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Abstract  53 

Drought-associated woody plant mortality has been increasing in most regions with multi-54 

decadal records and is projected to increase in the future, impacting terrestrial climate forcing, 55 

biodiversity and resource availability. The mechanisms underlying such mortality, however, are 56 

debated owing to complex interactions between the drivers and processes. In this Review, we 57 

synthesize knowledge of drought-related tree mortality under a warming and drying atmosphere 58 

with rising atmospheric CO2. Drought-associated mortality results from water and carbon 59 

depletion and declines in their fluxes relative to demand by living tissues. These pools and fluxes 60 

are interdependent and underlay plant defenses against biotic agents. Death via failure to 61 

maintain a positive water balance is particularly dependent on soil-to-root conductance, 62 

capacitance, vulnerability to hydraulic failure, cuticular water losses and dehydration tolerance, 63 

all of which could be exacerbated by reduced carbon supply rates to support cellular survival or 64 

the carbon starvation process. The depletion of plant water and carbon pools is accelerated under 65 

rising vapor pressure deficit, but, increasing CO2 can mitigate these impacts. Advancing 66 

knowledge and reducing predictive uncertainties requires the integration of carbon, water and 67 

defensive processes, and the use of a range of experimental and modeling approaches.  68 

 69 

  70 
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[H1] Introduction  71 

Woody-plant mortality [G] results in the irreversible cessation of metabolism and the 72 

resultant inability to regenerate. Since widespread observations began in the 1960s, there has 73 

been evidence of increasing background tree mortality in many regions of the world 1-6 (Fig. 1a), 74 

including regional-scale die-off [G] events7-15 (widespread, rapid tree loss). Large mortality 75 

events have been recorded in dry-tropical forest15, tropical rain forests16-18, temperate rain 76 

forests19,20, semi-arid woodland and savannahs8,21,22, boreal forests23-25 and temperate deciduous 77 

to evergreen forests26,27. Such mortality is insidious in the case of the slowly but steadily 78 

increasing background mortality [G], and dramatic in the case of die-off events.  79 

These contemporary increases in background tree mortality and extreme regional die-off 80 

events are associated with atmospheric warming and a corresponding increase in vapor pressure 81 

deficit (VPD) and evapotranspiration 28-31 (Fig. 1b). As a result of greater water loss from foliage 82 

and soil surfaces, historically non-lethal soil-droughts [G] have become lethal 31,32. With 83 

anthropogenic forcing anticipated to further increase warming, as well as the frequency and 84 

duration of heatwaves and soil-drought10,32-35(Fig. 1c), tree mortality is also expected to increase 85 

in the future36,37. However, rising [CO2] (Fig. 1b) can mitigate the negative impacts of increased 86 

VPD through higher carbon uptake and reduced water loss, affording potential water savings38,39. 87 

Contemporary observations suggest rising VPD could be increasingly offsetting [CO2] benefits40-88 

42, and so the net balance might be either in favor of greater survival or mortality39,43-46.  89 

Mechanistic understanding of such drought- and heat-related mortality is limited. 90 

Hydraulic failure [G], the accumulation of sapwood emboli past a threshold [G] after which 91 

water transport is irrecoverable, and carbon starvation [G], the process [G] by which a limited 92 

supply of carbohydrate impairs maintenance of carbon-dependent metabolic, defense or 93 
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hydraulic functions, have both been proposed as key processes47-49. These processes are both 94 

challenged by a lack of clear definitions and hypotheses, and the large range of experimental 95 

conditions under which they have been studied, leading to a wide range of results regarding their 96 

occurrence50. Though recent models have incorporated these potential processes of mortality51-56, 97 

their interdependent contributions to drought-induced mortality of woody plants remains 98 

uncertain.  99 

Given that tree mortality leads to substantial changes in the structure and function of 100 

ecosystems, understanding drought-related mortality is fundamental to basic biology, ecosystem 101 

management and climate feedback predictions57,58. Changes in ecosystem structure and function 102 

due to mortality lead to large ecohydrologic shifts, with abrupt and potentially sustained changes 103 

in streamflow59 as well as downstream water quality, quantity and timing 60,61. Long-term shifts 104 

in forest demographics might also result from shifts in tree mortality rates62 with corresponding 105 

limitations to net terrestrial carbon storage63; a doubling of mortality halves forest carbon storage 106 

over 50 years if net primary production doesn’t equally increase. Resulting impacts on 107 

biodiversity might be large and surprisingly unpredictable at regional and global scales, and 108 

likely depend on disturbance type, biome and species, among other factors64,65. Moreover, the 109 

economic impacts of forest loss, particularly in regions where wood production is vital to societal 110 

well-being, could be substantial66. 111 

In this Review, we synthesize understanding of woody plant mortality under rising VPD 112 

and [CO2]. We begin with a discussion of contemporary, observed drought-associated tree 113 

mortality. We follow with consideration of three general, interdependent mechanisms [G] of tree 114 

mortality—water relations, carbon relations and defensive failure—and propose an integrative, 115 

predictive framework for mortality under a changing global climate. We subsequently examine 116 
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how such processes might interact to promote vulnerability and influence future projections. We 117 

end with recommendations for future research. Throughout the Review, all mechanisms are 118 

treated as part of the mortality process: that is, from failure of root water uptake, through to 119 

hydraulic failure, carbon starvation, and irreversible cell dehydration. We consider a plant in the 120 

‘dying’ [G] phase to have passed a point-of-no-return or a threshold67-73, beyond which mortality 121 

of the organ (branch dieback74) or entire plant is certain. Processes that occur before the dying 122 

phase can be critical in promoting or delaying mortality, whereas those that occur thereafter can 123 

be considered consequences, not causes.  124 

[H1] Background mortality and regional die-off  125 

 The regionally distributed trends of increasing background tree mortality1-6 (Fig. 1a)—as 126 

observed throughout western and boreal North America1,2, the Amazon basin6 and Europe11—127 

indicate a common driver underlies changes in woody plant mortality. The degree of increase in 128 

mortality rates varies with region, including a non-significant change in the Congo, the 129 

underlying climatic and physiological processes of which remain relatively unknown75. 130 

Elsewhere, these background rate increases could reflect increasing VPD impacts28,31,76, and 131 

under wetter conditions, might also reflect elevated productivity and turnover77,78. However, 132 

there is little evidence for increasing competition-induced mortality18,39. Additionally, when 133 

water is ample, rising [CO2] and warming could provide conditions for structural overshoot, 134 

where forests rapidly gain biomass and leaf area (at the individual plant and the stand scales) to 135 

levels not hydraulically sustainable during the eventual hotter-droughts79,80, which could likewise 136 

promote increasing mortality. 137 

Regional die-off events are now also being observed across both warm and dry and wet 138 

and cool biomes7-27, even following decades of productive growth81, indicating that no biome is 139 
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invulnerable. Die-off events are regional in scale, can kill one or more species and occur 140 

rapidly14. This global distribution of die-off events is associated with global increases in 141 

temperature and VPD14. Droughts eventually occur everywhere, but now with warmer 142 

temperature and higher VPD than historically30.  143 

[H1] Drivers and mechanisms of mortality  144 

Understanding and predicting mortality under future climate requires a framework that 145 

provides unambiguous definitions, generates testable hypotheses and identifies uncertainties. In 146 

the case of drought-associated woody-plant mortality, this framework is expected to also identify 147 

pools and fluxes of critical resources and their potential lethal thresholds, and to be relevant 148 

across different biomes and environmental conditions. Previous frameworks have advanced 149 

knowledge of drought-related mortality 47-49,82. However, existing frameworks grapple with the 150 

complexity of the interdependent processes that occur while trees are dying47-49,83, including 151 

hydraulic failure, carbon starvation and attack by biotic agents84,85 [G] (Fig. 2). Ultimately, there 152 

remains a lack of consensus on the appropriate terminology, mechanisms and ultimately a clear 153 

set of hypotheses.  154 

Owing to consistent evidence of deteriorating water status during death47-49,83 and 155 

widespread prevalence of hydraulic dysfunction in drought-associated mortality14,22-24, the 156 

mechanisms underlying woody-plant mortality originate from a whole-plant water-relations 157 

backbone. Examining mortality can start from a basic endpoint in the process: the rupture of cell 158 

membranes owing to water content falling below a critical threshold, preventing plant 159 

recovery68,71 (Figs 2-3). Crossing this critical threshold depends, in part, on the absolute water 160 

content below which the cells cannot survive, the osmoregulation potential of the cells, and the 161 

capacity to provide substrates and energy for continuous membrane maintenance and osmolyte 162 
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production71. Such cellular death must manifest across tissues at the whole plant scale and 163 

eventually impact all meristematic cells needed for growth and reproduction before organismal 164 

mortality has occurred. Thus, while plant water relations are the keystone process for drought-165 

associated mortality, hydraulic function and associated failure might also depend on starch and 166 

sugar availability, thus, water and carbon supply, and their respective cellular reservoir size, 167 

might be critical for survival86. Likewise, biotic attack is also highly likely to interact with 168 

physiological declines given defensive dependency on water and carbon relations49,84. The 169 

mortality process is now discussed in terms of whole-plant water relations, water-carbon 170 

dependencies and water-carbon-biotic dependencies. 171 

[H2] Whole-plant water-relations preceding mortality 172 

Failure of whole-plant water relations and subsequent mortality occurs through a series of 173 

sequential and interdependent mechanisms (Fig. 3). First, a severe decline in root water uptake, 174 

whole-plant hydraulic conductance and associated stomatal closure87,88 occurs, causing the water 175 

and carbon pools to become finite and exhaustible. The depletion of water pools is followed by 176 

continued loss of water through evaporation from plant surfaces and subsequently increasing 177 

occurrence of sapwood embolism as water pools are depleted89,90. Ultimately, hydraulic failure 178 

occurs and subsequent downstream mortality ensues as water pools deplete below the threshold 179 

for irreversible cell death48,67-71 known as cell wall rupture or cytorrhysis [G] 91,92. In this view, 180 

hydraulic failure is a mechanism within the larger process of mortality, rather than a sole cause in 181 

itself. Hydraulic failure in woody plants, strictly defined, is the accumulation of emboli within 182 

conduits causing a decline in conductance and an increase in tension of the remaining conduits, 183 

creating a feedback loop of runaway cavitation and subsequently insufficient distal water supply 184 

relative to water loss. By definition, hydraulic failure includes a threshold resulting from the 185 
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whole-plant processes of water flow, that is a threshold beyond which recovery of flow is 186 

impossible due to emboli accumulation within conduits. Critically, the importance of fluxes and 187 

pools of water to survival increases as drought progresses86 (Fig. 3). The sequence of events that 188 

promote a constraint upon survival through failure of whole-plant water relations and associated 189 

hydraulic failure are now discussed.  190 

Drying soil demands a steep increase in the amount of tension, or water potential 191 

gradient, that plants must withstand to extract soil water93. The soil-root interface becomes a 192 

primary limitation on whole-plant conductance under these conditions and can constitute >95% 193 

of whole-plant resistance94,95. Complete hydraulic disconnection between the soil and roots has 194 

been demonstrated in mature woody plants, including during drought-associated mortality96,97, 195 

although the frequency of such disconnection during drought is unknown. Under these 196 

conditions, stomatal conductance declines to near zero94, reducing water loss and 197 

photosynthesis98. Near zero belowground (soil-root) conductance and stomatal conductance mark 198 

a transition point58,60 when the individual plant becomes solely reliant on its limited water 199 

stores99-100. The size of these stores, their net depletion rate, and the tissue- and cell-level 200 

tolerances for depletion define the likelihood of mortality101 (Fig. 3). 201 

As hydraulic failure and cytorrhysis ensue for some tissues, crown die-back [G] (foliage 202 

and branch loss) and root loss will advance, and if the damage proceeds to destroy all 203 

meristematic tissues [G], individual mortality occurs (Fig. 3). Such cellular failure can occur at 204 

organ (dieback) or individual (mortality) levels depending on its extent and the degree of 205 

hydraulic segmentation within the plant. Variation in cellular thresholds for survival is likely 206 

substantial and could be important in regulating where and when woody-plant mortality occurs. 207 

The threshold for cellular cytorrhysis is above zero % water content92, and might vary with 208 
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species, genotypes, phenotypes, tissue and cell types, but remains relatively unexplored in woody 209 

plants.   210 

Evaporative losses after stomatal closure are dominated by residual vapor fluxes through 211 

leaky stomata, cuticle, bark and possibly roots102-106 (gres; residual conductance). The evaporative 212 

flux through gres becomes the dominant path of whole-plant water loss during a severe drought 213 

and is exacerbated at high air temperatures89,90. Continued water loss (that is not replaced) results 214 

in declining water pools and increasing embolism (Fig. 3). Even under situations where the soil-215 

root connection is maintained, if the fluxes of water to the plant are smaller than those lost 216 

through gres, the stored pools of water will deplete and embolisms will develop.  217 

The bi-directional feedbacks between the depletion of water pools and irreparable 218 

hydraulic failure is a logical and testable hypothesis for mortality progression. However, a water-219 

only perspective ignores the potentially critical roles of carbon and defense against biotic agents 220 

during drought, both of which could promote failure of water relations [G] if they individually 221 

fail. During short and hotter droughts, failure to maintain the critical water supply can dominate 222 

the mortality process because of the rapid rate of water loss relative to the rate of carbohydrate 223 

and defensive losses107-110. In longer droughts, or in cases of mortality years after drought, the 224 

role of carbon supply to critical survival processes should increase107-110 due to the far longer 225 

residence time and slower changes in carbohydrates than in water pools111,112.  226 

[H2] The water-carbon interdependency 227 

The process by which plants’ carbon economy has a role in mortality before, during and after 228 

lethal droughts involves multiple potential mechanisms. These include those associated with 229 

decreased photosynthetic gain47, reduced xylem and constitutive defensive compound 230 
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production113-116, initial carbohydrate storage increases and then decreases prior to death49-117, a 231 

critical increasing role of carbohydrates in osmoregulation and cellular maintenance118-125, and 232 

possible carbohydrate feedbacks upon hydraulic and defensive function49. In this view, carbon 233 

starvation, or the steps by which metabolic functions are impaired by limitations in the supply 234 

rate of carbohydrates, is a mechanism within the larger process of carbon limitations upon 235 

mortality. These mechanisms are described chronologically from pre-drought through the dying 236 

phases (Figs. 2-3).  237 

There is evidence that water-carbon related factors that occur prior to drought can 238 

promote mortality (Fig. 2). Decades-long reductions in carbon allocation to stem wood and resin 239 

ducts within dying conifer species indicate potential roles of pre-drought allocation to 240 

mortality108-110,113-116. Low growth preceding death can be a lingering consequence of prior 241 

climate or injuries that predispose trees to carbon constraints82 (Fig. 2). In contrast, shifts in 242 

allocation towards greater pre-drought growth can also influence mortality owing to reduced 243 

allocation to defense at the expense of growth126-130, or from over-allocation to aboveground 244 

biomass (in particular leaf area at the individual and stand levels) during favorable conditions, 245 

which cannot be sustained during subsequent hotter droughts (structural overshoot79). A feedback 246 

loop can be created, in which pre-drought factors can predispose plants to mortality during 247 

drought (Fig. 2). Indeed, declines in growth, hydraulic function and defense can be a function of 248 

reductions in crown leaf area owing to crown dieback or root loss from prior drought, lightning, 249 

wind damage, and defoliating or root feeding insects or pathogens131-136. However, declining leaf 250 

area can also promote survival by reducing water loss during drought137,138. The net consequence 251 

of pre-drought shifts in carbon and water pools and fluxes remains a research challenge.  252 
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Once drought has become sufficiently severe and/or prolonged such that photosynthesis 253 

has declined to near zero, the starvation process can promote mortality through water relations or 254 

defensive failure (Fig. 3). Carbon starvation is the process by which carbon-dependent 255 

metabolism, defense and possibly hydraulic maintenance are shifted owing to limited carbon 256 

supply rate relative to demand (Fig. 4). This definition is consistent with the literature on 257 

starvation across global animal and plant taxa139-141, which characterize starvation as causing 258 

significant shifts in metabolism, that are reversible, until a threshold is passed after which the 259 

interdependent processes required for survival are not met. Carbon starvation is considered to 260 

occur nightly in plants142, though for the purposes of drought-associated mortality, this process 261 

becomes relevant when stomatal closure precludes photosynthesis relative to carbon demand for 262 

abnormally prolonged periods (months to years). Starvation manifests at the cellular scale but 263 

can occur widely throughout an organism. As starvation progresses, the supply rate and/or pool 264 

of carbohydrates (sugars derived from starch, lipid and hemicellulose breakdown, as well as 265 

products derived from autophagy143-145) could possibly decline below the threshold at which 266 

cellular- to whole-tree mortality is promoted. Such thresholds can include the minimum 267 

metabolism required for survival, failure to maintain membrane stability, inability to maintain the 268 

osmotic functions for the hydraulic system, or failure to maintain the defense system (Figs. 3,4).  269 

It is the interplay between the available carbon pools, their fluxes and the demands for 270 

survival that cause carbohydrate supply rates to not meet the requirements to avoid hydraulic 271 

failure108,146-148 or insect/pathogen defense failure82,149,150 (Figs.3, 4). If an insufficient supply rate 272 

of carbon substrates to required metabolic processes118 results from short- or long-distance 273 

transport constraints, for example through source strength impacts upon phloem loading and 274 

viscosity challenges151-154, failure of carbon-dependent processes could be promoted. Declining 275 
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resistance to xylem embolism has been associated with low carbohydrate concentrations148. 276 

Reduced carbon supply rates can promote osmoregulation failure, loss of protein and membrane 277 

stability, failure to scavenge free radicals, and reductions in cross-membrane transport of ions 278 

and amino acids118-125. Simultaneously, the carbon requirements for these processes increase with 279 

drought stress47,155-160, thus the carbon-safety margin, or the difference between carbon 280 

availability and demand, decreases with drought. Therefore, failure to maintain hydraulic 281 

integrity and cellular water content appear directly linked to the carbon economy of plants (Fig. 282 

3), particularly under longer droughts.  283 

[H2] The water-carbon-defense interdependency  284 

Attacks by biotic agents such as insects or pathogens are frequently concomitant with 285 

drought-associated mortality prior, during or shortly after the drought event84,161-163, and are 286 

likely interdependently associated with impacts on carbon and water relations (Figs. 3, 4). When 287 

a biotic attack occurs prior to drought, it can impact plants through defoliation or root loss, 288 

predisposing plants to subsequent mortality if the attack impaired their water and carbon 289 

economies (Figs. 3, 4). When drought stress predisposes trees to attack, it can lead to hydraulic 290 

failure if the vascular system is infected164-166. Biotic agents can disrupt carbon uptake and 291 

transport through leaf loss167, or depletion of carbohydrate reserves via direct consumption168,169, 292 

and they can stimulate a plant’s induced defense response170,171.  293 

The initiation of regional-scale outbreaks typically occurs during or after drought when 294 

the defensive capacity of host trees is constrained, and a critical number of vulnerable trees 295 

becomes susceptible across the landscape172-174. The level of stress that limits defensive function 296 

remains unknown owing to a lack of empirical evidence linking carbohydrates, hydraulics and 297 

defenses in field experiments with mature trees175. Experiments that preclude biotic attack, 298 
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however, such as caging, insecticide/fungicide and anti-aggregation pheromones, have 299 

demonstrated that some insects, fungi and other pathogens have the potential to directly move 300 

drought-weakened plants into the dying phase while those free of biotic attack survive49 (Fig. 3). 301 

In these cases, the roles of the plant water and carbon economies in defensive failure can be 302 

substantial. 303 

The water and carbon economies directly impact the defensive system such that failure of 304 

one component can lead to failure of another (Fig. 4). The relative water content and water 305 

potential of cells directly impacts turgor pressure and the substrate transport critical to 306 

defense176,177. Synthesis of secondary metabolites and metabolic transport costs of the defensive 307 

system depend directly on labile carbon availability for induced defenses176-179 (Fig. 4). Higher 308 

sugar concentrations are associated with reduced attack by insects and fungi, demonstrating the 309 

potential role of carbohydrates in defense, perhaps through fueling induced responses177,179. 310 

Defensive compounds have a particularly high carbon concentration180 and tend to be 311 

upregulated at the transcriptional level during drought181,182. Similarly, a rapid increase in 312 

defensive allocation upon attack has been associated with declining local carbohydrates171. Thus, 313 

defense incurs a substantial carbon cost183 (Fig. 4), suggesting that reduced carbohydrate supply 314 

rates could render the plant susceptible to biotic attack184,185. For example, conifers with fewer 315 

resin ducts formed in years prior to drought are frequently more likely to die during beetle 316 

attack114,170,186-189, consistent with a carbon constraint inducing defensive failure. When insects 317 

and pathogens reach epidemic levels, the attacks might switch from the poorly defended to the 318 

faster growing, well-defended plants due to the higher availability of resources available to the 319 

attacking agents130. Thus, defensive failure can be both a cause and a consequence of impaired 320 

water and carbon economies during drought (Fig. 3).  321 
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[H2] The interdependent framework of mechanisms 322 

This framework (Figs. 2-4) outlines the individual mechanisms within the larger processes 323 

that lead plants into the dying phase. As a plant enters a hotter drought with higher VPD, it must 324 

manage limited water resources amidst the edaphic and structural conditions that it enters the 325 

drought with (Fig. 2), including defensive dependence and hydraulic dependence on carbon 326 

allocation to sapwood, roots and foliage prior to the drought. As drought ensues and 327 

belowground and stomatal conductance declines to near zero, embolisms can accumulate, thus 328 

reducing whole-plant conductance and photosynthesis, setting up a feedback cycle. Once water 329 

fluxes approach zero, the finite pools and fluxes of water and carbon become exhaustible, while 330 

demands for allocation of carbohydrates to osmoregulation and maintenance of cellular, 331 

defensive and potentially hydraulic metabolism rise (Fig. 3). Thus, allocation to sapwood, roots, 332 

foliage and carbohydrates prior to drought, and to osmoregulation, cytorhrrysis tolerance and 333 

defense during drought, can all feedback directly upon the likelihood of hydraulic failure, with 334 

rising VPD causing a smaller threshold between survival and mortality. However, rising [CO2] 335 

might influence such mortality either through promoting structural overshoot or water use 336 

benefits, either promoting or delaying mortality as VPD rises (Box 1).  337 

 Potential thresholds also emerge from the mortality mechanisms framework. A decline in 338 

cellular water pools below the threshold for cytorrhisis is a clear point-of-no-return of lethal 339 

dehydration, which results from the chain of hydraulic events that lead to a threshold amount of 340 

hydraulic failure after which the cytorrhisis threshold was exceeded. The maintenance of the 341 

hydraulic system, avoidance of hydraulic failure, and minimization and tolerance of cellular 342 

dehydration might all depend directly on carbon pool sizes and fluxes to sites of demand. 343 

Likewise, induced defensive responses depend on localized fluxes of both water and 344 
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carbohydrates. These are all possible key failure points within the system -he loss of one can 345 

trigger a cascade of losses in the others. These individual or interdependent failures at small 346 

scales (tissue to organ), with VPD and [CO2] dependencies, will reduce survival likelihood at the 347 

whole-plant level.  348 

[H1] Environmental change impacts on mortality   349 

The observed increase in tree mortality (Fig. 1a) makes it imperative to further 350 

understand the potential impacts of rising [CO2] and VPD. Projections of future woody plant loss 351 

are now discussed, highlighting the potential roles of a changing environment on mortality and 352 

outlining the strengths and challenges facing the current generation of models for simulating 353 

mortality.  354 

[H2] Modeling climate impacts on drought-induced mortality 355 

Existing predictions of future forest mortality are limited, but all point to a common threat of 356 

increasing background mortality and die-off events. For example, according to an empirical 357 

model, regional-scale conifer loss is predicted across the Southwestern USA by 2050 owing to 358 

increases in VPD along with periodic droughts31. These findings were confirmed using multiple 359 

tree- and ecosystem-scale process models, with Earth system models predicting widespread 360 

conifer mortality throughout the northern hemisphere, again due to drying37. Predictions of 361 

increasing future mortality also exist for aspen, eucalypts, conifers and a broad suite of 362 

ecosystems under climate change190-192. While these models point to threats of woody plant 363 

mortality under warming and droughts, they are challenged in simulation of the combined 364 

impacts of rising VPD and [CO2]. 365 
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 To highlight how some potential mortality mechanisms respond to changing climate, a 366 

multi-model analysis of mortality likelihood under the independent and combined impacts of 367 

rising VPD and [CO2] are provided (Fig, 5; Supplementary Information). Trees are simulated in 368 

a Swiss forest where there were physiological observations of both dying and surviving Norway 369 

spruce (Picea abies) during a severe drought in 2018 (107). Model-predicted percentage loss of 370 

whole-tree conductance (PLCplant) is used as an index of the risk of mortality as prognostic of 371 

drought-associated mortality50,83,192; higher PLCplant indicate greater loss of conductance and a 372 

greater likelihood of hydraulic failure. Predicting mortality from PLC assumes that PLCplant 373 

captures any changes in carbon metabolism that might drive variation in PLC (Fig. 3). Model-374 

data evaluation suggests that models simulated surviving trees better than dying trees (Fig. 5a), 375 

particularly late in the mortality process, and so estimates of PLC in dying trees are conservative.  376 

The ensemble-mean results indicate several key roles of the changing atmosphere on 377 

drought-associated mortality. Firstly, surviving trees with deeper root systems and/or more 378 

resistant xylem exhibit similar responses to dying trees but with one distinction: surviving trees 379 

consistently have lower PLCplant than dying trees (Figs. 5b, 5c). Secondly, relative to the baseline 380 

2018 simulations, elevated [CO2] consistently alleviates mortality risk (Fig. 5) by reducing water 381 

loss through stomatal closure, prolonging maintenance of belowground conductance, increasing 382 

xylem water potentials, and hence reducing PLCplant
192 (Figs. 3, 5). Simulated water savings are 383 

consistent with observations of decreased stomatal conductance with increasing [CO2]
193-195, 384 

potentially reducing water loss and slowing the depletion of both plant and soil water pools. 385 

However, such maintenance of soil water pools arising from reduced transpiration is not 386 

frequently observed196-199 due to the compensating effects of increased crown leaf area on water 387 

use. Beyond what was modeled, rising [CO2] also increases photosynthetic rates39 and defensive 388 
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allocation200, and influences hydraulic architecture201, mitigating the risk of carbon limitations 389 

and defensive failure. Carbohydrate pools are generally reduced by drought and increased by 390 

elevated [CO2]
202, thus potentially balancing each other.  391 

VPD can act in the opposite direction of [CO2] in its impact on mortality likelihood. The 392 

model simulations indicate that elevated VPD induces higher PLCplant compared to the 2018 393 

scenario (Fig. 5) owing to increased evaporation from foliage and soils34, and thus decreased 394 

belowground conductance. When belowground conductance approaches zero and stomata are 395 

closed (Fig. 3), the benefits of [CO2] are manifest to a lesser extent. Furthermore, once the plant 396 

is relatively disconnected from external resources and is dependent on its internal resource pools, 397 

elevated VPD acts to accelerate the depletion of internal water reserves through evaporation via 398 

gres. This evaporative loss is accentuated during heat waves owing to the temperature sensitivity 399 

of gres in which the cuticular permeability can dramatically increase above 40°C89,90.  400 

The ensemble-mean simulation results for the elevated [CO2] and elevated VPD 401 

combined scenario suggests a slight increase in mortality likelihood (Fig. 5). However, given the 402 

inter-model variability, such a slight increase might be insignificant and within the variation 403 

across the models. Nonetheless, these results suggest that warming-based VPD increases could 404 

balance the ameliorating gains from elevated [CO2]. This balancing of the benefits of elevated 405 

[CO2] with the consequences of elevated VPD is consistent with the shared time-to-death of 406 

elevated [CO2] and ambient [CO2] drought experiments203,204, but contrasts with the increases in 407 

mortality observed globally (Fig. 1a). Given that the model-data evaluation revealed an 408 

overestimation of the water potential of dying trees (Fig. 5a), it is possible that the predicted 409 

increases in mortality under the elevated [CO2] and VPD scenario are underestimated.  410 
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While not modeled in the simulations, it is important to note that the impact of rising 411 

[CO2] on photosynthesis and carbohydrate pools also has implications for defense against biotic 412 

attack. Defensive failure can occur via shifts in total nonstructural carbohydrates, specific leaf 413 

area, and reallocation of leaf nitrogen, all of which alter plant host quality, and thus, suitability 414 

for herbivores205. Elevated [CO2] also affects host susceptibility and resistance to biotic attack by 415 

altering the synthesis or down-regulation of phytochemical defense compounds206. However, 416 

complete resource budgets that document the fluxes and pools of carbon to and from the defense 417 

system has not been done, potentially limiting the capacity of models to forecast future mortality. 418 

[H2] Mortality mechanisms under rising VPD and [CO2] 419 

When examined within the context of rising VPD and [CO2], several clear hypotheses 420 

originate from the proposed drought-associated mortality framework (Figs. 2-4) and the model 421 

results (Fig. 5). Perhaps the most critical hypotheses are that drought-associated mortality is 422 

triggered physiologically by severe declines in belowground hydraulic conductance, with the 423 

concurrent water loss, and the water and carbon-based thresholds for cytorrhisis, all linking 424 

together to drive plants into the dying stage(Figs.2-4).  Further, the logical emergent hypothesis 425 

is that rising VPD negatively impacts plant survival during drought, whereas rising [CO2] can 426 

have both positive and negative impacts on mortality likelihood (Box 1). These hypotheses are 427 

well supported by non-mortality research but have rarely been examined in relation to drought-428 

induced death203,204.  429 

 Hypothesized mechanisms underlying these responses also emerge. As exposure to VPD 430 

accumulates, both through prolonged chronic rises and extreme events, water loss increases 431 

which, if not met by increased belowground supply, forces plant water pools to decline. 432 

Furthermore, rising VPD promotes stomatal closure, which reduces carbon supply at the whole-433 
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plant scale. Rising [CO2], in contrast, can reduce water loss through stomatal closure and 434 

increase photosynthetic rates, leading to higher water content and carbon supply, subsequently 435 

reducing mortality likelihood (Box 1). However, structural overshoot leading to reduced root 436 

allocation relative to shoot allocation can predispose trees to mortality through reductions in both 437 

water and carbon supply-demand during drought. Structural overshoot could also potentially 438 

happen at the stand level, in which larger biomass leads to more competition for finite resources 439 

(including water and nutrients207) during drought.  440 

The interdependency between carbon- and water-related mechanisms of drought-441 

associated mortality suggest that cytorrhisis occurs when the carbon supply rate needed to 442 

maintain hydraulic function exceeds a minimum threshold for survival (Box 1). An equally likely 443 

hypothesis is that water content can fall below the threshold for cytorrhisis before the minimum 444 

carbon supply rate is surpassed. Both scenarios could occur depending on the length of the 445 

drought and the accumulated exposure to VPD. For example, particularly severe droughts with 446 

higher cumulative VPD might promote more rapid drops in water content than in carbon supply 447 

rate, thus exceeding the water content threshold for mortality prior to that for carbon supply rate. 448 

Therefore, an associated critical test is to determine the water content and carbon supply rate 449 

thresholds and how they respond to increasing cumulative VPD and [CO2].  450 

[H1] Challenges to modeling mortality   451 

Models provide useful hypothesis-generating tools for understanding the impacts of a 452 

changing environment on mortality (Fig. 5). Models have improved considerably in the 453 

representation of water and carbohydrate dynamics at the organ to whole-plant level, and 454 

implemented at scales from individual plants to the terrestrial biosphere51-56,89,208-210. The 455 

coupling between carbon and water at both long and short-time scales can now be 456 
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represented208,209, although many of the carbon-water interdependencies in the proposed 457 

framework (Fig. 3) are either not yet developed or remain un-tested. Furthermore, gas exchange 458 

is represented ever more elegantly192. Some models also represent cuticular fluxes and their 459 

temperature sensitivity and the subsequent drawdown of internal water pools89 (Fig.3). Many 460 

models are also trait-based and incorporate parameters that are potentially critical to mortality 461 

(Fig. 3), some of which can be empirically measured a priori, allowing mechanistically-462 

constrained parameterization and large scaling potential191.  463 

Nevertheless, there remain numerous modeling challenges for those processes that are 464 

represented and those that are not, owing in part, to the interactive nature of mortality drivers and 465 

mechanisms. These challenges are highlighted by the model analyses which in some cases failed 466 

to capture the particularly negative water potentials of dying trees (Fig. 5a). For those processes 467 

captured by models, there can be difficulty in constraining the response functions. For example, 468 

belowground conductance is poorly constrained owing to a lack of empirical measurements. 469 

Furthermore, some processes that might be critical to mortality are not yet represented by 470 

ecosystem-process models, notably biotic agents, the attacks of which often coincide with 471 

drought170. Few models additionally represent the starvation-related mechanisms that could 472 

promote the mortality process, including the carbohydrate dependency of metabolism, 473 

osmoregulation, and hydraulic and defensive functions. Failure of phloem transport can 474 

exacerbate localized carbon starvation133,147,211 but is rarely modeled (but see 152). Representation 475 

of these processes will require more empirical and numerical testing to justify their inclusion in 476 

already complex modeling schemes.  477 

A further challenge in modelling woody-plant mortality is absence of acclimation [G], 478 

partly related to a lack of knowledge of what parameters acclimate and at what rate. If 479 
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acclimation keeps pace with changes in climate and [CO2], multiple traits could enhance survival 480 

likelihood. Some traits that could acclimate to reduced water loss under elevated [CO2] and VPD 481 

include reductions in maximum stomatal conductance (gmax), gres, and individual plant leaf area, 482 

along with increases in embolism resistance (estimated as the pressure at which 50% of 483 

conductance is lost, or P50).  484 

The impacts of these trait shifts on mortality likelihood were assessed using the Sureau 485 

model, representing a spruce tree in the year 2100 (Fig. 6). In this set of scenarios if gres and P50 486 

decline by 10%, PLC declines (within distal branches) from >90 to ~35%. Similar 10% declines 487 

in gmax and individual leaf area push PLC likelihood from >90 all the way to 0%. These declines 488 

in PLC likelihood translate into declining risk of mortality. Accordingly, reductions in these traits 489 

are beneficial to survival under a changing environment (though reductions in all but gres will 490 

constrain carbon uptake). gmax might acclimate193,194,212, while P50 has exhibited acclimation 491 

potential in angiosperms213 but less so in gymnosperms214. Acclimation to elevated [CO2] results 492 

in larger leaf area203,204,215, which would increase the likelihood of elevated mortality. 493 

Acclimation of gres to long-term warming is unlikely to buffer plants from hydraulic risks during 494 

punctuated heat waves90. These shifts can all reduce the likelihood of critical dehydration 495 

through reductions in water demand per unit leaf area, but they have potential negative 496 

consequences on the carbon economy through reductions in whole plant photosynthesis (via 497 

reduced leaf area and gmax).  498 

Ultimately, acclimation could be important in survival over longer-time periods. 499 

However, punctuated droughts and heat waves can occur much too rapidly for acclimation to 500 

manifest (except in the case of leaf loss, which occurs in angiosperms during droughts and 501 

heatwaves215,216) and exacerbate mortality35. Heat waves are of particular concern because they 502 
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dramatically increase VPD and leaf temperature when water availability is limited, with foliage 503 

typically dying at temperatures above 54°C217. Beyond acclimation, the extension of the 504 

phenological cycle through elevated temperature in temperate and boreal regions could, however, 505 

mitigate some of the above-mentioned challenges to the potential of acclimation to mitigate 506 

mortality likelihood218-220, with complicated impacts on mortality-reproduction relationships in 507 

masting species221. A longer growing season can also promote greater water loss, so the net 508 

impacts remain unknown.  509 

 510 
[H1] Summary and future perspectives 511 
 512 

Increasing background mortality rates (Fig. 1a) are alarming in the context of the strong 513 

current and future increases in their environmental drivers (Fig. 1b, 1c). The broad geographic 514 

distribution of rising mortality suggests a globally distributed driver, which is consistent with 515 

physiological theory (Fig. 2-4) and model results (Fig. 5) that suggest elevated [CO2] and VPD 516 

could be critical drivers (Box 1). Mortality appears to be initiated by severe reductions in 517 

belowground conductance and subsequent increased risk of hydraulic failure as embolism 518 

increases with continued water loss from gres, and carbon starvation as stomata shut and thus 519 

curtail photosynthesis (Fig. 3). Lost hydraulic conductance most immediately increases the risk 520 

of hydraulic failure, but if drought is sufficiently prolonged, can deplete carbohydrate stores and 521 

fluxes required to maintain metabolism and defense (Fig. 4). Acclimation to drought, [CO2] and 522 

VPD could provide some buffering of mortality against environmental change, if such 523 

acclimation is of sufficient magnitude and speed to accommodate the rapid rate of climate change 524 

(Fig. 1b, 1c, 5). The emergent framework generates a set of hypotheses that require testing if 525 

understanding and simulation woody-plant mortality is to be improved under a changing climate.  526 
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The proposed framework identifies considerable experimental challenges, particularly for 527 

quantifying the key mortality mechanisms and thresholds, and the carbon-water-defense 528 

interdependencies that matter most to survival. For example, we must identify the point-of-no-529 

return value for each critical pool and flux (Figs. 2-4), their timing of achieving the threshold, 530 

and their dependence upon interacting mechanisms. Identifying these thresholds and their 531 

underlying mechanisms is achievable through detailed experimentation that investigates the 532 

dynamics and interdependencies of the hydraulic, carbon and defensive mechanisms, pools and 533 

fluxes, during the dying process.  534 

In addition to experimental challenges, multiple steps can be taken to test the hypotheses 535 

regarding mortality mechanisms (Figs. 2-4). Understanding the predisposing factors, such as 536 

differences in carbon allocation to water conduction traits and how they predispose or protect 537 

plants from drought-associated death, will require long-term observational and experimental 538 

studies. Examining the timing and magnitudes of hydraulic limitations (Fig. 3), and the hydraulic 539 

point-of-no-return is feasible69. However, a substantial challenge remains to quantify 540 

belowground hydraulic dynamics accurately93, including xylary and extra-xylary components of 541 

the pathway. Identifying when and where belowground conductance approaches zero is critical 542 

as it sets the rest of the mortality mechanisms into motion101 (Fig. 3) and is likely essential to 543 

accurate modeling (Fig. 5). Likewise, identifying dehydration thresholds and quantifying how 544 

long plants can survive on water stores, while losing water to gres under a warming atmosphere, is 545 

a large but critical challenge.  546 

Many components of the proposed carbon failure process are also possible to measure. 547 

However, identifying the key carbon-based mechanisms leading to mortality will require 548 

substantial investment in developing detailed carbon budgets at both the whole-plant and the 549 
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cellular scales, as has been done for Arabidopsis under mild drought222. Such carbon budgets 550 

must integrate and quantify the fluctuating carbon demands for metabolic and defensive 551 

maintenance, osmoregulation and hydraulic function, and can use metabolomic, transcriptomic 552 

and proteomic approaches.  553 

The role of biotic agents is also crucial to test but is challenged, in particular, by the lack 554 

of knowledge of the exact role of specific defense compounds223-225. Nonetheless, manipulative 555 

exclusion and inclusion experiments with biotic agents coupled to detailed defensive-carbon 556 

budgets could be used to advance understanding of failure to defend against biotic attack. 557 

Ultimately, all of these thresholds can be used to identify the mechanism underlying the mortality 558 

threshold, or the point-of-no-return. 559 

 The role of temporal and spatial shifts in mechanisms that lead to mortality (Figs. 2-4) are 560 

a largely unexplored frontier that must be addressed to reduce model uncertainty. We must 561 

determine to what degree can acclimation promote survival, and to what degree does a lack of 562 

acclimation promote mortality? For plants that can adjust rooting depths, gres, gsmax, P50, leaf area 563 

(Fig/ 6), and other critical variables prior to severe droughts, survival likelihood is increased. If 564 

they shift at all215, the rate of shifts in these variables must be quantified to enable improved 565 

predictions. However, non-adaptive acclimation is also a threat, in which extended periods of 566 

mesic conditions could promote carbon allocation to increased leaf area and decreased root area 567 

(or decreased sapwood area or a myriad of other shifts) that predispose the plant to death when 568 

water limitations are severe79,216. Scaling of predictions to the ecosystem, region, and globe 569 

requires consideration of the distinct allometries and allocation patterns of different species/plant 570 

functional types137 and on the distribution of plant roots relative to ephemeral versus constant 571 

water sources209,226,227. Furthermore, the role of stand density remains a large question228,229. If 572 
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rising [CO2] promotes increasing stand density during periods of abundant precipitation, then 573 

when a drought occurs, the stand might be overstocked relative to the sites ability to provide 574 

water, thus promoting mortality. This process, however, is not observed in all regional 575 

situations228,229.  576 

 Ultimately the model predictions of tree mortality are critical to estimates of the future 577 

terrestrial carbon sink, land-atmosphere interactions and hence the rate of climate warming230. 578 

Maximizing predictive accuracy requires understanding the mechanistic basis for mortality and 579 

simultaneously identifying the simplest and most parsimonious approach to modeling mortality 580 

at broad scales. Models should be validated at each temporal and spatial scale and applied to aid 581 

understanding of future mortality risks. Understanding and predicting the interdependent 582 

mechanisms of mortality under climate warming is a critical research priority for disciplines 583 

ranging from tissue-level physiology to global-scale prediction.  584 

 585 
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Figure 1. Changing tree mortality and climate variables. a| observed (grey) and linearly 1330 

projected (red) tree mortality rates for N. America1,2, the Amazon6, Europe11 and the Congo 1331 

Basin6. Grey shading represents 95% confidence intervals. b| Average simulated [CO2], surface 1332 

temperature, relative humidity and vapor pressure deficit for grid points only over global 1333 

vegetated land. Projections are based on RCP8.5. c| Simulated drought frequencies relative to the 1334 

historical mean over 1850-1999; values <1 indicate lower frequency compared to historical, and 1335 

those >1 indicate greater frequency compared to historical. Drought frequency is based on 1336 

extreme plant-available soil water (<2 percentile during 1850-1999). Projections follow RCP8.5 1337 

using 13 models from CMIP5. See36 for details of calculations. Increasing atmospheric drivers 1338 

of mortality are consistent with increasing mortality rates, except in the Congo.  1339 

 1340 

Figure 2. The interconnected mortality process. A hypothetical representation of the mortality 1341 
processes from predisposing factors to death. Predisposing factors are linked to mortality via the 1342 

mechanisms in the second innermost ring, which subsequently cause a plant to pass a threshold 1343 
beyond which mortality is inevitable. Figure inspired by 83. The death spiral results from the 1344 

interaction of external drivers, the processes of hydraulic failure and carbon starvation, and their 1345 
underlying, interdependent mechanisms. VPD = vapor pressure deficit.  1346 

 1347 

Figure 3. Mechanisms that lead towards mortality. Hypothesized mechanisms, including 1348 

pools and fluxes, that influence mortality as drought progresses. Primary water and carbohydrate 1349 

pools are in blue and green circles, respectively, with their fluxes as resistors and green arrows. 1350 

Interactions between water and carbon pools are in orange. As drought progresses, stomatal and 1351 

belowground conductance decline to near zero. gres (residual conductance from foliage and bark 1352 

post-stomatal closure) then dominates water loss, and plant survival depends on the finite, stored 1353 

carbon and water pools. Ultimately dehydration and depletion of these pools promotes sustained 1354 

negative turgor (dashed orange circles) followed by meristem death (dashed red circles) from the 1355 

cellular water content falling below a threshold for cellular rupture. The black circle within the 1356 

stem and root carbohydrate pools indicates the point at which there is insufficient carbohydrates 1357 

to recover via regrowth. NSC = non-structural; gs = stomatal conductance. 1358 

 1359 

Figure 4. The linkage between woody-plant’s defense systems and biotic attack. a| Pre-1360 

drought, water and carbon pools and supply rates are sufficient to support the demand for 1361 

defense, osmotic regulation, metabolism and other functions. b| During drought, the demand for 1362 

osmotic regulation increases as water and carbon pools and supply rates decline. c| Once biotic 1363 

agents attack, the demand for defense increases, potentially beyond that which can be supported 1364 

by the water and carbon pools and fluxes. This viewpoint suggests that if any component of the 1365 

system fails, it can lead to the cessation of the interdependent distal processes critical to survival. 1366 

NSC: non-structural carbohydrates. 1367 

 1368 
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Figure 5. Simulated whole-plant hydraulic failure during drought-associated mortality. a| 1369 
Multi-model ensemble mean predictions of plant water potential compared to observed values in 1370 
a mature Norway spruce forest during a drought-associated mortality event separated by 1371 

surviving and dying trees. b| Model predictions of mortality via elevated percentage loss of 1372 
conductance (PLC) under varying [CO2] and vapor pressure deficit (VPD) for those trees that 1373 
survived the 2018 drought. Lines represent the ensemble mean values for each climate scenario, 1374 
where ambient represents the control simulation using 2018 observed climate The shaded areas 1375 
represent the standard error around the ensemble mean. Future [CO2], VPD, temperature and 1376 

relative humidity are derived for the region using downscaled simulations from EURO-1377 
CORDEX231. c| as in b, but for dying trees (those that did not survive the 2018 drought). The 1378 
models and modeling approach are described in the supplemental information. Elevated [CO2] 1379 
could alleviate mortality risk while elevated VPD can increase it.  1380 

  1381 

Figure 6. Trait acclimation can reduce mortality likelihood. Sensitivity analysis, using the 1382 

Sureau model, in which a spruce tree under elevated [CO2] and VPD (from Fig. 5) is allowed to 1383 

shift traits as [CO2] rises. The individually shifted parameters are leaf area, P50, gres, and gmax. If 1384 

any of these parameters decline as [CO2] rises, they are predicted to reduce the likelihood of 1385 

mortalty, indexed as percentage loss of conductivity (PLC), through the influences upon water 1386 

loss (leaf area, gres, and gmax) and tolerance to water loss (P50).  1387 

 1388 

Box 1. The impact of rising VPD and [CO2] on mortality risk.  1389 

Increasing cumulative vapor pressure deficit (VPD) exposure (like temperature degree days232) 1390 

ultimately cause plant water content (blue line) and carbon supply (green line) to decrease 1391 

towards a threshold of lethal dehydration during drought. The mortality thresholds (blue and 1392 

green dashed lines) vary with cellular resistance to cytorrhysis from water and carbon supply 1393 

limitations. The mortality threshold for water content is assumed to be unchanging with 1394 

accumulating VPD, and for carbon supply is assumed to increase with VPD due to increased 1395 

maintenance requirements233. There is a wide range of functional spaces the curves and mortality 1396 

thresholds could occupy, with edaphic, taxa, VPD, and [CO2] all having a regulatory role. While 1397 

not represented, temperature causes a small range of negative responses due to its impacts on 1398 

water and carbon demand (gres and respiration rates, respectively). The hypothesized responses 1399 

shown here have been rarely tested owing to limited research that has manipulated either VPD or 1400 

[CO2] under drought.  1401 

This schematic, built upon the proposed mechanistic framework (Figures 2-4), presents 1402 

hypotheses regarding the interdependency of the carbon- and water-related processes, their 1403 

thresholds and their responses to VPD and [CO2].  1404 

 [b1] Hypothesis 1: Accumulating greater exposure to VPD, particularly during drought, reduces 1405 

plant water content because it increases the demand for transpiration relative to supply. 1406 
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[b1] Hypothesis 2: As water content declines, the risk of hydraulic failure increases, leading to a 1407 

feedback loop of increasing dehydration.  1408 

[b1] Hypothesis 3: Greater VPD exposure reduces whole-plant carbon supply through reduced 1409 

stomatal conductance to [CO2].  1410 

[b1] Hypothesis 4: Rising cumulative VPD forces a decline in photosynthesis to near zero as 1411 

transpiration increases to an upper threshold, exacerbating both carbon supply and water pool 1412 

declines. However, under particularly high temperature and VPD, transpiration can decline235,236 1413 

as hydraulic failure progresses.  1414 

[b1] Hypothesis 5: Reduced [CO2] supply at plant and tissue levels pushes the plant towards the 1415 

lethal threshold.  1416 

[b1] Hypothesis 6: Elevated [CO2] shifts the trajectory of the response of water content and 1417 
carbon supply to accumulating VPD exposure.  1418 

[b1] Hypothesis 7: Water pools could increase if rising [CO2] reduces transpiration.  1419 

[b1] Hypothesis 8: Plant-level carbon supply rate increases via [CO2] induced photosynthetic 1420 
stimulation.  1421 

[b1] Hypothesis 9: If structural overshoot76 occurs such that the shoot:root increases, larger 1422 

biomass requires water and carbon during droughts and heat waves, accelerating progression 1423 
towards the lethal thresholds. Higher leaf area can increase carbon uptake prior to drought, 1424 

however, shifting the carbon supply rate above the assumed trajectory.  1425 

[b1] Hypothesis 10: Overshoot at the stand level through increasing plant density should also 1426 
reduce water and carbon supply-demand through increased competition for finite resources. 1427 

  1428 
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 1429 

Glossary   1430 

Acclimation: structural or physiological shifts in response to external drivers 1431 

Background mortality: mortality rates in the absence of disturbances. 1432 

Biotic agents: Living organisms – especially fungi, bacteria, and insects– that interdependently 1433 

impact the water and carbon economies of plants. 1434 

Carbon starvation: the process by a limited carbohydrate supply rate impairs maintenance of 1435 
carbon-dependent metabolic, defense, or hydraulic functions.  1436 

Cytorrhysis: irreparable damage to cell walls after cellular collapse from the loss of internal 1437 
positive pressure.  1438 

Die-back: the partial loss of canopy or root biomass, without whole-plant mortality. 1439 

Die-off: widespread and rapid mortality of a species or community. 1440 

Drought: a period of anomalously low precipitation. 1441 

Dying: committed to death; beyond the point of no return; to have passed a threshold beyond 1442 

which mortality is certain 1443 

Failure of water relations: impairment of the interacting water and carbon processes that forces 1444 
declines in water supply and subsequent dehydration.  1445 

Hydraulic failure: the accumulation of emboli within the sapwood past a threshold after which 1446 

water transport is irrecoverable. 1447 

Mechanism: a system of parts working together within a process; a piece of the machinery. 1448 

Meristematic cells: undifferentiated cells capable of division and formation into new tissues 1449 

Mortality: the irreversible cessation of metabolism and the associated inability to regenerate.  1450 

Process: a series of mechanisms that leads to an endpoint 1451 

Threshold: the magnitude or intensity that must be exceeded to cause a reaction or change. 1452 

 1453 

ToC blurb 1454 

Enhanced drought frequency and magnitude have impacted tree mortality, leading to multiple 1455 
examples of regional-scale die back. This Review outlines the mechanisms leading to mortality, 1456 

including carbon starvation and hydraulic failure.  1457 

 1458 

Figures 1459 
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Fig 1. Changing tree mortality and climate variables. a) Observed (grey) and linearly projected 1461 

(red) tree mortality rates for North America1,2 , the Amazon6 , Europe11 and the Congo Basin6 . 1462 
Grey shading represents 95% confidence intervals. b) Average simulated CO2, surface 1463 

temperature, relative humidity and vapour pressure deficit for grid points only over global 1464 
vegetated land. Projections are based on RCP8.5. c) Simulated drought frequencies relative to the 1465 
historical mean (1850–1999); values <1 indicate lower frequency compared with historical and 1466 
those >1 indicate greater frequency compared with historical. Drought frequency is based on 1467 
extreme plant-available soil water as <2 percentile of the 1850–1999 period. Projections follow 1468 

RCP8.5 using 13 models from CMIP5. See reF.34 for details of calculations. Increasing 1469 
atmospheric drivers of mortality are consistent with increasing mortality rates, except in the 1470 
Congo. 1471 

 1472 

 1473 

Fig. 2. The interconnected mortality process. A hypothetical representation of the mortality 1474 

processes from predisposing factors to death. Predisposing factors are linked to mortality via the 1475 

mechanisms in the second innermost ring, which subsequently cause a plant to pass a threshold 1476 
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beyond which mortality is inevitable. The death spiral results from the inter- action of external 1477 

drivers, the processes of hydraulic failure and carbon starvation, and their underlying, 1478 

interdependent mechanisms. VPD, vapour pressure deficit. Figure inspired by reF.80 . 1479 

 1480 

 1481 

 1482 

Fig. 3. Mechanisms that lead towards mortality. Hypothesized mechanisms, including pools and 1483 

fluxes, that influence mortality as drought progresses. Primary water and carbohydrate pools are 1484 

in blue and green circles, respectively, with their fluxes asresistors and green arrows. Interactions 1485 

between water and carbon pools are in orange. As drought progresses, stomatal and belowground 1486 

conductance decline to near zero. gres (residual conductance from foliage and bark post-stomatal 1487 

closure) then dominates water loss and plant survival depends on the finite, stored carbon and 1488 

water pools. Ultimately, dehydration and depletion of these pools promotes sustained negative 1489 

turgor (dashed orange circles), followed by meristem death (dashed red circles) from the cellular 1490 

water content falling below a threshold for cellular rupture. The black circle within the stem and 1491 

root carbohydrate poolsindicatesthepointatwhichthereisinsufficientcarbohydratestorecover via 1492 

regrowth. gs, stomatal conductance; NSC, non-structural carbohydrate. 1493 

 1494 
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  1495 

Fig. 4. The linkage between woody plant’s defence systems and biotic attack. a) Pre-drought, 1496 

water and carbon pools and supply rates are sufficient to support the demand for defence, 1497 

osmotic regulation, metabolism and other functions. b) During drought, the demand for osmotic 1498 

regulation increases as water and carbon pools and supply rates decline. c) Once biotic agents 1499 

attack, the demand for defence increases, potentially beyond that which can be supported by the 1500 

water and carbon pools and fluxes. This viewpoint suggests that, if any component of the system 1501 

fails, it can lead to the cessation of the interdependent distal processes critical to survival. NSC, 1502 

non-structural carbohydrate.  1503 

 1504 

 1505 

 1506 

 1507 
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 1508 

Box 1. The impact of rising vPD and Co2 on mortality risk Increasing cumulative vapour pressure deficit 1509 

(VPD) exposure (such as temperature degree days)228 ultimately causes plant water content (see the 1510 

figure, blue line) and car- bon supply (see the figure, green line) to decrease towards a threshold of 1511 

lethal dehy- dration during drought. The mortality thresholds (see the figure, blue and green dashed 1512 

lines) vary with cellular resistance to cytorrhysis from water and carbon supply limita- tions. The 1513 

mortality threshold for water content is assumed to be unchanging with accumulating VPD and, for 1514 

carbon supply, is assumed to increase with VPD due to increased maintenance requirements229 . There 1515 

is a wide range of functional spaces that the curves and mortality thresholds could occupy, with edaphic, 1516 

taxa, VPD and CO2 all having a regulatory role. While not represented, temperature causes a small range 1517 

of negative responses due to its impacts on water and carbon demand (residual conduct- ance (gres) and 1518 

respiration rates, respectively). The hypothesized responses shown here have been rarely tested, owing 1519 

to limited research that has manipulated either VPD or CO2 under drought. 1520 

The figure, built upon the proposed mechanistic framework (Figs 2–4), presents hypotheses regarding 1521 

the interdependency of the carbon-related and water-related processes, their thresholds and their 1522 

responses to VPD and CO2. • Hypothesis 1: accumulating greater exposure to VPD, particularly during 1523 

drought, reduces plant water content because it increases the demand for transpiration relative to 1524 

supply. 1525 

• Hypothesis 2: as water content declines, the risk of hydraulic failure increases, leading to a feedback 1526 

loop of increasing dehydration. 1527 

• Hypothesis 3: greater VPD exposure reduces whole-plant carbon supply through reduced stomatal 1528 

conductance to CO2. 1529 

• Hypothesis 4: rising cumulative VPD forces a decline in photosynthesis to near zero as transpiration 1530 

increases to an upper threshold, exacerbating both carbon supply and water pool declines. However, 1531 

under particularly high temperature and VPD, transpiration can decline as hydraulic failure progresses. 1532 

• Hypothesis 5: reduced CO2 supply at plant and tissue levels pushes the plant towards the lethal 1533 

threshold. 1534 

• Hypothesis 6: elevated CO2 shifts the trajectory of the response of water content and carbon supply to 1535 

accumulating VPD exposure. 1536 
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• Hypothesis 7: water pools could increase if rising CO2 reduces transpiration. 1537 

• Hypothesis 8: plant-level carbon supply rate increases via CO2-induced photosynthetic stimulation. 1538 

• Hypothesis 9: if structural overshoot73 occurs such that the shoot-to-root ratio increases, larger 1539 

biomass requires water and carbon during droughts and heatwaves, accelerating progression towards 1540 

the lethal thresholds. Higher leaf area can increase carbon uptake prior to drought however, shifting the 1541 

carbon supply rate above the assumed trajectory. 1542 

• Hypothesis 10: overshoot at the stand level through increasing plant density should also reduce water 1543 

and carbon supply demand through increased competition for finite resources. 1544 

 1545 
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  1546 



57 
 

Fig. 5. Simulated whole-plant hydraulic failure during drought-associated mortality. a) Multi-model 1547 

ensemble-mean predictions of plant water potential com- pared with observed values in a mature 1548 

Norway spruce forest during a drought-associated mortality event separated by surviving and dying 1549 

trees. b) Model predictions of mortality via elevated percentage loss of conductance (PLC) under varying 1550 

CO2 and vapour pressure deficit (VPD) for those trees that survived the 2018 drought. Lines represent 1551 

the ensemble-mean values for each climate scenario, where ambient represents the control simulation 1552 

using 2018 observed climate. The shaded areas represent the standard error around the ensemble 1553 

mean. Future CO2, VPD, temperature and relative humidity are derived for the region using downscaled 1554 

simulations from EURO-CORDEX227 . c) As in panel b but for dying trees (those that did not survive the 1555 

2018 drought). The models and modelling approach are described in the Supplemental Information. 1556 

Elevated CO2 could alleviate mortality risk, while elevated VPD can increase it. 1557 

 1558 

 1559 

Fig. 6. Trait acclimation can reduce mortality likelihood. Sensitivity analysis, using the SurEau model, in 1560 

which a spruce tree under elevated CO2 and vapour pressure deficit (from Fig. 5) is allowed to shift traits 1561 

as CO2 rises. The individually shifted parameters are leaf area, P50, gres and gmax. If any of these 1562 

parameters decline as CO2 rises, they are predicted to reduce the likelihood of mortality, indexed as 1563 

percentage loss of conductance (PLC), through the influences upon water loss (leaf area, gres and gmax) 1564 

and tolerance to water loss (P50). 1565 


