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Abstract
Predicting wind flow in highly complex terrain like the Alps is a challenge for
all models. When physical processes need to be resolved in a spatially explicit
manner, grids with high horizontal resolution of a few hundred meters are
often required and drastically limit, in many cases, the extent and duration of
the simulations. Many surface process models, like the simulation of hetero-
geneous snow cover across a season, however, need long time series on large
domains as inputs. Statistical downscaling can provide the required data, but
no model can reach the desired resolutions effectively and provide temporally
resolved wind speed and direction on highly complex topography. The assess-
ment of the potential for wind energy in the Alps, a promising player in the
energy transition, is an example where the current shortcomings cause strong
limitations. We present “Wind-Topo”, a novel approach based on deep learning
that discovers some of the interactions between high-resolution topography and
coarser-resolution states of the atmosphere to generate near-surface wind fields
with a 50-m resolution. In our test case, we use a large number of measurement
stations in Switzerland to train the model and an operational weather predic-
tion model (COSMO-1) as predictor. Wind-Topo employs a custom architecture
that analyses the state of the atmosphere on various scales and associates it
with high-resolution topography. A dedicated loss function leads to good scoring
metrics as well as accurate wind-speed distributions at 60 independent sta-
tions used for a thorough validation. 50-m resolution wind fields are generated
efficiently and exhibit several expected orographic effects like ridge accelera-
tion, sheltering, and deflection. Furthermore, the bias and mean absolute error
from COSMO-1 at the alpine validation stations, which are 0.72 and 1.77 m⋅s−1

respectively, are reduced to −0.07 and 1.21 m⋅s−1.
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1 INTRODUCTION

In complex terrain, synoptic wind flows are trans-
formed by their interaction with the topography and by
near-surface processes generating local winds. Numer-
ical weather prediction (NWP) models are increasingly
more capable of reproducing such effects, thanks to the
constant improvement of their resolution, dynamical
cores, and parametrizations. In highly complex terrain
like the Alps, fine-scale models are required to resolve
the terrain correctly and obtain flows that are close to
observations. Despite the improvements in NWP models,
a trade-off still exists between the extent of the simula-
tion’s domain, its resolution, and the modeled period.
In highly complex terrain, given the required resolution,
large domains cannot be modeled for long periods. The
modeling of many surface processes like snow preferen-
tial deposition and transport, however, requires long time
series of high-resolution wind fields on large domains
(Mott et al., 2010; Vionnet et al., 2021). This is also true for
wind-energy potential assessment in such types of terrain,
where spatial variability is high.

A solution to the limitation in computational resources
is to use NWP models at coarser resolution, succeeded
by a statistical downscaling model. The former describe
the state of the atmosphere on a coarse topography and
the latter uses empirical relationships between these data
and another source of information that describes the true
nature of the wind. This ground-truth information can
have various origins, but it may represent the best par-
tial description of wind flow in real terrain yet. Statistical
downscaling is employed in many fields and on many
types of data. In complex terrain, wind and precipitation
are the prime examples, because of their high spatial vari-
ability and importance in surface process modeling. A
vast repertoire of techniques is also available. Machine
learning is gaining importance in environmental sciences
(Hsieh, 2009), and its extension deep learning begins to
offer state-of-the-art results (Reichstein et al., 2019).

For downscaling wind in complex terrain, two dif-
ferent approaches are employed, depending on whether
the ground truth comes from measurements or from
high-resolution NWP models. Philippopoulos and Deli-
giorgi (2012) trained an artificial neural network (ANN) to
predict the hourly wind speed at a certain station given the
measurements from other stations in Greece. Dupuy et al.
(2021) also used an ANN to estimate hourly wind speed at
a French station, but from values predicted by the Weather
Research and Forecasting (WRF) model with 3-km resolu-
tion. Similarly, Goutham et al. (2021) used analyses from
the European Center for Medium-Range Weather Fore-
casts (ECMWF, 9 km resolution) as a predictor for random
forest or gradient-boosting models to predict wind speed

at 171 French stations. These studies calibrated (trained)
point-to-point models that were only capable of predict-
ing wind speed at specific locations. To obtain spatially
distributed predictions, Manor and Berkovic (2015) devel-
oped a Bayesian-aided selection within a catalog of 0.5-km
resolution WRF simulations for northern Israel. The
model replicates this high-resolution near-surface wind
speed and direction from a coarser 4.5-km WRF dataset.
For California, Huang et al. (2015) trained a linear model
calibrated with WRF at 3 km to downscale the North
American Regional Reanalysis (NARR: 32 km, 3-hourly).
A deep-learning super-resolution convolutional neural
network (CNN) was employed by Höhlein et al. (2020) to
recreate the ECMWF High-Resolution Forecast (HRES,
9 km) from ECMWF ERA5 (30 km) for southern France.
With the exception of the latter study, which integrates
a terrain elevation model, these 2D-to-2D methods are
constrained to the domain on which they are calibrated,
because they do not incorporate descriptors of the topog-
raphy. Furthermore, their targeted resolutions are not
sufficient for highly complex topographies like the Alps.
Other types of models like WindNinja (Wagenbrenner
et al., 2016; Rios et al., 2018; Hilton and Garg, 2021) and
TopoSCALE (Fiddes and Gruber, 2014) are based on phys-
ical descriptions of wind–topography interactions and
are not bound to the domain of calibration. WindNinja
is used frequently for wildfire propagation, but was used
recently by Vionnet et al. (2021) to model snowdrift. How-
ever, given their generic nature, those methods do not
benefit from the valuable information of measurements or
high-resolution simulations and thus might not perform
well in particular terrain under particular conditions.

An interesting line of research took advantage of the
vast network of measurement stations in Switzerland to
develop point-to-point methods that can generate spatially
distributed predictions in the highly complex Swiss Alps.
All of them use descriptors of the topography to predict
wind speed at the location of the measurement stations.
When calibrated, the models can be used at other locations
and generate maps of wind speed. Etienne et al. (2010)
employed general additive models (GAM) for daily max-
imum wind speed using landform categories and Fischer
et al. (2015) employed gradient-boosted regression trees
and topographic exposure for the same purpose. Foresti
et al. (2011) and Robert et al. (2013), respectively, used
support-vector regression on mean wind speed and GAM
on monthly values, with various terrain descriptors (slope,
difference of Gaussians, and directional derivative). These
methods only use topographic descriptors as explanatory
variables and are thus limited to temporally static pre-
dictions. Without time-dependent inputs like the wind
vector from a lower-resolution model, such an approach
can only predict one value per location and not a time
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series. Using the Consortium for Small-scale Modeling
at 2- and 7-km resolutions (COSMO-2, COSMO-7)1 and
the directional-dependent terrain parameter Sx (Winstral
et al., 2002), Winstral et al. (2017) trained a linear model to
generate maps of wind speed at 25-m resolution. As all sta-
tions were used for calibration, the model’s validation did
not reflect the performance at other locations. The results
at the stations, however, were promising and showed the
importance of considering the distribution of wind speed
and not only aggregated metrics. From COSMO-2 and a
slope parameter, Helbig et al. (2017) proposed a down-
scaling method that is calibrated from a large catalog of
simulations from the Advanced Regional Prediction Sys-
tem (ARPS) run at 30-m resolution. Using stations for val-
idation only, the method slightly outperforms COSMO-2
at exposed sites but is worse at sheltered ones. These
two methods offer the resolution and efficiency required
for the generation of long time series on large domains
mentioned previously. However, they do not consider the
change in wind direction when going from coarse to fine
resolution and either were not validated spatially or were
ineffective on lee sides.

We present a novel 2D-to-point statistical downscal-
ing model: Wind-Topo, first of its kind and based on
deep learning, which uses kilometric-resolution NWP
model outputs and high-resolution topography to predict
near-surface wind speed and direction in highly com-
plex terrain. 261 Swiss measurement stations are used for
calibration (training) and 60 different stations are used
for validation. In our test case, the 1.1-km resolution
COSMO-1 is used as predictor and near-surface wind fields
can be downscaled to 50-m resolution. The custom archi-
tecture, which relies on multiple CNNs, as well as the
custom loss function extract meaningful statistical rela-
tionships between the low-resolution atmospheric state
surrounding the point of interest, wind measurement,
and high-resolution topography. The wind–topography
interactions discovered by the model are applied success-
fully at the validation stations and to a high-resolution
grid, and exhibit ridge acceleration, sheltering, and
deflection.

2 METHODS

2.1 Approach overview

As ground truth, we use wind speed and direction from 321
measurement stations spread across Switzerland from the

1https://www.meteoswiss.admin.ch/home/measurement-and-
forecasting-systems/warning-and-forecasting-systems/cosmo-
forecasting-system.html

Intercantonal Measuring and Information System (IMIS)2

and SwissMetNet3 networks at 7 and 10 m above ground
level (m a.g.l.), respectively (Figure 1). From IMIS, 69 “ex-
posed” stations are installed on summits or ridges and
86 “sheltered” stations are in locations that are protected
from the main winds (Lehning et al., 1999). The remaining
166 (“other”) stations are uncategorized and are installed
in diverse terrain. As we want the model to predict wind
speed and direction, and given the noncontinuity of the
direction, we use u and v, the horizontal components
of the wind vector. We use hourly data from October 1,
2015–October 1, 2018. For the same times, the COSMO-1
analysis dataset describes the local state of the atmosphere
surrounding each station, based on the coarse resolution
and smoothed topography (slope < 30◦) of the model
(background of Figure 1). Wind-Topo combines this infor-
mation with a high-resolution Digital Elevation Model
(DEM) to predict the station measurements u and v. In
Wind-Topo, “local” means an area of about 21× 21 km2

(19× 19 COSMO-1 pixels) surrounding each station, as
depicted in Figure 1. The model’s training consists of opti-
mizing the model’s parameters such that the predictions
û and v̂ are as close as possible to u and v, using only
COSMO-1 and topographic inputs. For training, we use
the first and last year of the period mentioned and a selec-
tion of 261 stations. The remaining 60 stations and/or the
middle year are used to test the model, more precisely its
temporal and spatial generalization capabilities.

2.2 Model inputs

The model’s predictors come from either COSMO-1, with
the aforementioned spatial extent and resolution, or the
high-resolution DEM. For the latter, we combined a 2-m
DEM4 inside Switzerland and a 1-arcsec DEM5 (about
36 m) outside the country. We resampled them such that
each COSMO-1 pixel contains exactly 21× 21 DEM pix-
els6. As COSMO-1 (on a 0.01× 0.0146 lat/lon grid) has a
resolution in our whole Swiss domain of 1,113 m in lat-
itude and 1,113± 22 m in longitude, the high-resolution
topographic inputs have a resolution of 53× 53± 1 m.
Accordingly, our input topographic patches, covering
21.147× 21.147± 0.418 km, have a resolution of 399× 399

2https://www.slf.ch/en/avalanche-bulletin-and-snow-situation/
measured-values/description-of-automated-stations.html
3https://www.meteoswiss.admin.ch/home/measurement-and-
forecasting-systems/land-based-stations/automatisches-messnetz.html
4https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html#
technische_details
5https://www2.jpl.nasa.gov/srtm/
6This number of pixels (21× 21) is coincidentally the same as the size of
the COSMO-1 input domains. There is no link between them.

https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-systems/warning-and-forecasting-systems/cosmo-forecasting-system.html
https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-systems/warning-and-forecasting-systems/cosmo-forecasting-system.html
https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-systems/warning-and-forecasting-systems/cosmo-forecasting-system.html
https://www.slf.ch/en/avalanche-bulletin-and-snow-situation/measured-values/description-of-automated-stations.html
https://www.slf.ch/en/avalanche-bulletin-and-snow-situation/measured-values/description-of-automated-stations.html
https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-systems/land-based-stations/automatisches-messnetz.html
https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-systems/land-based-stations/automatisches-messnetz.html
https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html#technische_details
https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html#technische_details
https://www2.jpl.nasa.gov/srtm/
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F I G U R E 1 Location of the
measurement stations used for
training or validation. The
background shows the topography
used in COSMO-1 and the squares
around selected stations represent the
spatial extent of Wind-Topo’s inputs
to predict the wind at those stations.
The red and grey squares show the
test domain of Section 3.4 and the
domain covered in Figure 2,
respectively [Colour figure can be
viewed at wileyonlinelibrary.com]

pixels. The exact same extent is covered by 19× 19
COSMO-1 pixels. The two upper left panels of Figure 2
show an example of such input data from COSMO-1 and
DEM.

From COSMO-1, we select 2D fields of horizontal
components of the wind vector uc and vc (with “c” stand-
ing for COSMO) for five vertical layers of the model
(terrain-following coordinates) that have average heights
of 10, 89, 293, 589, and 1,164 m.a.g.l. We also use the per-
pendicular deviation of the wind vector from the layer
surfaces, denoted w′, which indicates on the five layers
where the flow follows the terrain (w′ = 0), separates
upwards (w′ > 0), or converges towards the ground (w′ <

0). w′ also indicates areas of convection or subsidence. The
atmospheric stability is considered via the vertical gradient
of potential temperature between the five layers: Δ𝜃∕Δh.
The last inputs are the ground surface sensible heat flux qs
and the elevation of the model’s terrain zCOSMO. Concern-
ing the high-resolution topographic descriptors, elevation
ztopo and the associated slope and aspect are employed.

2.3 New topographic descriptors

Ideally, deep learning could allow an end-to-end approach,
where the model learns by itself the operations to apply
to the DEM (ztopo). However, the rather small variability
in topographic inputs (only 321 unique ztopo images, one
for each local patch) is far from sufficient for obtaining an
end-to-end model with good spatial generalization. Such
a model could only generate smooth wind fields, lacking
small-scale features, and only increased uc and vc around

ridges and summits. We thus had to use other topographic
inputs that show the wind–topography interactions more
directly. Two such descriptors that are well known were
initially employed: the topographic position index (TPI),
indicating the relative height of a location with respect to
its neighborhood, and the maximum upwind slope (Sx)
(Winstral et al., 2002), indicating how exposed or sheltered
a place is, given a specific wind direction. Both of them
share one important parameter: the radius considered for
the neighborhood (typically 500–4,000 m). Trained with
them, Wind-Topo obtains scores that are almost as good
as the ones presented in Section 3. However, the pre-
dicted wind fields exhibit a strong dependence on the
radius parameter and look like copies of the descriptors,
even if several descriptors with various radii are pro-
vided. To avoid this problem, we created a set of new
topographic descriptors that are free of such parameters
and let Wind-Topo decide how to process them. Given its
CNN-based nature, Wind-Topo can decide how to inte-
grate them spatially, thus creating an internally controlled
and dynamic radius parameter:{

E+ = max(sin(𝛼), 0),
E− = min(sin(𝛼), 0),

where
𝛼 = arctan(tan(slope) cos(𝛿)), with
𝛿 = arctan2(−vc,−uc) − aspect.

(1)

Figure 2 shows the variables zCOSMO, ztopo, slope, and
aspect for the input patch centered around the station

http://wileyonlinelibrary.com
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F I G U R E 2 Some topographic inputs for a training station (ELA-1). zCOSMO is the topography in COSMO-1 and ztopo is a 53-m DEM;
slope and aspect are computed from ztopo. (E+ + E−) reflects places exposed to the wind (red) or sheltered from it (blue). Δutan shows the offset
to apply to u to obtain a flow that is progressively tangential to the terrain as the slope increases, given wind speed and direction [Colour
figure can be viewed at wileyonlinelibrary.com]

ELA-1 (Section 3). From slope, aspect, and the values of uc,
vc at the center of the patch we generate six topographic
descriptors. First, we compute E+ and E− (Equation 1)
representing respectively how much a location is exposed
to or sheltered from the wind, given its direction. The
best results were obtained when this direction is com-
puted from the second layer above ground in the COSMO-1
inputs (89 m.a.g.l.). Contrary to Sx, E+ and E− do not incor-
porate a search distance and are purely local. They are
computed as the sine of the vertical angle 𝛼 that the wind
vector would have to change to in order to be parallel to
the slope while keeping its azimuth. This angle is sim-
ply computed from the slope angle and from 𝛿, the angle
between the wind direction and the aspect. Splitting this
exposure/sheltering into two allows the model to find spe-
cific rules for each of them independently. When summed
together (as in Figure 2) and integrated over a certain
radius, the result resembles Sx. As a CNN cannot multi-
ply some of its inputs together directly, and because our
model showed difficulties in learning it, we provide E+uc,
E+vc, E−uc, and E−vc to the model. The two remaining

descriptors address the challenge of wind deflection: how
to change uc and vc to obtain a flow that turns when fac-
ing a steep slope. We provide the model with the offsets
for uc and vc, Δutan and Δvtan, needed to obtain such an
effect. Equation 2 shows that the steeper the slope, the
more the flow will have to follow the topographic con-
tours (be tangential). This is performed via a rotation of
the vector (uc, vc) by an angle 𝛽. This angle is calculated
using the slope angle and 𝛿, which is the same angle
as in Equation 1. Using the observations as guidance,
Wind-Topo learns how much, where, and when these
exposure, sheltering, and theoretical deflections should be
employed:

{
Δutan = (cos(𝛽) − 1)uc − sin(𝛽)vc,

Δvtan = sin(𝛽)uc + (cos(𝛽) − 1)vc,

where
𝛽 =

( 𝜋

2
− |𝛿|)sign(𝛿) sin(slope), with

𝛿 ∈] − 𝜋, 𝜋] from Equation 1.

(2)

http://wileyonlinelibrary.com
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F I G U R E 3 Chain of operations to obtain the predicted û and v̂ at the center of the patch of input data [Colour figure can be viewed at
wileyonlinelibrary.com]

2.4 Data flow

Given the large number of training data (261 stations
× 17,520 timesteps×n variables), treating the 399× 399
inputs is an enormous task (3 TB of data). As Wind-Topo
predicts the wind at the center of the input patch, the
more relevant information is located close to the cen-
ter, while the edges of the patch should provide only
coarser information. To decrease the amount of informa-
tion significantly (by a factor of 13) and to help the model
focus on high-resolution information towards the center
and on progressively coarser information at a distance,
we apply two consecutive operations to all topographic
inputs (Figure 3). First, each input is split into two: on
the one hand the full-extent input is resized to a resolu-
tion of 77× 77 pixels, and on the other hand a crop of the
central 77× 77 pixels (a zoom) is extracted. Second, we
apply a foveal blur (see bottom right of Figure 3), which
smooths the information as we move away from the cen-
ter. For consistency in the model’s architecture, which
is described below, the same splitting is applied to the
COSMO-1 inputs.

As presented in Figure 3, we have low-resolution
COSMO-1 data (full and zoom patches), high-resolution
topographic data (full and zoom patches), and values for all
those descriptors at the exact location of the station. Time
of day and day of the year are also provided as pointwise
information via a cosine–sine transformation for continu-
ity. Wind-Topo has two branches: one that predicts u and
one that predicts v. Both are independent when making
a prediction, but they are trained jointly via a common
loss function (Section 2.6) that optimizes their parame-
ters simultaneously. This double architecture gives the best
results and allows the model to consider u and v jointly.

A widespread technique in machine learning is to aug-
ment the amount and diversity of the training data arti-
ficially. For image processing purposes, for example, with
CNNs, it is common to rotate, flip, crop, offset, and rescale
the images randomly. In our situation, as we only have
261 different input topographies, this augmentation is cru-
cial. 2D data were randomly rotated by one of 72 angles
(0–360◦ every 5◦) and all values related to u, v, uc, vc,
and aspect were transformed in a consistent manner that
artificially rotates topography and wind together. To stay

http://wileyonlinelibrary.com
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F I G U R E 4 Deep-learning architecture of Wind-Topo. Each “CNN low-res” and “CNN high-res” is unique to each input variable. The
two distinct “CNN fusion” blocks treat the concatenated tensors with full or zoom extent, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

consistent with wind–topography interactions like prefer-
ential deflection to the right due to Coriolis, flip, crop, and
rescale were avoided and proved to be ineffective when
tried. Offsets of elevation were investigated but did not
help. Data augmentation by rotations also allowed us to
obtain a model with a good rotational invariance (similar
predictions when the inputs are rotated by an angle and
the prediction is then rotated oppositely).

2.5 Deep-learning architecture

Figure 4 shows the constitutive blocks of the model, the
data dimensions, and how the various types of data are
associated to predict u and v. Each input variable is pre-
treated by a dedicated CNN (one CNN for uc, one for vc,
...) to generate a tensor. Tensors with similar spatial extent
(full or zoom) are concatenated and treated by another
type of CNN. As seen in Figures 4 and 5, these latter CNNs
and the ones pretreating the high-resolution topographic
descriptors generate an additional vector that contains
values at the exact center of the patch. This procedure
retains important high-resolution information at mul-
tiple stages of the CNNs. Classically, the outputs of the
CNNs on the concatenated tensors are fed into fully con-
nected neural networks to generate two 128-entry vectors.
Finally, all vector data are concatenated and treated by a
neural network having a unique output, which is û or v̂
depending on the model’s branch.

Figure 5 details the building blocks of the
deep-learning architecture. The CNNs have a classi-
cal alternation of convolution layers and pooling layers
in order to extract increasingly larger and higher-level
features from each piece of input data and from the con-
catenated data. Special attention was given to the size of
the inputs and kernels, as well as to the strides, to avoid
padding on the edges and lateral shifts of information. As
Wind-Topo gives a prediction for the exact patch’s center,
it is essential that each operation leads to an odd number
of rows and columns and that the kernels fall centered on
the central pixel. The sigmoid linear unit (SiLU) function
(silu(x) = x𝜎(x), where 𝜎(x) = 1∕(1 + e−x) is the logis-
tic sigmoid: Hendrycks and Gimpel, 2016) was the best
activation function, outperforming the standard rectified
linear unit (ReLU) function slightly, most likely because
of its continuity (important for a regression problem).
A particularity of the CNNs treating the high-resolution
topographic data is the addition of a directional mask
after the first activation. This mask, which sets to zero the
area that is downwind from the patch’s center, has two
advantages: (i) it helps the model understand the notion
of wind direction and how to deal with windward and
leeward information, and (ii) it augments the number
of distinct topographic inputs. As mentioned previously,
central values (red) are extracted before each pooling layer
and before several convolution layers in order to retain
low-level high-resolution information about the center of
the patch.

http://wileyonlinelibrary.com


DUJARDIN and LEHNING 1375

F I G U R E 5 Constitutive blocks of deep learning in Wind-Topo. The convolution blocks (yellow) indicate kernel size (3× 3), stride s,
padding size p, and number of filters (e.g., ×16). The average-pooling blocks (purple) depict the same information. Vectors of central
information (red) are extracted at various places. The first convolution layer of “CNN high-res” has an additional directional mask based on
the wind direction from COSMO-1 (e.g., mask in lower right corner). The two types of fully connected neural network are detailed in the
lower left corner [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Hyperparameters used to train the model

Parameter Value

Optimizer ADAM

𝛽1, 𝛽2 (0.9, 0.999)

Initialization Xavier, uniform, gain=1

Learning rate 5 × 10−6, no weight decay

Early stopping 10th epoch

Batch size 128

ADAM: (Kingma and Ba, 2015).
Xavier: (Glorot and Bengio, 2010)

Training the model consists of optimizing the values of
the model’s parameters (weights and biases for neurons,
filters in a CNN). One needs to adopt a strategy to do so,
in order to reach the best performance on the training and
validation sets. The various elements that compose this
strategy are generally referred to as the hyperparameters
of the model. For Wind-Topo, an iterative procedure led to
the hyperparameters presented in Table 1.

The version of Wind-Topo presented here is the result
of extensive experimentation that aimed at finding the

best architecture, input data, and training procedure in
a large design space. In Appendix S1, we present sev-
eral model variants and their performance. This ablation
study shows the relative importance of various design
decisions by removing one model component at a time.
It appears that the current design is not yet optimized
with respect to model complexity and that some building
blocks, despite improving performance slightly, signif-
icantly increase computational requirements. Future
research will investigate the trade-off between model
complexity and downscaling performance in more
detail.

2.6 Loss function

The design of an appropriate loss function was critical to
obtain the current performance of Wind-Topo. Using any
standard loss function like mean-square or absolute error
(MSE, MAE) led to distributions of û, v̂ and the associated
horizontal wind speed v̂el that were too narrow. The model
chose to decrease the range of its predictions, favoring val-
ues near the mean value. This is a well-known problem in

http://wileyonlinelibrary.com
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statistical downscaling (Winstral et al., 2017).

 = 1
N

N∑
i=1

𝜏i[(ûi − 𝛽iui)2 + (v̂i − 𝛽ivi)2],

𝛽i =
𝜖 + veli

𝜖 + v̂eli

, 𝜏i =

{
𝜏 if v̂eli ≥ veli,

1 − 𝜏 if v̂eli < veli.
(3)

The countermeasure was to compose the loss func-
tion  in Equation 3, which is essentially a MSE over a
batch of training data of size N, with a scaling by 𝛽i of
the target values ui and vi based on the overestimation
or underestimation of the predicted velocities v̂eli. Addi-
tionally, the term 𝜏i, inspired by the pinball loss function
(Takeuchi et al., 2006), allowed the model to remove the
consistent negative mean bias error (MBE) of v̂el. Param-
eters 𝜖, controlling the strength of the scaling, and 𝜏 were
tuned iteratively to their respective optimal values of 4 and
0.425. A lower value of 𝜖 led to an unstable behavior and
incorrect distributions, while larger values led to squeezed
distributions. The current value of 𝜏 allowed us to obtain
an unbiased model on the test set. The quality of the dis-
tributions of predicted wind speed is essential for many
applications of high-resolution wind fields. This loss func-
tion is the result of an intense effort to find a differentiable
function that guides the gradient-descent algorithm of the
model’s optimization efficiently towards distributions that
closely match the measured ones, while obtaining very low
MAE and MBE and high Pearson correlation coefficients
between predictions and measurements. These three scor-
ing metrics reflect important qualities of the predictions.
A low MBE guaranties no bias between predictions and
observations, while a simultaneous low MAE and high
correlation indicate that the model is accurate for a large
range of observations. The development of Wind-Topo was
guided by using these three scoring metrics on the valida-
tion set, and Section 3 focuses on them.

2.7 Making predictions

Wind-Topo was trained to make a point prediction from
centered patches of COSMO-1 data and a high-resolution
DEM covering exactly 21.147 km. Thus, when Wind-Topo
is used to generate a wind field on, for example, a 100-m
grid, this is performed in a point-by-point manner. Each
predicted grid point is an independent output of the model,
to which we provide the centered patches of data. In this
100-m case, COSMO-1 needs to be resampled every 100 m
to avoid 11 consecutive grid points receiving the same
COSMO-1 inputs, which would lead to a chessboard-like
pattern in the resulting high-resolution wind field. This

subpixel resampling is performed efficiently using convo-
lutions with Lanczos kernels (Burger and Burge, 2009). If
the same method is applied to the topographic data as well,
it is possible to generate wind fields at a higher resolution
than the 53-m DEM input data. However, as the model was
trained on this particular DEM, higher resolutions lead
to smooth outputs with no additional information. In our
case, wind fields generated at a 50- to 100-m resolution
contain the highest level of detail.

The complex pipeline needed to obtain all the required
input data for every grid point can be performed by the
CPU, in parallel with the predictions performed by the
GPU. In our case, for Wind-Topo coded with Pytorch
(Paszke et al., 2017),7 it is possible for any domain size
to obtain a perfect parallelization of these two tasks,
without noticeable overhead and with a GPU running
constantly at full capacity. As the model is pointwise
and time-independent, it is easily parallelizable on mul-
tiple GPUs and/or machines with, for example, one
GPU computing one part of the domain or a subpe-
riod and another GPU computing the rest. On a NVIDIA
RTX2080Ti GPU, one prediction takes 0.6 ms and a
300× 300 domain requires 54 s. This is 30% faster than
on a previous-generation GTX1080Ti, which indicates that
Wind-Topo would be even faster on the latest-generation
high-performance GPUs.

3 RESULTS

This section shows the overall performance of Wind-Topo
in highly complex terrain and quantifies its aptitude for
capturing subgrid-scale wind–topography interactions like
ridge acceleration, sheltering, and deflection. After train-
ing Wind-Topo on 261 stations and years 1 and 3, we tested
it on separate datasets to assess its performance at new
locations and/or over a new time period: test set 1 (60 sta-
tions, years 1 and 3), test set 2 (261 stations, year 2), and
test set 3 (60 stations, year 2) being the most informa-
tive because it reflects the spatio-temporal generalization.
In this section, we will evaluate Wind-Topo first quantita-
tively and then qualitatively by discussing some predicted
wind fields. From now, when COSMO-1 is mentioned,
it should be understood that a bicubic interpolation was
applied at the desired locations. Importantly, the 60 test
stations were selected by an algorithm that ensures an
equitable evaluation. First, all stations were tagged with an
eight-dimensional vector consisting of (1) mean measured
wind speed, (2) MAE (of COSMO-1 with respect to mea-
surement), (3) MBE, (4) correlation, (5) normalized MAE

7https://github.com/pytorch/pytorch/tree/v1.8.1

https://github.com/pytorch/pytorch/tree/v1.8.1
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T A B L E 2 Performance of COSMO-1 (C) and Wind-Topo (WT)

Station Corr. MBE MAE nMAE MAEdir

(vel) Model (DN) (m⋅s−1) (m⋅s−1) (DN) (deg)

Exposed C 0.51 −0.25 1.83 0.56 41.3

(3.43 m⋅s−1) WT 0.66 −0.05 1.49 0.45 32.5

Sheltered C 0.42 1.90 2.27 1.43 67.0

(1.67 m⋅s−1) WT 0.45 −0.04 1.03 0.63 58.1

Other C 0.59 0.18 1.34 0.61 50.5

(2.46 m⋅s−1) WT 0.64 −0.16 1.16 0.51 47.5

Alps C 0.50 0.72 1.77 0.90 56.4

(2.35 m⋅s−1) WT 0.55 −0.07 1.21 0.56 50.1

Note: Each value is the average of the scores at each test station, computed for the test period. The left column gives the average measured wind speed for each
station category.
Abbreviations: Corr., Pearson correlation coefficient; MAE, mean absolute error; MBE, mean bias error; nMAE, normalized MAE (MAE at a station divided by
its average measured wind speed); MAEdir, mean absolute error of wind direction.

(MAE at a station divided by its average measured wind
speed), (6) elevation, (7) latitude, and (8) longitude. Then,
in an iterative manner, the algorithm splits the stations
randomly into training and test sets until there is a good
representation of this eight-dimensional space in both sets
and a similar performance of COSMO-1. Concerning the
separation of training and test times, our investigation
showed that a random split cannot reflect the temporal
generalization: it is easy for a model trained on hours h
and h + 2 to predict hour h + 1. Consequently, we kept the
complete intermediate year for validation. In this section,
we employ the same colors as in Figure 1 for stations that
are exposed (blue), sheltered (orange), and uncategorized
(“other”, green).

3.1 Aggregated scores

Table 2 shows various scoring metrics for COSMO-1 and
Wind-Topo on test set 3. Each score is the average of the
scores at the stations belonging to that category. This is
more meaningful than computing the scores on all the
data, as, for example, correlations computed on all the data
are significantly higher but are potentially misleading.

We can observe the importance of the station’s clas-
sification in the left column: the average wind speed
at exposed sites is more than twice that at sheltered
sites. Given its resolution, COSMO-1 cannot discriminate
between them and has a large positive bias (1.9 m⋅s−1) at
sheltered sites. Surprisingly, the highest wind speeds are
predicted there (Kruyt et al., 2018). Nevertheless, its perfor-
mance is quite high at exposed locations and in flat lands
and large valleys (a considerable part of the “other” sta-
tions). Wind-Topo improves COSMO-1 significantly for all

metrics and at all station types. The correlation is improved
the most at exposed and other sites, while the large bias at
sheltered sites is completely removed, leading to a much
lower MAE. The normalized MAE (nMAE) allows us to
compare all types of station and again shows the lack
of performance of COSMO-1 at sheltered sites and the
capability of Wind-Topo to correct it. Finally, Wind-Topo
also corrects wind directions, as expressed by the MAE
of wind direction (MAEdir), computed from events with
a wind speed greater than 1 m⋅s−1. As Wind-Topo was
designed for complex terrain, the lower line in Table 2 pro-
vides overall scores for the 44 test stations located in the
Alps.

The scores for Wind-Topo were obtained from predic-
tions of the trained model. Figure 6 depicts some of them
during the training. After each epoch (pass through the
training set), we evaluated the model on the four datasets.
Correlation, MAE, and MAEdir improved progressively
until epoch 9, the model state of which was used for all
predictions in this work. Later on, a typical overfitting
is observed, where the spatial generalization decreases.
Interestingly, there is no overfitting with respect to the
temporal generalization. When training the model further
(not shown), the scores on test set 2 keep improving (MAE
< 1 m⋅s−1, correlation > 0.8). Temporal generalization was
easily obtained: many (simpler) models can give accurate
predictions on test set 2. In other words, the corrections to
COSMO-1 can be learned easily for a certain period and
applied successfully to new periods. Furthermore, a small
number of timesteps is required. All results presented
are based on Wind-Topo trained with only half the train-
ing times (random selection), and no improvement was
observed using all times. The strong temporal generaliza-
tion offers a different application: if a short measurement
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F I G U R E 6 Quality of the predictions of Wind-Topo compared with COSMO-1 throughout the training phase (one epoch is one pass
through the entire training set). For each quality assessment, the upper left panel corresponds to the behavior of Wind-Topo on the training
set, while the right panels correspond to the test stations and the lower panels to the test period. Scores for wind speed (vel) and direction
(dir) are computed from u and v and are depicted in red. The lower right figure shows, with various colors, the distributions of wind speed for
the three station categories. Various lines styles are used to depict those distributions from measurement, COSMO-1, and Wind-Topo [Colour
figure can be viewed at wileyonlinelibrary.com]

campaign of surface wind is performed somewhere, the
collected data can be used to train a model like Wind-Topo,
which can generate longer “synthetic” time series cover-
ing the same period as the NWP model. The lower right
panel of Figure 6 shows the distributions of measured
and predicted wind speeds for the three station types.
We observe again the lack of discrimination of COSMO-1
between exposed and sheltered sites. It is, however, clear
in the measurement, and Wind-Topo can reproduce it
well. The distributions of predicted wind speed match the
observed ones accurately for all station types and for the
four datasets.

The “early stopping” procedure presented above, in
association with the chosen learning rate, provides the best
scores and distributions. Other regularization techniques
like weight decay did not show any supplementary advan-
tage. On a RTX2080Ti GPU, the 12 epochs of Figure 6
required 43 hr.

3.2 Disaggregated scores

We can assess Wind-Topo further by looking at the scores
at each station. Figure 7 shows such a disaggregated
view for the MAE. Appendix S1 provides similar plots
for correlation, MBE, nMAE, and MAEdir. Each segment
represents a station, with its extremities being the scores
on training and test periods. The test stations are circled
in black and are the ones we should focus on. Any point
located below the black curve indicates that Wind-Topo
has a lower MAE than COSMO-1. This is the case for all
exposed and sheltered stations. Wind-Topo is, however,
slightly worse at some “other” stations and significantly
worse at one. The clustering of the station categories is
remarkable. Wind-Topo strongly reduces the MAE at the
sheltered sites with high COSMO-1 MAE. This is also the
case at exposed sites, albeit less pronounced. The reduced
performance at the “other” stations is due to the already

http://wileyonlinelibrary.com
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F I G U R E 7 Mean absolute error of Wind-Topo at all 321 stations compared with COSMO-1. Each segment corresponds to one station.
The color indicates the category of the station. The extremities of each segment show the MAE for the training period (triangles) and the test
period (circles). The 60 test stations are circled in black. Any point below the black line shows an improvement from Wind-Topo [Colour
figure can be viewed at wileyonlinelibrary.com]

good performance of COSMO-1. The orientation of the
segments indicates how the MAE in COSMO-1 changes
from one period to another and how Wind-Topo reacts to
it. An orientation parallel to y = x reflects that Wind-Topo
follows the variation of score in COSMO-1. An upward
deviation from this orientation (triangle to circle) shows
that Wind-Topo suffers from a lack of temporal general-
ization and becomes (relatively) worse for the test period.
This is almost never the case and the opposite behavior
dominates.

The “outlier” mentioned above is an interesting test
station located on the smooth ridge of a hill (700 m
above the plains). Its topography is well represented in
COSMO-1, which performs well with almost no MBE
(0.2 m⋅s−1) and a low MAE (1.2 m⋅s−1). Wind-Topo over-
estimates the wind speed there (MBE of 1.2 m⋅s−1), which
leads to a higher MAE (1.5 m⋅s−1). Surprisingly, at another
(training) station located 11 km from there and 450 m
higher on the ridge, COSMO-1 behaves very differently. It
underestimates the wind speed (4.6 m⋅s−1) compared with
measurement (7.7 m⋅s−1). This large bias is almost entirely
corrected by Wind-Topo (MBE of −0.9 m⋅s−1). Being in
the training set, this performance does not necessarily

reflect appropriate corrections. However, it seems that the
learned corrections of COSMO-1’s underestimation in this
type of topography are applied to our nearby “outlier”.
Such topographies are not common in our dataset and
Wind-Topo would certainly benefit from more training
stations, located in more diverse terrain.

Figure 8 provides a temporal disaggregation of the
scores for each month of the test period. The 0.25, 0.5,
and 0.75 quantiles, computed for the 60 test stations, are
represented in bright colors for Wind-Topo and faint col-
ors for COSMO-1. The upper panel shows that the win-
ter period is the windiest and that COSMO-1 predicts
similar wind speeds at exposed and sheltered sites. This
large positive bias (MBE panel) is always corrected by
Wind-Topo. The negative bias occurring at exposed sites
in winter is also corrected, as well as the slight posi-
tive bias at the “other” stations in summer. The panel
on correlation shows the significant improvement from
Wind-Topo at exposed sites, especially in early sum-
mer, when thermally driven flows become active. At the
“other” stations, Wind-Topo follows closely, but slightly
surpasses, COSMO-1. The same happens at sheltered
sites, except in July–September, when the correlation is

http://wileyonlinelibrary.com
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F I G U R E 8 Each panel shows monthly average values for the three types of test station (colors). Those values are the 0.25 quantiles
(lower extremities of the vertical segments), 0.5 quantiles (marks within the segments), and 0.75 quantiles (upper extremities) of the monthly
values for each station. Values for Wind-Topo are depicted with bright colors, while values for COSMO-1 are fainter [Colour figure can be
viewed at wileyonlinelibrary.com]

slightly decreased in Wind-Topo, despite a low MAE.
We should note the low average wind speed for this
period (1.2 m⋅s−1) and the corresponding large MAEdir
from COSMO-1 (68◦). Wind-Topo can lower it to 60◦,
but at a cost of a lower correlation. Finally, the MAE of

wind speed and direction are systematically lower with
Wind-Topo. This is true for the 0.5 quantile and almost
always true for the other quantiles, showing that the
downscaling performs well at almost all stations and for all
seasons.

http://wileyonlinelibrary.com
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3.3 Selected stations

For a last quantitative analysis, we selected three test sta-
tions in the test area of Figure 1: ELA-1, ELA-2, and
SAM-0. Indices 1, 2, 0 stand for exposed, sheltered, and
other, respectively. We can first look at the wind-rose
diagrams for those stations (Figure 9), generated with
data from measurements, COSMO-1, and Wind-Topo. For
information, their locations are depicted in Figure 10.
We can observe that the wind direction in Wind-Topo is
strongly influenced by COSMO-1. This is especially the
case at ELA-1, where Wind-Topo can only correct the
westerly winds from COSMO-1 partially. At SAM-0, the

situation is reversed, with the COSMO-1 direction being
accurate while Wind-Topo rotates it slightly. This can be
explained by the peculiar location of this station (inter-
section of several valleys) and it reflects a weakness of
Wind-Topo. At ELA-2, Wind-Topo successfully corrects
wind speed and direction. These three stations illustrate
the range of potential corrections depending on station
characteristics. At exposed sites like ELA-1, COSMO-1 per-
forms reasonably well but Wind-Topo can still improve the
flow. At sheltered locations like ELA-2, the coarse reso-
lution of COSMO-1 cannot reflect the sheltering and this
leads to a strong overestimation of wind speed and wrong
wind direction. Wind-Topo shows a clear ability to lower

F I G U R E 9 Wind-rose diagrams for the three selected test stations during the test period from measurement, COSMO-1, and
Wind-Topo. The color indicates wind speed, while the distance from the center indicates the probability in percent that the wind comes from
one of 16 directions. To ease the comparison, the radial axis has the same extent for the three data sources [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 10 Wind polar plots for three selected test stations. The upper two rows show the topography used by Wind-Topo (top: full
domain, bottom: central crop). The lower rows are all constructed in the same way: polar plots of a desired quantity by wind speed and
direction. For example, strong northwesterly winds are located in the upper left corner. Events with wind speed smaller than 1 m⋅s−1 are not
depicted. The colors indicate the average value for all events with a given wind speed and direction. Row 3 depicts the probability density, on
which quantile–quantile plots for Wind-Topo and COSMO-1 (of wind speed with respect to measurements) are superimposed. Rows 4 and 5,
respectively, depict the relative error in wind speed from Wind-Topo (blue: underestimation, red: overestimation) and how this error changed
between COSMO-1 and Wind-Topo (green being an improvement). The lower two rows are equivalent for wind direction (azimuth) [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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the wind speed to match observations better and to correct
the wind direction. Finally, at locations where the topog-
raphy is already well described at COSMO-1 resolution,
Wind-Topo is not able to add relevant information and
might even decrease the quality of the prediction slightly.

In Figure 10 we present a new type of plot that reveals
how a model like COSMO-1 or Wind-Topo performs (with
respect to observations) across diverse wind conditions.
The first two rows depict the local topography of the three
selected stations (full and zoom patches of input data),
while the lower rows, coined “wind polar plots”, are polar
plots by wind speed and direction and can be seen as a vari-
ation of wind-rose diagrams. The color of each point repre-
sents a certain quantity like the bias in wind speed, which
is the average value for all events with such wind speed
and direction. For example, strong northwesterly wind
events are located in the upper left corner. Additionally, we
superimposed on the third row, which shows the probabil-
ity density, red curves corresponding to quantile–quantile
(Q–Q) plots for Wind-Topo and COSMO-1 (of wind speed,
with respect to measurement). For ELA-1, the Q–Q plot
shows a small underestimation of COSMO-1 for all but
high wind speed. Wind-Topo provides an almost perfect
correction, except for a small overestimation at low wind
speed.

The fourth row confirms the small bias at low wind
speed, but no clear dependence on wind direction. The
row below depicts the improvement (green) or worsen-
ing (red) of Wind-Topo compared with COSMO-1. Except
for wind speeds below 2 m⋅s−1, the improvement is consis-
tent across all wind speeds and direction. The bottom two
rows offer a similar analysis for the error in wind direc-
tion. Wind-Topo has a small overestimation of the azimuth
when the wind is southwesterly to northeasterly, and an
underestimation otherwise. Compared with COSMO-1,
the improvement is mixed and presents the same split as
just mentioned. For brevity, the reader is encouraged to
observe the wind polar plots for other stations with various
topographies. Appendix S1 provides the plots for all 60 val-
idation stations. Looking simultaneously at the probability
density plots and the plots for other metrics, as well as
topography, helps us understand how COSMO-1 performs
in the most frequent wind situations and how Wind-Topo
reacts. Wind-Topo seems to perform well across a variety of
terrain and wind speed and direction, but it cannot, how-
ever, introduce small-scale thermally driven flows that are
not present in COSMO-1. At some sheltered sites, located
on slopes exposed to the sun, Wind-Topo fails to recreate
the observed diurnal slope flows when they are not present
in COSMO-1. A decomposition of the wind polar plots for
day and night events in summer (not provided) reveals it
even more clearly. Ongoing effort is addressing this weak-
ness and we expect Wind-Topo to be able to introduce at

least some of those locally generated flows in the near
future.

To conclude our analysis for the three stations selected,
Figure 11 details the predictions of the two models
throughout the test year and for each hour of the day. The
histograms of wind speed for the whole year reflect the
typical behavior of COSMO-1 at two nearby exposed and
sheltered stations (ELA-1, ELA-2): almost identical, which
does not correspond to measurements. As seen previously,
this is corrected by Wind-Topo. The daily patterns of wind
speed are quite different from site to site and for differ-
ent times of the year. SAM-0 has typical, thermally driven
flows in the mid-afternoon, which are stronger in summer.
COSMO-1 captures them very well and Wind-Topo repli-
cates them. The measurements at ELA-1 show peculiar
wind patterns: wind is steadier and stronger in winter, and
is significantly reduced in the middle of the day in summer
due to complex interactions between the boundary layer
and the free atmosphere. COSMO-1 predicts the opposite,
with an increase of wind speed in the middle of the day in
summer. It is remarkable that Wind-Topo can reproduce
the observed patterns and does not simply copy COSMO-1
at this exposed station, which is located on a type of terrain
where COSMO-1 normally performs quite well.

This quantitative analysis displayed many strengths of
Wind-Topo, which can (a) distinguish accurately between
exposed and sheltered locations and reduce the biases
resulting from a simple interpolation of COSMO-1 to
a higher resolution, (b) generate better wind-speed dis-
tributions in complex terrain, and (c) capture complex
small-scale wind–topography interactions like ridge accel-
eration, sheltering, and deflection. The model is not per-
fect, as it fails to introduce subgrid-scale thermally driven
flows and might introduce errors in locations where
COSMO-1 performs well. Given the current level of per-
formance, based on only 261 training stations, we are
confident that more diverse training data (ground truth at
other locations) would benefit Wind-Topo strongly.

3.4 Generated wind fields

We can finally look at some examples of generated wind
fields for the test area in Figure 1. COSMO-1 was down-
scaled for all hours of the test year to a 100-m grid cov-
ering this 30× 30 km2 domain, with a bicubic interpo-
lation and with Wind-Topo. The latter required 5.5 days
on a RTX2080Ti GPU. Figure 12a shows an example of
an interpolated COSMO-1 wind field and the underlying
(interpolated) model terrain. Figure 12b is the 100-m DEM,
and Figure 12c shows the prediction from Wind-Topo
with wind speed enhanced on ridges and exposed slopes
and reduced on sheltered slopes. It is not a pale copy of
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F I G U R E 11 Upper panels: distributions of wind speed for the test period from measurement (black), COSMO-1 (red), and Wind-Topo
(green) for the three test stations selected. With the same colors, the lower panels show, for each pair of months (in the test period), the
average wind speed (y-axis) for each hour of the day (x-axis) [Colour figure can be viewed at wileyonlinelibrary.com]

COSMO-1 with a simple scaling by elevation or exposi-
tion. A careful observation (full-size panels available in
Appendix S1) indicates the presence of flow deflection and
recirculation areas on some lee sides. COSMO-1 shows
such effects on a much larger scale. Wind-Topo can even
remove them in some areas, before introducing them in
others. We should also note the continuity in wind speed
in the generated field, despite the point-by-point method.
This is caused by the large overlap of input data between
neighboring points. To visualize the flow deflection and
continuity of wind direction better, Figure 12d depicts the
wind azimuth with a cyclic color scale and associated
streamlines.

Figure 12e,f provides an insight into the entire down-
scaled dataset. Figure 12e shows the average wind speed

and Figure 12f depicts the distributions at every grid point.
A Weibull distribution is fitted to the histogram of wind
speed at each grid point, and the corresponding parame-
ters are used to determine the color. The scale parameter
(resembling the average wind speed) defines the bright-
ness, while the shape parameter defines the hue. Blue
areas have a shape parameter close to 1, meaning broad
distributions, while red areas show narrower distributions,
which are more centered around the average. Here, we also
observe a good spatial continuity in the fitted distributions.
The large valleys all have a low scale parameter, which
increases towards the summits and ridges. However, in
many locations the highest values are not found there,
but slightly below them. Also, the concave areas on slopes
exhibit higher scale parameters than their surroundings.

http://wileyonlinelibrary.com
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F I G U R E 12 (a) Wind field from COSMO-1, interpolated (bicubic) on a 100-m grid, for a specific time. The background color indicates
the wind speed and red arrows indicate the wind direction every 500 m. Grey lines show the 100-m contours of the associated topography. (b)
100-m digital elevation model used by Wind-Topo covering the same domain. (c) 100-m wind field generated by Wind-Topo for the same
time. Grey lines show the underlying topography (100-m contours). (d) Associated wind direction (clockwise from North) with a cyclic color
scale. The green lines are the stream lines of the wind field, with arrows indicating the flow direction. (e) Average wind speed from
Wind-Topo over the test period. (f) Weibull parameters of the distribution fitted in each pixel. The brightness indicates the scale parameter
and the color indicates the shape parameter. 100-m contours in grey show the underlying topography [Colour figure can be viewed at
wileyonlinelibrary.com]
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A similar plot for COSMO-1 is provided in Appendix S1
and shows the same increase in concave areas on larger
scales. This local increase can be explained by the chan-
neling that occurs in such places, which generates many
situations with relatively high wind speed but few occur-
rences of a very large one. Wind-Topo is able to reproduce
such an effect on smaller scales.

One might wonder about the physical consistency of
the wind fields generated. As Wind-Topo only predicts a
near-surface wind field, we cannot compute a 3D diver-
gence to assess the mass conservation. We can neverthe-
less estimate the ground-perpendicular motion caused by
the divergence of the 2D field. Appendix S1 describes
this analysis along with figures, which we summarize
here. The large majority of such motions at 7 m a.g.l.
are between −0.04 and 0.04 m⋅s−1 (negative for motions
towards the ground). Rarely, those motions can be 10 times
larger. When averaged for the entire year, we obtain values
between −0.06 and 0.05 m⋅s−1. Furthermore, if we apply a
spatial averaging to coarse-grain these maps to the scales
resolved by COSMO-1, we obtain patterns that are very
similar to those of COSMO-1 in terms of magnitude (−0.01
to 0.006 m⋅s−1) and location.

4 CONCLUSION

A high spatial resolution in complex terrain is essential
to capture small-scale processes shaping the wind flow
that is responsible for phenomena like snow preferential
deposition or transport. Even state-of-the-art operational
models like COSMO-1 running on supercomputers can-
not provide the required resolution for topographies like
the Alps. Wind-Topo offers the possibility to extract the
most information from such models and to correct the
near-surface wind fields to match observations closely.
The systematic biases observed in different types of ter-
rain and at different times of the year and day are strongly
reduced. The downscaled wind fields exhibit some of the
expected orographic effects (ridge acceleration, sheltering,
and deflection), and Wind-Topo does not alter the predic-
tions from the low-resolution input model in areas where
it already performs well. At 44 measurement stations
located in diverse topographies in the Alps and put aside
for validation, Wind-Topo offers an average correlation of
0.55, a low bias of −0.07 m⋅s−1, and a MAE of 1.21 m⋅s−1.
This should be compared with the values obtained by a
simple interpolation of COSMO-1: correlation of 0.50, bias
of 0.72 m⋅s−1, and MAE of 1.77 m⋅s−1.

With its novel architecture, Wind-Topo not only down-
scales the wind speed to higher resolutions but also incor-
porates local orographic deflections. Even if subgrid-scale
thermally driven flows are not captured currently, the level

of performance is remarkable and further improvements
are already foreseen, in particular if more diverse loca-
tions with observed or modeled “ground truth” can be used
for training. Given the rapid evolution of the research on
deep learning, we believe that its architecture will also be
improved in the near future.

The point-by-point nature of Wind-Topo can be seen
as a strength or as a weakness. Using point observations
as predictands avoids the introduction of inaccuracies or
biases that other (modeled) data sources would have. The
pointwise prediction also simplifies the parallelization of
the downscaling scheme. However, it prevents the intro-
duction of physical constraints during the training and pre-
dictions that would guarantee the generation of physically
consistent flows. Ideally, Wind-Topo should be developed
further to incorporate high-resolution 2D or 3D modeled
data as well, which could help identify wind–topography
interactions not yet discovered by the model. This new data
source could also provide the physical constraints needed
when generating wind fields.

Wind-Topo is already quite fast and can be opti-
mized further. In our Swiss case study, it can downscale
COSMO-1 (1,110 m) to 6 million grid points in one hour
on one standard GPU. It is thus possible to downscale the
Swiss Alps (about 29,000 km2) operationally (hourly) to a
50-m grid with a 2-GPU machine. As the computational
requirements scale linearly with the number of grid points
desired, Wind-Topo can be applied to much larger domains
at this resolution with reasonable resources. In Appendix
S1, we compare the current version of the model with sim-
pler models and lighter model variants. The 2D nature of
the model provided by its CNNs is of high importance. The
custom loss function is also crucial in obtaining correct
distributions of wind speed.

We hope this work will pave the way for new meth-
ods based on deep learning that will downscale not only
the wind but also other atmospheric variables to higher
resolutions in complex terrain. Such methods will be able
to combine state-of-the-art high-resolution NWP models,
observations, and operational models efficiently.
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