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Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm
experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to
influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes
relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest
inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth
rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities
harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-
distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of
tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign
causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome
to ecosystem functioning at a continental scale.
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INTRODUCTION
For over a century, ecologists have strived to understand how
variation in soil microbial communities affects ecosystem
functioning [1–6]. Ectomycorrhizal fungi (EMF) are a key
component of the forest soil microbiome, forming symbioses
with ~60% of trees on Earth [7, 8]. These fungi aid in early tree
establishment and growth [9–15], provide access to otherwise
inaccessible soil nitrogen (N) [16], and protect tree seedlings
from pathogens [17, 18]. A long history of micro- and
mesocosm experiments has demonstrated that different EMF
species vary by orders of magnitude in their effects on seedling
development [9, 12, 13, 19–25], with potential implications for
the conservation and management of specific soil communities
to promote tree growth in actual forests [21, 26]. However, it
remains unclear whether differences in the composition of EMF
meaningfully affects the growth of mature trees and entire
forests.
Although it may seem intuitive that differences in EMF

composition would lead to variation in the functioning of

communities, this area has been intensively debated in the
literature [13, 22, 27–33]. It is widely recognized that EMF
communities display a considerable degree of functional redun-
dancy [34–36], and that overlapping traits at the aggregate
community level might overwhelm species-level differences
among communities. It is also possible that the effects of EMF
communities are too small to be detected relative to other
environmental drivers of tree growth or that any effect of EMF
composition is simply reflective of the environmental factors
which structure those fungal communities in the first place [37].
Exploring the effects of EMF composition relative to variation in
abiotic drivers of tree growth across broad environmental
gradients can help address these competing hypotheses and
determine if variation in EMF composition has meaningful
consequences for forest tree growth.
Until now, our capacity to isolate the effects of EMF composition

on tree growth relative to other in situ environmental variation
has been precluded by a lack of paired information on forest
productivity and EMF composition. Here, we assembled paired
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ectomycorrhizal community and tree growth data from >13,000
trees across long-term forest monitoring plots in Europe (Fig. 1a)
and matched this with molecular fungal taxonomic and functional
attributes. This allowed us to explicitly correlate EMF community
composition and genomic functional potentials with forest tree
growth and to simultaneously examine the influence of EMF
community attributes on tree growth while controlling for the
potential linear and non-linear effects of climate (mean annual
temperature and precipitation), N deposition, soil inorganic N
concentrations, and forest stand characteristics (broadleaf vs.
needleleaf, stand age, and tree density). Incorporating these
environmental predictors is especially important because it allows
us to statistically account for well-known drivers of tree growth
across the forest network where this work was conducted, notably
stand density and age, N deposition, and climate [38]. Previous
work has also demonstrated that these environmental variables
(plus geographic distance) collectively capture less than 40% of
the variation in EMF community composition [39]—which
indicates that the EMF and non-fungal predictors of tree growth
rate considered here can be disentangled. Lastly, we hierarchically
clustered EMF community composition and identified EMF species
and growth modalities indicative of communities in slow- versus
fast-growing forests.

MATERIALS AND METHODS
Data collection and processing
Forest inventory data. The International Co-operative Programme on
Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests)
has been intensively monitoring several hundred permanent forested plots
across Europe since 1995 or later [40]. Each intensive Level II monitoring
plot is at least 0.25 ha, and most trees with at least 5 cm diameter at breast
height (DBH) are identifiable by a unique number used to make periodic
measurements [41]. DBH was measured using a caliper or measuring tape
approximately every five years, a commonly used interval for estimating
forest growth and yield. Tree species identity is reported for every
measured tree, and each plot was classified by the dominant tree species
(>50% abundance). We used data from plots dominated by Pinus sylvestris
(Scots pine), Fagus sylvatica (European beech), Picea abies (Norway spruce),
and Quercus robur and Q. petraea (pedunculate and sessile oak; hereafter:
mixed oak).
We used periodic DBH observations to calculate a diameter increment

growth rate for each tree. We removed dead trees, trees with DBH < 5 cm,
and trees which shrank over the growth period which were occasionally
included in the census. To investigate long-term drivers of tree growth and
avoid potential short-term abnormalities, we used the first and last
periodic growth measurement to calculate diameter growth increment.
The entire period covered was 1999–2017, the mean initial census year
was 2005, the mean final census year was 2008, and the mean growth
interval was 5.5 years. Although there is some variation in the annual
sampling of tree growth versus the fungal community at some sites,

Fig. 1 Correlations between the ectomycorrhizal fungal community and tree growth rate across Europe. Map showing the ICP Forests
level II study plots with functional tree groups (broadleaf and needleleaf ) and dominant tree species (>50% cover) separated by color (a).
Correlation between tree growth and fungal community composition represented using principle coordinates analysis axis 1 (PCoA1; b; see
functional tree group colors from panel a), fungal energy and nutrient metabolism genes (c), fungal organic N cycling genes (i.e. genes
encoding for enzymes that EMF produce to access organic N, including peroxidases, multicopper oxidases, peptidases, and proteases (d), and
the number of gene models identified in the fungal genome as an indicator of metabolic activity (e). Fungal energy and nutrient metabolism
genes (i.e. ATP production, inorganic N metabolism) are a predefined KEGG metabolic pathway (Pathway 1.2) while organic N cycling genes
were aggregated using PFAMs annotations. Gene proportions were calculated as the number of specific gene sequences relative to total gene
numbers assigned to operational taxonomic units (OTUs; 97% sequence similarity) weighted based on relative taxon abundance (community
weighted mean; CWM). Number of gene models was also calculated as a CWM trait value. Values show predicted tree growth while controlling
for the influence of other covariates in the full statistical model (see Materials and Methods). Linear lines, confidence intervals (95%), and R2

values are displayed, and asterisks indicate significance (p ≤ 0.0001).
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previous work has shown that year-to-year variation in fungal communities
is low at regional to continental scales [42, 43]. Allometric equations for
dominant tree species within our observed size and geographic range
were used to calculate aboveground biomass using equations from the
GlobeAllomeTree database [44]:

Pinus sylvestris12.91-2.8035*(DBH)+ 0.3535*(DBH)2

Fagus sylvatica0.19465*(DBH)2.418775

Picea abies0.4626*(DBH)2.133

Quercus robur & Q. petraea0.23095*(DBH)2.27265

The percentage of tree mass which is carbon versus other elements was
estimated using IPCC Good Practice Guidance for Land Use, Land-Use
Change and Forestry and assumed to be 50% [45].
We also downloaded metadata for each plot (where available) within the

ICP Forests database based on long-term in situ measurements using
harmonized methods for N deposition (similar to ref. [46]), soil pH, and soil
inorganic N concentrations (ammonium and nitrate). Because N deposition
measurements were incomplete across the study plots, we used N
deposition data from 2010–2015 from the European Monitoring and
Evaluation Program (EMEP) at a 1-km spatial resolution, which was tightly
correlated with the ICP Forest N deposition measurements (R2= 0.5, p <
0.0001; similar to ref. [38]). Soil solution measurements for inorganic N were
made on soil water fractions collected weekly, bi-weekly, or monthly except
at sites where water for collection was too scarce and/or where snow and
ice prevented winter sampling. Soil pH was measured in CaCl2 using
potentiometry. We calculated inorganic N and soil pH values obtained
between 2010–2017 at a 0–25 cm depth. This falls within the same time-
frame and soil depth as the EMF community sampling. Detailed description
of analytical methods may be found in the ICP forest manual [47]. We also
downloaded and used information on the average stand age class of each
plot. Lastly, we downloaded 1-km spatial resolution mean annual
temperature (MAT) and precipitation (MAP) data from WorldClim2 [48].

Fungal ITS data analysis. Full length ITS DNA sequences obtained from
ectomycorrhizae by [39] were used for the EMF community analysis.
Complete information on the sampling is described in the original publication
and in ref. [49]. In short, ectomycorrhizae were characterized for 137 ICP Forest
level II sites between 2006–2008 and 2013–2015. At each site, four soil cores
(25 cm deep, 2 cm diameter) were collected from underneath 24 tree-to-tree
transects and sampled for 288 ectomycorrhizae per plot. A total of 87 plots
had paired EMF community and forest inventory data and 71 plots had
complete data for all variables included in the full statistical models.
After downloading the DNA sequence data from DRYAD, a fastq file was

produced using Phred scores from the qual file using the Unipro UGENE
software [50], and sequences were trimmed at a Phred score threshold of <20
and sequences <100 bp were removed using the Sequence quality trimmer
function in UGENE. Of the 35,989 sequences, we retained 32,219 after quality
control. We then used the usearch_global function in usearch (v11) [51] to
match sequences at a 97% sequence similarity threshold against the full
UNITE+ INSD database (2018-11-18) [52].
Using the fungal genomic portal, MycoCosm [53], we assigned ITS

sequences genomic traits related to the functioning of ectomycorrhizae.
Similar methods have been developed for phylogenetic inference using
prokaryote 16S surveys [54, 55] but were modified for ITS analysis in this study
since the ITS region is less suitable for phylogenetic analyses across all fungi.
We used the MycoCosm All-Fungi Species Tree (downloaded from [56] to
determine whether there was phylogenetic signal to the genomics traits of
interest, including numbers of enzyme nomenclature (EC) related protein
sequences (hereafter: gene numbers) based on functions in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and protein family (PFAM)
groups related N cycling (i.e., N permeases and ammonium sensing genes),
proteolysis (i.e., peptidases, proteases), decomposition of N-bearing com-
pounds (i.e., oxidases and multicopper oxidases), and fungal cell wall
biosynthesis (i.e., chitin and glucan biosynthesis). We also summed peptidase,
protease, and decomposition of N bearing compounds to study total organic
N cycling genes given the overall importance of ectomycorrhizal organic N
acquisition in forest ecosystems [16]. Many KEGG functions are directly
relevant to the exchanges occurring between host plants and EMF, including
energy and nutrient, nitrogen and amino acid, and carbohydrate metabolism
and various anabolic and catabolic pathways. We also considered the total
number of gene models per genome as a proxy for metabolic activity [57] and
specifically how microorganisms grow and metabolize carbon.
The phylogenetic tree was pruned to only include species from genera in

our dataset which restricted the analysis to species from 101 fungal genera.

We tested for phylogenetic signal of gene numbers using the phylosig
function in the phytools package [58] using 10,000 simulations and after
setting method= “K” and method= “lambda” to calculate Bloomberg’s K and
Pagel’s lambda, respectively (see Table S1). After screening for phylogenetic
signal, we first assigned functional genes to direct species matches,
accounting for 50% of the matched OTUs, and then to species and genera
without direct reference genome matches when there was significant
phylogenetic signal. Where there was phylogenetic signal, but not a direct
species match, we assigned the average genus-level gene number from all
species within a genus in MycoCosm to an OTU. OTUs were not included in
this analysis if they were not assigned a genus-level taxonomy. See Fig. S1 for
a decision tree outlining this approach. To account for differences in genome
size which could lead to spurious correlations, we standardized for genome
size by calculating the proportion of genes representative of each function
relative to genome size using the total number of genes, an approach similar
to ref. [56]. Proportional gene numbers were then weighted based on relative
abundance in the OTU table to calculate community weighted mean (CWM)
trait values. Trait values were weighted based on relative abundance using the
base weighted.mean R function. Of the 101 genera identified in the dataset,
54 KEGG and 47 PFAM assignments were made; of the 1022 OTUs in the
dataset, 512 KEGG and 455 PFAM assignments were made, and of the total
sequences, 46% were assigned KEGG and 25% PFAM annotations. Half (258)
of the assigned OTUs were exact reference species matches.
It is important to address that inferring potential microbiome functions

from DNA metabarcoding studies is very common [55, 59–62] but has been
debated in the literature [63]. Criticism has focused on 16S analyses inferring
functional profiles from environmental samples when there is poor overlap
between observed taxa and those with reference genomes [63]. Yet in our
study, we largely avoided this issue by focusing on root-associated EMF—50%
of the species and genera identified in our dataset have a direct species or
genus-level match to reference genomes in MycoCosm (see above). This
method is also uniquely informative. We could not use metagenomics since
high bacterial ribosomal copy numbers largely prevents fungal analyses [64],
and alternative DNA-based methods are laborious and cost-prohibitive [65].
Thus, cautiously assigning functional potentials to EMF on a study-by-study
basis using reference genomes may be a viable technique as long as there is
high overlap between observed and reference taxa in MycoCosm.

Data analysis
Fungal community analyses. All statistical analyses were conducted in R
(v3.6.1) [66], and significance was set to p ≤ 0.05. We calculated beta
diversity, fungal richness (# of OTUs), community diversity (Shannon
index), and CWM functional gene values. First, we randomly rarified the
dataset to the lowest number of observations (115 DNA sequences per
plot) using the rrarefy function in the vegan package [67]. This is a robust
sequencing depth for EMF Sanger sequencing [68–70], and has previously
been shown to correspond well with high-throughput EMF DNA
sequencing techniques [71, 72]. We then calculated relative OTU
abundances, produced a Bray–Curtis dissimilarity matrix using the vegdist
function (vegan), and represented EMF composition using principal
coordinates analysis (PCoA) via the pcoa function in the ape package
[73]. Fungal richness and diversity (Shannon index) were calculated using
the specnumber and diversity functions in vegan, respectively. The
relationship between fungal community composition, fungal functional
potentials inferred using CWM gene numbers, and tree growth was
assessed using distance-based redundancy analysis (db-RDA).
Using the OTU-based Bray–Curtis dissimilarity matrix (computed for all

137 sites), we performed hierarchical clustering using the base hclust
function in R. The optimal number of clusters was evaluated using the
elbow method [74]. We then used analysis of means and the ANOM
function in the ANOM package [75] to identify clusters from sites with
greater and lower tree growth rates than the overall mean. This resulted in
a fairly balanced number of sites between slow and fast growth
communities in the needle- (nslow= 14 vs. nfast= 12) and broadleaf
(nslow= 14 vs. nfast= 19) sites, respectively. EMF cluster was then used as a
discriminatory factor for indicator species analysis performed using the
multipatt function in the indicspecies package [76].

Tree growth models using generalized additive models. Generalized
additive models (GAMs) were used to predict tree growth (kg C yr−1)
rates at the plot level using the gam function in the mgcv package [77]. We
used statistically independent fixed effects (r2 < 0.5) including tree
density, forest stand age class, a binary categorical factor for needleleaf
and broadleaf tree types, MAT, MAP, N deposition, soil pH, and inorganic
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N concentrations (soil ammonium+ nitrate concentrations). We fit smoothing
functions using penalized regression splines to reduce over-fitting to
predictors with non-linear correlations to tree-growth, including stand age
and stand density (Fig. S2). Spline fits were assessed using the plot.gam
function, and smoothness selection optimization and basis dimensions were
determined using the gam.check function. We used restricted maximum
likelihood methods for smoothing parameter estimation. Separate models
were created for each fungal parameter without smoothing functions. Models
were inspected for normal distribution of the residuals, residual versus fitted
plots, and issues of multicollinearity among predictors based on variance
inflation factors. Growth was natural log transformed to satisfy the assumption
of homoscedasticity.
We also estimated plot level tree growth (Mg C ha−1 y−1) rates as opposed

to individual tree growth rates (kg C y−1) to explore differences at the stand
level between forests classified as part of the slow- versus fast-tree growth
associated EMF community types. Since periodic DBH measurements are not
made on every tree in the plots (i.e., only a subset of trees in level II ICP Forest
plots are measured for growth) we could not simply compute the sum
biomass C gain of all trees. We therefore randomly sampled with replacement
trees which are periodically measured until reaching the in situ stem density
of each plot 1000 times. From this distribution, we summed the biomass-C
gain across all trees. Following the same procedure as above, we then
modeled plot level tree growth using fungal community composition as a
predictor variable. Significant differences between sites classified as part of
the slow- versus fast-tree growth associated EMF community types were
evaluated using heteroscedastic t-tests.
For visualization, we calculated model partial residuals with respect to the

fungal predictor [78], and then added the effect of all other predictors at their
mean values, so that data could be interpreted on their original scale.
Mathematically, this can be expressed as:

y i ¼ f ðx i ^1Þ þ f ðx� ^ð2n � nÞÞ þ ε

Where y i is the vector of partial residuals on the original scale of the data,
x i ^ 1 is the vector of observed values with which partial residuals are
calculated relative to, x � ^ð2n � nÞ are the remaining model covariates at
their mean values, and ε is the vector of fitted model residuals. f ðxÞ represents
the fitted functional forms of how each independent variable affects the
dependent variable output by the generalized additive model.

RESULTS
Trends in tree growth rate and co-variable quality and
independence
Correlations between non-fungal environmental predictor variables
and tree growth rate were consistent with expectations based on
previous studies from the ICP Forest network. Mean annual
temperature (r= 0.39, p< 0.0001), stand density (r=−0.38, p<
0.0001), and N deposition (r= 0.27, p< 0.01; see Fig. S2) were most
tightly correlated with tree growth. These were also the top three
predictors of tree growth rate in a recent study conducted across
~300 ICP level II plots [38]. Tree growth rate also varied non-linearly
with stand age class, an expected pattern in boreal and temperate
forests [79] and across the ICP Forest network [38]. Inorganic N
concentrations and soil pH were both positively correlated with tree
growth rate, but this was not significant. Consistent with previous
studies [39], environmental predictor variables were not highly
correlated with the fungal community, and their individual effects
were distinguishable, as indicated by low variance inflation factors in
the full statistical models [80] (1.3-2.6; Table S2). Expected patterns
between tree growth rate and non-fungal environmental predictor
variables and sufficient independence among non-fungal predictors
and the fungal community supports the idea that we can address
our main research objectives to explore the relative effects of EMF
community variation on tree growth rates.

Fungal community and functional gene linkages to tree
growth rate
Multiple features of the EMF community were linked to tree
growth rates and were statistically independent of other environ-
mental drivers of tree growth. Tree growth was strongly correlated
with fungal community composition (represented as PCoA axis 1;

Fig. 1b), and explained more variation than mean annual
temperature and precipitation, N deposition, soil inorganic N
concentrations, and soil pH (see variance partitioning results in
Fig. S3). The total model explained 54% of the variation in tree
growth rate. The same model, but without the fungal community
predictor, captured 37% of the variation. Similar fungal composi-
tion effects were also observed when tree species were examined
individually (Fig. S4). Conversely, fungal richness (p= 0.89) and
diversity (Shannon index; p= 0.57) were not significantly corre-
lated with tree growth (Table S3). These results suggest that EMF
alpha diversity is not strongly linked to tree growth while variation
in EMF community composition (beta diversity) is a top predictor
of tree growth rate across Europe.
To examine which functional features of the fungal community

were associated with changes in tree growth rates, we evaluated
functional genes related to nitrogen acquisition, soil organic
matter decomposition, and fungal growth as community-
weighted functional gene proportions. Among all gene groups,
fungal energy and nutrient metabolism gene proportions were
the strongest predictors of tree growth (Fig. 1c). These metabolic
pathways reflect genomic investments in releasing chemical
energy, including ATP production (e.g., oxidative phosphorylation,
dissimilatory sulfate reduction) and inorganic N metabolism (i.e., N
reduction, oxidation, transport). Conversely, the relative abun-
dance of organic N cycling genes, including peptidases, proteases,
multicopper oxidases, and peroxidases was negatively correlated
with tree growth rate (Fig. 1d). No genes related to fungal growth
were significantly correlated with tree growth rate (e.g., glycan
biosynthesis, p= 0.11; glucan biosynthesis, p= 0.67; chitin bio-
synthesis, p= 0.11; Table S3), but the number of gene models per
genome was negatively correlated with tree growth (Fig. 1e).
These results show that fungal communities with fewer genes in
their genome and which are energetically more active and
inorganic N specialized are linked to fast tree growth.
To better understand differences in functional capacities

between fungal communities linked to slow- vs. fast-tree growth,
we examined differences in functional gene composition among
EMF community types using distance-based redundancy analysis.
Consistent with our full statistical growth models, fast-tree growth
associated EMF communities harbored higher proportions of
energy and nutrient metabolism genes, lower proportions of
organic nitrogen cycling and N permease genes, and had fewer
gene numbers in their genomes (Fig. 2). While these differences
were observed in both broad- and needleleaf dominant forests,
needleleaf inhabiting EMF communities had lower proportions of
energy and nutrient metabolism genes, higher proportions of
organic N cycling genes, and a greater total number of gene
models compared to broadleaf forests.
Next, we identified fungal taxa that were indicative of the

hierarchically clustered slow- and fast-tree growth associated EMF
community groupings (Fig. 3). Forty operational taxonomic units
(OTUs) were significant indicator species of the slow- (11 OTUs)
and fast-tree growth (29 OTUs) associated EMF communities
(Table S4). Russula ochroleuca was the only indicator species of fast
tree growth in both the broad- and needleleaf dominant stands.
Other taxa were strictly indicators of needle vs. broadleaf forests.
For example, two Cenococcum OTUs, including C. geophilum were
indicators of fast needleleaf tree growth, while a distinctive
Cenococcum OTU was indicative of fast broadleaf tree growth. A
suite of less-common Piloderma OTUs, including P. fallax and P.
byssinum, were indicators of fast-tree growth in the needleleaf
stands but not the broadleaf stands. Fungal OTUs identified at the
family-level included indicators of both slow- and fast-tree growth.
At the stand versus individual tree level, we compared growth

rates between all forests classified as part of the slow- or fast-tree
growth associated EMF community groupings after controlling for
the environment and other covariates. Stand-level tree growth
rate was 2.3 and 5.9 Mg C ha−1 yr−1 in the slow- versus fast-tree
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growth associated broadleaf EMF community forests, respectively,
and it was 1.1 and 3.0 Mg C ha−1 yr−1 in the slow- versus fast-
growth associated needleleaf EMF community forests, respectively
(Fig. 4). This approximate tripling of tree growth rates among
forests with particular ‘fast-tree growth’ communities is equivalent
to the variation in tree growth driven by other large-scale
environmental predictors in this analysis, including mean annual
temperature and precipitation.

DISCUSSION
The importance of EMF in forest ecosystems is of long-standing
interest [3, 4, 81], but more recently, focus has shifted towards
understanding the implications of fine-scale EMF community
variation for ecosystem function [5, 33, 82]. A central forest
function affected by EMF is tree growth, but the effects of
ectomycorrhizal community variation on tree growth in actual
forests have not been well studied, until now, due to an absence
of paired molecular mycorrhizal and high resolution forest
inventory data. Here, we show that, along with climate, soil, and
stand characteristics, the composition of soil EMF communities is a
prominent predictor of forest growth across the European
continent. These findings bring clarity to the debate around
whether microbial species level differences impact microbial
functions. A common argument against species level effects is
that fungal communities are characterized by high levels of
functional redundancy [34–36]. However, we show that composi-
tional and functional differences at the aggregate community
level overwhelm species trait overlap and are linked to a three-
fold difference in tree growth rate (Fig. 1b). While our results are
based on observational analyses and it is not yet possible to assign
causality or directionality to the correlations identified here (i.e., is

tree growth correlated with variation in EMF communities and/or
is EMF community variation driven by tree growth?), our study is
the first to link fine-scale EMF community variation to ecosystem
functioning at a continental scale.

Ectomycorrhizal composition is linked to tree growth rate via
N cycling potentials and genome characteristics indicative of
mycorrhizal exploration types
Tree growth rate was strongly correlated with variation in fungal
community composition. While tree growth was positively
correlated with fungal richness and diversity (alpha diversity),
these effects were not significant. This lends support to the idea
that EMF identity, and to a lesser extent alpha diversity, are drivers
of tree nutrition and growth [23, 24, 83–85]. Why EMF richness was
not correlated with tree growth may be due, in part, to high EMF
richness levels. Diversity-function relationships saturate when tree
richness is high [86], and EMF richness vastly exceeds that of
plants. Further and because there is mixed evidence for negative
[87] and positive [88–90] EMF alpha diversity effects on tree
seedling development, EMF alpha diversity effects are likely
context dependent (i.e., in low diversity EMF systems) and
localized [83]. Conversely, EMF composition effects may be
widespread throughout actual forests and are predictable at large
spatial scales. This idea has been insinuated for decades based on
experimental pairings between tree seedlings and EMF from
diverse clades and functional groups [9, 12, 19–21, 23, 24], but
until now, it has not been tested across actual forests with large
variation in tree growth rates nor has it been studied in the
context of variation in fungal functional genes. We specifically find
that variation in fungal composition is linked to contrasting
nutrient acquisition strategies and that slow tree growth is
associated with EMF communities harboring high organic N
cycling gene proportions. Our findings hold significant implica-
tions for fungal conservation (i.e., monitoring of taxa which
promote forest tree growth) and responses to global changes (i.e.,
if climate change selects for different EMF functional groups) that
could ripple up to affect forest productivity.
By analyzing the functional potential of EMF communities, we

also identified two contrasting functional axes correlated with tree
growth related to inorganic vs. organic N acquisition. Ectomycor-
rhizal fungi have varying capacities to take up inorganic [88, 91]
and organic [92] N sources. Here, we found a positive effect of
fungal energy and nutrient metabolism genes, including inorganic
N metabolism gene proportions, on tree growth rate. Since EMF
largely function to provide host plants with N [16], this finding is
consistent with fundamental mycorrhizal theory. However, we also
found a negative effect of organic N cycling genes on tree growth
rate, including oxidative enzymes, peptidases, and proteases. This
effect was strongly driven by proportions of multicopper oxidases
which were most negatively correlated with tree growth (p <
0.0001; Table S3). These enzymes depolymerize soil organic
matter, one of the major rate limiting steps in making N
bioavailable [93]. These enzymes are also energetically expensive
microbial investments [94–96]. The net cost to plants imposed by
EMF may be high when partnered primarily with organic N
specialized communities if they require high host plant carbon
allocation [97, 98]. Of course, organic N specialized communities
may be selected for by low inorganic N availability [96]. However,
the proportion of organic N cycling genes in our study was weakly
and significantly positively correlated with inorganic N availability
(Fig. S5). This suggests that communities with higher organic N
acquisition potential are not responding to inorganic N limitations
and might even make it more available. Importantly, gene
numbers and their associated processes are not always correlated
[99], highlighting the importance of these values as potential
genomic functions. Our functional gene analysis also has draw-
backs due to reliance on databases. Assignments were not
possible if OTUs did not have a species or genus-level taxonomic

Fig. 2 Fungal composition depicting community types and
genomic functional gene potentials associated with tree growth
rate. Distance-based redundancy analysis (RDA) performed using
fungal relative abundances converted to Bray–Curtis dissimilarities
and fungal functional gene community weighted mean proportions
and tree growth rate as explanatory variables. Note the configura-
tion of fungal communities associated with fast tree growth
corresponds with higher proportions of energy and nutrient
metabolism, amino acid metabolism (AA), carbohydrate metabolism,
and to a lesser extent, inorganic N metabolism genes, glucan
biosynthesis (Glucan), and glycan biosynthesis (Glycan) genes.
Fungal communities associated with slow tree growth correspond
with organic N cycling (peptidases, proteases, multicopper oxidases,
peroxidases), N permease gene proportions, and number of gene
models in the genome (No. of genes).
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assignment in the UNITE database (41% of the OTUs lacked a genus/
species assignment) nor if species or genera were absent from
MycoCosm (50% of the OTUs were absent). Even though we could
not create a complete functional representation of the community,
we were still able to observe strong N cycling gene correlations with
tree growth, albeit only for part of the EMF community.
In addition to variation in N acquisition potentials, fungi exhibit

variable size and complexity to their genomes with implications for
overall metabolic function. We found a negative correlation between
tree growth rate and the number of gene models per genome. To
explore this further, we linked EMF species found in our dataset to
their exploration types using the Fungal Traits database (v1.2; see
Table S5 for a summary of the exploration type assignments) [100].
Medium- and long-distance soil exploration fungi harbor higher
numbers of gene models compared to contact and short-distance
coarse types (Fig. 5a). Medium and long exploration types may
require more C from their host plants [101], a C cost that could
constrain tree growth [98]. The relative abundance of medium-
distance fringe EMF, the group with the largest number of gene
models and which produce the most extensively fanning hyphae
and rhizomorphs [102], was negatively correlated with tree growth
rate (Fig. 5b), particularly in needleleaf stands where they were at

higher relative abundance than broadleaf stands. Conversely, the
relative abundance of contact type EMF, which produce the least
emanating hyphae, was positively correlated with tree growth rate
(R2= 0.11, p= 0.005) and this effect was the same between forest
types (Fig. S6). Thus, proportions of different EMF soil exploration
types in communities may be an underlying mechanism to explain
variation in tree growth as they have also been linked to a tipping
point in tree mineral nutrition in the same forests [103]. How this may
apply to older forests with different proportions of EMF exploration
types remains uncertain. EMF which produce high amounts of
emanating hyphae may peak at intermediate forest ages [104],
including in our analysis at 90 years old (Fig. S7) and may shift
towards greater organic N usage with stand age [105]. It thus
remains premature to assign causality among tree growth rates, EMF
community gene numbers, and exploration types or to disentangle
the directionality of these correlations across time, but this is an
exciting new area of molecular mycorrhizal research with implica-
tions for forest tree growth.

Fungal taxa associated with slow- and fast-growing forests
A number of the commonly observed slow- and fast-tree growth
associated indicator species have well-described N metabolism

Fig. 3 Fungal taxonomic indicator species representative of the slow- and fast-tree growth associated EMF community clusters in
needleleaf (Scots pine and Norway spruce) and broadleaf (European beech and mixed oak) forests. The relative abundance of significant
fungal indicator taxa identified to the highest taxonomic level and organized for visual purposes by rank abundance. Each species-level taxon
is annotated with a reference species hypothesis identifiable by the internal transcribed spacer region DNA sequence aligned at ≥97%
sequence similarity to references in the UNITE database. Bars show the mean relative abundance of taxa across all plots where taxa occurred,
and error bars show the standard error.
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strategies which could affect tree growth. Notably, Russula ochro-
leuca, the most common indicator of fast broad- and needleleaf tree
growth, is known to forms symbioses with both tree types [39] and
has been previously classified as nitrophilic, being at increased
relative abundance where N deposition levels are high [97]. This
fungus takes amino acids up more slowly than other common
European EMF and may primarily use inorganic N [92], which is
energetically favorable compared to organic N [94, 106] and could
promote tree growth. Other indicators were linked to tree growth
rates consistent with previously described effects. For example, the
fast-tree growth associated taxon in needleleaf forests, Cenoccocum
geophilum, has been experimentally shown to boost Pinus tabulae-
formis growth [107], in addition to numerous other tree species as it a
host-generalist [9, 108], and it provides a range of benefits to host
plants under stressful conditions [11, 109]. Piloderma species were
also indicators of fast-tree growth in the needleleaf stands, and
Piloderma has been shown to positively correlate with Scots pine
gross primary productivity in Finland [110]. For some taxa, host
specificity may explain ‘slow-growth’ designations. For example,
Lactarius quietus was indicative of slow needleleaf tree growth,
potentially because it is a broadleaf specialist [39]. Observations that
a number of indicator species identified here are associated with tree
growth rates consistent with previous studies lends further support
to our findings.
Despite our results being consistent with decades of mesocosm

studies and multiple different angles of mycorrhizal theory on N
cycling and C demand by different soil exploration types, we
cannot discern whether observed fungal effects drive and/or
respond to variation in tree growth rates—a limitation of any large
scale observational study. The fungal effects observed in this study
likely emerge as the result of a combination of positive and
negative feedbacks and additional environmental attributes. It is
additionally possible that the fungal effects we observed
represent environmental factors not considered in our study—

i.e., our fungal effects are ‘merely’ powerful bio-indicators of
unknown, underlying drivers of tree growth. However, by
including the most important drivers of tree growth rate across
the ICP Forests network in our full statistical models, including N
deposition, climate, and stand characteristics (sensu [38]), we can
at least confirm that these fungal effects capture unique variation
in tree growth above and beyond the most widely recognized
environmental drivers of tree growth. While EMF fungal commu-
nities are also affected by many of the environmental factors
considered here, climate, N deposition, soil properties, host plant
characteristics, and geography only capture 37% of the variation
in EMF community composition in this dataset [39] and even less
variation in other studies [111]. This, in addition to low variance
inflation factors in our statistical models, indicates that observed
fungal effects are not simply reflections of the main environmental
drivers of tree growth across the ICP Forests network. Never-
theless, future experimental work that manipulates actual forest
EMF communities will be essential to validate and tease apart the
directionality of our findings.

Fig. 4 Annual aboveground forest tree growth aggregated at the
stand level comparing forests classified as part of the slow- and
fast-tree growth associated ectomycorrhizal fungal community
types in needleleaf (Scots pine and Norway spruce) and broadleaf
(European beech and mixed oak) forests. Values show predicted
tree growth rates at sites classified as part of the slow vs. fast tree
growth associated EMF communities while controlling for the
influence of other covariates. Significantly different values were
evaluated using heteroscedastic t-tests. Different lowercase letters
indicate significant differences (p ≤ 0.05).

Fig. 5 The relationship between ectomycorrhizal fungal explora-
tion type, number of gene models, and tree growth rate. Number
of gene models was summarized by ectomycorrhizal exploration
types based on species and genera identified in this study (a).
Examples of genera with particular exploration types in the study
are included in parentheses. Significant differences were tested
using heteroscedastic t-tests to account for unequal sample
numbers and differences are indicated using different lower-case
letters (p ≤ 0.05). No comparisons were made against the mat-
forming type as there were too few species with sequenced
genomes identified in our study. The correlation between tree
growth rate and the relative abundance of medium-distance fringe
type EMF (b). Values show predicted tree growth while controlling
for the influence of other covariates in the full statistical model.
Linear lines, confidence intervals (95%), and R2 values are displayed
(***= p ≤ 0.0001). Note that this correlation was significant for both
broad- (R2= 0.18, p= 0.03) and needleleaf (R2= 0.66, p < 0.0001)
forests when examined individually.
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Stand-level tree growth rates are tripled in association with
fast-growth communities
Our results suggest that EMF community differences strongly
impact mature tree growth, and that this could have important
impacts on forest carbon storage. To test this, we aggregated
individual tree-level growth data to the plot level and compared
all forests classified as part of the slow- or fast-tree growth
associated EMF community groups after controlling for the
environment and other covariates. Fungal communities associated
with fast tree growth were linked to an approximate tripling in
tree growth (Fig. 4). While these differences are large, and at the
high ranges for these trees [112], they do not consider how tree
growth rates may covary with tree mortality rates, belowground
productivity, or soil carbon cycling. We emphasize that for these
reasons, observed differences in tree-growth do not necessarily
translate to changes in ecosystem-scale carbon storage. Never-
theless, tree growth rate is a fundamental component of the forest
carbon cycle, and our study is the first to describe how fine-scale
variation within a key group of the forest microbiome may control
forest productivity at a vast spatial extent.
In conclusion, forests are one of the largest terrestrial C sinks.

Understanding the mechanisms underpinning the strength of this
forest C sink is critical for projecting land C storage under current
and future climate scenarios. Here, we show that, along with
climate, soil, and stand characteristics, the composition of EMF
communities may be a prominent factor governing forest tree
growth across the European continent. This is consistent with
decades of micro- and mesocosm studies suggesting that EMF
community composition regulates the development of individual
tree seedlings. Our study highlights a division where fast growing
forests harbor inorganic N specialized communities with high
proportions of contact type ectomycorrhizae while slow growing
forests are enriched in organic N EMF specialists dominated by
medium-distance fringe soil exploration types. These continental
patterns provide initial insights into integrating mycorrhizal fungal
traits (i.e., N cycling genes studied here) into plant-growth models,
such as FUN [113], and the potential for managing forest soil EMF
communities to regulate forest tree growth rate, analogous to
large scale epidemiological work which links variation in human
gut microbial community composition to human health [114, 115].
Specifically, the conservation of fungi which regulate tree growth
rates and the development of fungal inoculations targeted to
specific forest functions (i.e., tree growth rates and/or nutrient
cycling) are among two emergent opportunities for managing
forests to promote forest C storage under a changing climate.

DATA AND CODE AVAILABILITY
All data used to analyze the fungal community is available from the original authors
via DRYAD (https://datadryad.org/) with, https://doi.org/10.5061/dryad.cr70qc8.
Access to the forest inventory and environmental data sets is available via the ICP
Forests network upon request (http://icp-forests.net/page/data-requests). Restrictions
apply to the availability of these data without a formal data request, though may be
made available for the purposes of replicating this analysis. R scripts for working up
the raw data and analysis are available at https://gitlab.ethz.ch/manthony/icp-forest-
growth-and-ecm-fungi.
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