PSTPDQSEFDKCRKVNAFENLGY-VDVPPLRIILDVSKGDG-SHSSTTPG--KATMLGNR-
LTDPSQGEFDEVRKTGDEFSNLGE-NDSVILRITISDVQKGSGDDHSSTQPG--KMSMLGSR-
PPTAEASFESVNRRHARSGVPEFTLDPVKLKLLSPVRKOSP-LWENDLES--KMNHLAET -
PPNAEATFEATHRRHARSGVPEFTLDMVKLKYLSPVRKOSP-SWELDLES--KLEHLAET -
PORASSSNHVOMRRG--EELSY-LDYPRFRLLLPQISEVD-AYSMSNSG--RESLLGKE-
POGPGOSVVARTKYSHGTSCGY-IDTPRIRLLIPTRPDED-RESNTNLG--RESLLGKE-
QTRKTVYEHAVI-—-—--YRKVGH-RRVPVDRSHIPVVTRVTVLNTIPLKGLVRASVLGRDD

—————————— QRWIPLES-GFRGQYEVENLFODVNLGLIRD-RKYPYLPSALGGYGKEPP
—————————— LAWLPRDS-PVRVMWEVENLEFQDINLGLIRD-DKFAYLPTALGGYGKPVP
—————————— VNTPRHE-—-HRSSLHLASYMODGCLRTAYS-ADPKYLPSIMGGSGHRPL
—————————— CNTPRSE---HRSSLHLASYIQDGCLRTAYS-ADPKYLPGIMGGSGHRAL
—————————— MRTPRSE-—-FLODEYLASYLODGMLRTNRS-TEPKYLPQIMGGSGVRAP
—————————— LATPRRE-—-NRKYWMLASIFQDAMLCTHKA-SEPKYLPPVMGGTGVTAL
—————————— ASWITDKSW-FTYDYHOMALILANVIFDFEDA-RSFPYLFKTEGGCGGCPP
—————————— ASWITDRSW-FTYDFHQCSLLLANAIFDFEDA-RTFPYLFKTEGGCGGAPP
—————————— ARWVDNVNPRARKLEFTRASLLOHILVPQEPD-CISPYTPIEIGGDGAMP-
—————————— YOWCLGNNSDLAPLFRRATIGYQONCLVPODAD-TQCPEFMPVEAGGNGSYT -
PPVWWAAAVAESSLLSDY-PRKKIFAAARTLRPGLSROQFRRLGIPPFLPRELGGAGLVGP

*x* K
FRNYENFERFSKAFKOQG-SHSGLLRNIVRRTNRYISALQRGEY-————- PAKDPLLSHVV
FGHAPNFEAFATIRYKQG-THAGLARELVRRANSRFREYTVENR-————- YSEDIVLSAVS
FDSPVNLYLSVKAYRGG-GYDRLYGSATKEVKQCIEQLDDG-—-—————— IAANPVLSLRL
FDSPTNLYLSVKAYRGG-GYDRLYGSATKEIRQCIDQLDDG-=-—————— KGATPVLSLRL
FGESDNLYLSVHAYRGG-GYQRVYGTATSELAQCLDLLERG--—————- QASMPVEFCHRL
FDNPNNVEFLYVLAYKGG-SYRRIYATACGEMRDYLYNLERG-—-—————- VOSAPILCPRL

YGNLDTVYSALHFYTRGKSHRAILGVMTEATQVNLGALKPTETFFIRSSHLANMGDRVWL
YGNLDTVYSALFHYTRGRSRRGIMGVMEEAVAVNTGTLSPKDTFFLRNSHLANMGDSVWL

~——HSAGFLARVVADKS-————=——————————————— RNPREVIFRMASLMSGTTGHRYV
———TDTAFWSKLVLRRS———————————————————— KDPRTTHFRVNQLLSNEYAYRWI
SDRV DA — = = = = = = = o
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Table S1. Primers used in this study

For Target Primer name Sequence (5'—3")
CnSpVI-RNAL- 355 RACER GGGATTGTTTGGTGGGTACCT
5' terminal
CnSpVI-RNAL- 355 RACE-F AACCAAGGTCATCCTTCACTA
3' terminal
CnSpVI-RNAZ- 700.RACE-R GATGACATCGTAGGAATTTCA
5' terminal
C,“SPV.I'RNAz' 700-RACE-F AACGGTCAGAGTCTACAATAA
RACE 3' terminal
CnSpV1-RNA3-
bV Narnal 142-700F TCAAAAGGCCCATGCACCCAG
5' terminal
CnSpVI-RNA3- - 1) ha1142-730R TCACCCTTAACTGGGTGCATG
3' terminal
CnSpV1-RNA4- CnSpV1-RNA4-638R  ACCTTTGGTATGCTTTACCA
5' terminal
C,“SPV.I'RNA“' CnSpV1-RNA4-190F CAAGGAGAACTGTGAAGTTC
3' terminal
CnSpVI-RNA1  EU-Cp1325-1300F GCGGGAAGCTTGAACGCGCCC
(1301-2000nt) ~ EU-Cp1325-2000RF AGTGCCATCACAGCACTCTCT
CnSpVI-RNA2  EU-Cp700-300F TAAAATCCTTCAATCTTATGG
(317-826 nt) EU-Cp700-800R GCACTGGGTAAATAGGGATAT
RT-PCR, CnSpVI1-RNA3  Narnal142-230F AGTATCAGAAGATGCTTGGTAAAG
DIG labelling
PCR (204-704 nt) Narnal142-730R See above

CnSpV1-RNA4
(190-638 nt)

CnFGV1
(5625-6650 nt)

CnSpV1-RNA4-190F
CnSpV1-RNA4-638R

FGRdF
FGRdR

See above

See above
TTCACAACTAAAGCATCTGAGCGG
CGATGGGTATGATTGCCTGCC
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Table S2. Accession numbers for splipalmiviral proteins

Classification Virus name VLS P1 P2 P3 P4 P5
abbrev.

Aspergillus
fumigatus AfuNV2 BCH36622.1 BCH36623.1 BCH36624.1 - BCH36625.1
narnavirus 2
Botrytis cinerea g op\yy QIT73724.1 QTP72364.1 - : :
binarnavirus 1
Botrytis cinerea g op\vy  QIT73725.1 QLF49184.1 - . .
binarnavirus 2
Botrytis cinerea

Splipalmivirus  binarnavirus 3 BcBNV3 QJT73726.1 QTP72363.1 - - -
Botrytis cinerea g p\ys  QIT73728.1 QTP72365.1 - : :
binarnavirus 5
Oidiodendron
maius OmSPV1 QNN89179.1 QNNg9180.1 - - -
splipalmivirus 1
Magnaporthe
oryzae narnavirus MoNV1 BCH36656.1 BCH36655.1 BCH36657.1  BCH36658.1 -
1
Neofusicoccum
parvum NpNV1 QDB74994.1 - - - -
narnavirus 1

Narnavirus Wilkie nama-like \igyvy  yp 0003885791 - - - -
virus 2 -
Saccharomyces
20S RNA ScNV20S NP _660178.1 - - - -
narnavirus
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Table S3. Local-blastn analyses with the obtained contig sequences.

Consensus

Total read

Average

Lowest

Name length count coverage E-value S LD

Crypho_mix_contig 41 mapping 9799 72351 736.8148  3.18E-34 NC 030202 g:zz;‘l“em poac dsRNA virus 3 isolate SX63, complete
Crypho_mix_contig_43_mapping 8747 51776 590.7544  1.79E-11 NC_040828 E}fﬁi‘i‘fﬂﬁfﬁiﬁlﬁ gzg‘zg;;‘f cloi;‘l’jllaet; JC Ldl:[“s -3
Crypho_mix_contig 91 mapping 8827 15163 1712978  1.14B-07 NC_040828 E;g;%ifﬁf;ﬁifilzﬁ EZIE;A;::; lcéfsllfl‘s; 5(11\;[45 -3
Crypho_mix_contig_700_mapping* 2264 1371 60.50751  1.55E-07 NC_035120 zgﬂll;fe?:g; éﬁ‘l‘z virus 2 strain mosWSCP85442,
Crypho_mix_contig_1325 mapping 2144 751 3490065  6.02E-61 NC_ 030866 g:zz;‘l“em poac namavirus 2 genomic RNA, complete
Crypho_mix_contig_152 mapping 765 20178 2614.765 0 NC_001492 Cryphonectria hypovirus 1, complete genome
Crypho_mix_contig_151 mapping 354 4639 1279.768 1.67E-96 NC 001492 Cryphonectria hypovirus 1, complete genome
Crypho_mix_contig_150_mapping 354 3073 843.2514 1.67E-96 NC 001492 Cryphonectria hypovirus 1, complete genome
Crypho_mix_contig_34 mapping 3120 68082 2138.204 0 NC_001492 Cryphonectria hypovirus 1, complete genome
Crypho_mix_contig_45 mapping 6750 145949 2162.524 0 NC_001492 Cryphonectria hypovirus 1, complete genome
Crypho_mix_contig_46 mapping 6814 92206 1352.551 0 NC_001492 Cryphonectria hypovirus 1, complete genome
Crypho_mix_contig 651 mapping 3285 7484 227.4755 0 NC 038781 ggg?j:g;gﬁgt;iggs‘;hg"zzgvg;ﬁélz?ea;‘éfS122
Crypho_mix_contig 219 mapping 3130 6815  217.3629 0 NC_ 038780 ggaﬁ?v":fggiia‘gff;ﬁ:;gg‘g;";r‘g‘t‘;i ;g‘;‘én c]ifﬁ ;é o eds
Crypho_mix_contig_835 mapping 3107 5874 189.0148 0 NC_038779 fi‘;icpﬁf;egéifz?tﬁiﬁﬁiiIfrll‘}ye?ﬁﬁ?li,lcff&ﬁi?fi"nema
Crypho_mix_contig_192_mapping 3428 5333 1554758 0 NC_038778 iﬁiﬁﬁﬁ;ﬁ‘;ﬁ‘f‘;ﬁ“ﬁﬁﬁ? sggsgggz: from Cryphonectria
Crypho_mix_contig_128_mapping 346 2745 7842254  6.1E-159 NC_021222 chlgg"slfg‘;;r;fup;ﬁitlifi:ﬁ;{gfggﬁ;g“s I strain
Crypho_mix_contig_1015_mapping 387 2861 7373204 1E-175 NC_021222 chlgg"s‘fg‘;;r; fﬁﬁ?ﬁ:ﬁ;ﬁfggﬁ:ﬁ? I strain
Crypho_mix_contig_129 mapping 1703 9853 5753235 0 NC_ 021222 chlgg‘;‘;eg‘;;r;fup;ﬁi?fi:ﬁ;ﬁfsﬁgglﬁg% I strain
Crypho_mix_contig_185_mapping 832 4415 530.0505 0 NC 021222  Cryphonectria parasitica bipartite mycovirus 1 strain

09269 segment RNA1, complete sequence
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Crypho_mix_contig_179_mapping
Crypho_mix_contig_139 mapping
Crypho_mix_contig_1997 mapping
Crypho_mix_contig_833 mapping
Crypho_mix_contig_72 mapping
Crypho_mix_contig_71 mapping
Crypho_mix_contig_108_ mapping

Crypho_mix_contig_948 mapping

310

791

311

537

989

1049

1651

536

1359

2724

542

2318

4123

3288

4748

1436

433.7226

344.2389

170.1897

428.5736

412.8878

288.5844

286.1896

266.916

1.2E-116

0

1.7E-127

0

NC 021222
NC 021222
NC 021222
NC 021223
NC 021223
NC 021223
NC 021223

NC 021223

Cryphonectria parasitica bipartite mycovirus 1 strain
09269 segment RNA1, complete sequence
Cryphonectria parasitica bipartite mycovirus 1 strain
09269 segment RNA1, complete sequence
Cryphonectria parasitica bipartite mycovirus 1 strain
09269 segment RNA1, com+A20:G21plete sequence
Cryphonectria parasitica bipartite mycovirus 1 strain
09269 segment RNA2, complete sequence
Cryphonectria parasitica bipartite mycovirus 1 strain
09269 segment RNA2, complete sequence
Cryphonectria parasitica bipartite mycovirus 1 strain
09269 segment RNA2, complete sequence
Cryphonectria parasitica bipartite mycovirus 1 strain
09269 segment RNA2, complete sequence
Cryphonectria parasitica bipartite mycovirus 1 strain
09269 segment RNA2, complete sequence

* The result of blastp search is shown for this contig.



