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A B S T R A C T   

Mapping snow in forests is important for understanding the snow cover dynamics in these environments in view 
of hydrological applications and water resources management. Today, Uncrewed Aerial Vehicles (UAVs) are 
widely used for snow studies due to their rather cheap and flexible operation. UAV-borne Light detection and 
ranging (LiDAR) systems are a promising technology for sub-canopy snow mapping at high temporal resolutions, 
concurrently providing information on both the canopy and the below-canopy snow surface. In this pilot study, 
we used a UAV-LiDAR system to investigate the snow cover dynamics within two steep forested slopes of 
opposing aspects in the Swiss Alps at both high spatial resolution and unprecedented temporal resolution. Using 
a Distance to Canopy Edge (DCE) algorithm to characterize local forest structure, snow depth was analyzed in 
terms of relative position within variable forest cover. The north-exposed site had higher mean snow depths 
throughout the season compared to the south-exposed site, especially in canopy gaps. Whereas snow depletion 
rate was consistent throughout the north-exposed site, snow depletion was much faster in the gaps at the south- 
exposed slope. Correlation coefficients between snow depths and local canopy closure were weaker at the south- 
exposed (between − 0.5 and − 0.7) than at the north-exposed site (between − 0.7 and − 0.9), and rapidly 
deteriorated right after the peak of winter at the south-exposed slope. This indicates shortwave radiation 
dominates snowmelt processes at this site, which was thought to be spatially uncorrelated to local canopy cover, 
unlike accumulation and melt processes on the north-exposed slope that generated snow patterns with a high 
spatial correlation to local canopy cover throughout the entire season. Calculations of incoming sub-canopy 
shortwave radiation (SWR) for both sites confirmed this assumption. While our findings encourage the use of 
UAV-borne LiDAR for further investigations of snow cover dynamics in steep forested slopes, we also outline and 
discuss technical challenges specific to this application. Our insights allow deriving useful recommendations for 
future studies using UAV-borne LiDAR over a similar environment.   

1. Introduction 

Forests cover around 30% of the surface of Switzerland (Hunziker 
et al., 2012), and a large extent of the Northern Hemisphere is forested 
and features a seasonal snow cover (Essery et al., 2009). Snowmelt 
runoff originating from forests has a significant impact on hydrology, 
ecology, and climate (Javadinejad et al., 2020). Especially in Alpine 
regions, numerous studies have demonstrated the effect of snow cover 
dynamics on water resources (Farinotti et al., 2012; Thornton et al., 
2021), natural hazards such as avalanches and floods (Einhorn et al., 
2015; Björk and Molau, 2007), ecology (Nöthiger and Elsasser, 2004; 

Wipf et al., 2009) as well as tourism (Rixen et al., 2011; Elsasser and 
Bürki, 2002). As forests cover large areas that overlap with seasonal 
snow, forest snow cover dynamics need to be represented in models 
simulating snow cover dynamics in these environments (Mazzotti et al., 
2020b; Mazzotti et al., 2021). 

Spatially heterogeneous forest canopy causes correspondingly het-
erogeneous accumulation and melt patterns in both space and time 
(Lundquist et al., 2013; Currier and Lundquist, 2018; Mazzotti et al., 
2019b). Snow cover dynamics in forests are thus usually more complex 
than in open sites (Clark et al., 2011). Accumulation patterns are 
affected by snow interception by the canopy (Hedstrom and Pomeroy, 

* Corresponding author at: Centre for Hydrogeology and Geothermics (CHYN), University of Neuchatel, Neuchatel, Switzerland. 
E-mail address: kalliopi.koutantou@unine.ch (K. Koutantou).  

Contents lists available at ScienceDirect 

Cold Regions Science and Technology 

journal homepage: www.elsevier.com/locate/coldregions 

https://doi.org/10.1016/j.coldregions.2022.103587 
Received 25 October 2021; Received in revised form 4 April 2022; Accepted 9 May 2022   

mailto:kalliopi.koutantou@unine.ch
www.sciencedirect.com/science/journal/0165232X
https://www.elsevier.com/locate/coldregions
https://doi.org/10.1016/j.coldregions.2022.103587
https://doi.org/10.1016/j.coldregions.2022.103587
https://doi.org/10.1016/j.coldregions.2022.103587
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coldregions.2022.103587&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Cold Regions Science and Technology 200 (2022) 103587

2

1998). The intercepted snow either sublimates, melts, or falls on the 
below-canopy snow surface (MacKay and Bartlett, 2006). Snowmelt is 
driven by a combination of processes such as the turbulent exchange of 
heat and water and the transfer of shortwave (SWR) and longwave ra-
diation (LWR) to the snow surface (Jonas and Essery, 2011). The exis-
tence of trees decelerates wind and interferes with the turbulence 
exchange of heat and moisture at the snow surface. Trees shade the snow 
surface from SWR (Hardy et al., 2004; Malle et al., 2019) and canopy 
litter on the snow surface absorb higher amounts of incoming SWR 
(Perrot et al., 2011). Additionally, the trees are emitters of LWR, thereby 
enhancing incoming LWR to the snow surface relative to non-forested 
areas (Hedstrom and Pomeroy, 1998; Webster et al., 2016). All these 
processes are strongly influenced by the local canopy structure and 
therefore feature complex spatiotemporal dynamics (Clark et al., 2011; 
Jonas and Essery, 2011). Within alpine regions, forest structure impacts 
on snow cover dynamics are superimposed by respective topographic 
effects. Therefore, the interplay of forest structure and topography must 
be considered for snow models to be suitable for application in Alpine 
countries such as Switzerland. Hence, there is a need to understand snow 
cover dynamics in forested slopes to develop, validate and improve 
existing models for these environments (Mazzotti et al., 2019a; Clark 
et al., 2011). 

Snow mapping in Alpine and especially in steep terrain is challenging 
due to difficult accessibility, avalanche danger, and the frequency of 
rough weather conditions. Traditional in situ measurements, either 
manually acquired or from automatic weather stations, are largely 
limited to flat terrain and only representative of point locations (Bründl 
et al., 2004; Egli, 2008). This circumstance has triggered significant 
interest in modern remote sensing technologies for mapping snow dis-
tribution over continuous, large, and difficult to access areas (Kim et al., 
2017). However, for snow depth mapping within forests, the use of 
remote sensing technology is currently still mostly limited to Light 
detection and ranging (LiDAR) (Mazzotti et al., 2019a; Broxton et al., 
2015; Currier and Lundquist, 2018; Zheng et al., 2016; Currier et al., 
2019), while other sensors (e.g. optical) cannot “see” below the canopy. 
The potential of LiDAR for capturing fine-scale snow patterns within 
forests of different canopy types and structures has previously mainly 
been explored and demonstrated based on Airborne Laser Scanning 
(ALS) data (Hopkinson et al., 2004; Currier et al., 2019; Deems et al., 
2013). As an active scanning technology that operates at high frequency, 
where each laser pulse has a very small footprint, LiDAR can penetrate 
even small canopy gaps. Moreover, given its ability to record multiple 
returns per shot, LiDAR provides information from the canopy itself as 
well as from the below-canopy ground surface. These characteristics 
make it an ideal technology to explore how snow patterns relate to 
canopy structure. However, one of the major drawbacks of ALS is the 
fact that data acquisitions come with high costs and logistic efforts, 
therefore on-demand campaigns at high temporal resolution are often 
unfeasible. Additionally, some remaining data gaps in sub-canopy areas 
have been reported (Mazzotti et al., 2019a; Broxton et al., 2015; Currier 
and Lundquist, 2018; Zheng et al., 2016; Currier et al., 2019). These 
errors are enhanced by terrain-related factors such as the slope and by 
the presence of understory vegetation (Deems et al., 2013; Hyyppä et al., 
2005; Su and Bork, 2006; Tinkham et al., 2012; Hopkinson et al., 2004). 
They are further influenced by survey parameters, including scanning 
angle, pulse density, pulse size (footprint), or the operational flying 
height (Deems et al., 2013; Goodwin et al., 2006; Tinkham et al., 2012). 
Many forests in alpine regions are located on slopes, because land-use 
practices have led to deforestation in most flat areas (Bebi et al., 
2017). Weaknesses in ALS from crewed aircraft in collecting snow depth 
datasets is an impediment to the improvement of the understanding of 
snow cover dynamics in alpine forests. 

In contrast to crewed aircraft, UAVs are cheaper and more flexible 
options. They enable data acquisition at higher temporal resolutions and 
much lower costs, however, the spatial extent they can cover is more 
limited. So far, UAVs have been widely used with optical sensors to map 

snow in open areas using photogrammetric techniques (structure from 
motion) for mapping snow in high resolutions (Bühler et al., 2016; 
Vander Jagt et al., 2015; Avanzi et al., 2018). The studies yielded 
satisfactory results in the open but were unable to obtain accurate 
below-canopy information. For forest snow mapping, UAV-borne LiDAR 
is a promising technology, combining the flexibility of UAVs and the 
capabilities of LiDAR systems. Yet, the use of UAV-borne LiDAR is only 
emerging: Until now, only three studies using this technology to inves-
tigate forest snow have been conducted (Harder et al., 2020; Jacobs 
et al., 2021; Cho et al., 2021), none of which is focused on steep terrain. 

In fact, only a few studies on forest snow on steep slopes are available 
to date. Ellis et al. (2011) used a manually acquired dataset with high 
temporal resolution but only presented data from one individual site. 
The study exclusively focused on the snowmelt period and did not cover 
accumulation dynamics. Broxton et al. (2020) presented a larger dataset 
obtained with ALS over steep terrain, but with limited temporal reso-
lution. Other studies investigating the relation between snow pattern 
evolution and canopy structure were either based on data from terres-
trial laser scanners (Hojatimalekshah et al., 2021; Uhlmann et al., 2018; 
Zheng et al., 2018) or ALS (Mazzotti et al., 2019a; Moeser et al., 2020; 
Broxton et al., 2015; Trujillo et al., 2007) and were largely limited to flat 
forests. 

This paper presents a study conducted in the European Alps, which is 
to the best of our knowledge the first that explores the use of repeated 
UAV-borne LiDAR acquisitions to investigate the full seasonal cycle of 
snow cover dynamics in forested slopes. The goal was to obtain a high- 
resolution time series of snow depth maps on two opposing (north and 
south-exposed) slopes and analyze these in the context of variable forest 
structure to characterize the snow cover dynamics of a typical alpine 
forest. Given the limited community experience with UAV-borne LiDAR 
applications, we further report our experiences with this technology, 
building on the insights of Harder et al. (2020) and Jacobs et al. (2021) 
aiming at facilitating the use of this novel technology for future snow 
studies in areas where forest cover and complex terrain overlap. 

We present datasets acquired throughout one winter in Davos, 
Switzerland, focusing our analysis on:  

1. A comparison of the snow accumulation and melt dynamics between 
the two opposing slopes. 

2. The links between snow depth distribution canopy structure de-
scriptors as well as topographic influences in steep forested slopes.  

3. Evaluation of the UAV-borne LiDAR technology for mapping forest 
snow in complex terrain at high spatio-temporal resolution. 

2. Data 

2.1. Study sites 

Data were collected over two forested slopes with opposing orien-
tations in Davos Dorf, in the Swiss Alps. The south-exposed site, War-
iwald, is exposed to direct insolation throughout the whole winter 
season. The other site, Abiwald, is oriented towards the North and thus 
predominately shaded. The sites are located within 400 m horizontal 
distance of each other, at approximately 46.810◦, 9.856◦, 1650 m.a.s.l. 
(Fig. 1). Each field site encompasses an area of heterogeneous forest of 
200 by 200 m, including both dense canopy and gaps. The average 
slopes are 20◦ and 35◦ for Wariwald and Abiwald, respectively. The 
dominant tree species is spruce, with few individual larches. For ease of 
interpretation, the sites are referred to as Wariwald-sunny and Abiwald- 
shaded. 

2.2. Equipment and LiDAR data acquisition 

Data were acquired using a Yellowscan Mapper II LiDAR scanner 
mounted on a twelve-motor multicopter from Altigator SA. The UAV can 
lift payload up to 12 kg and maintains stability even during windy 
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conditions. The LiDAR scanner operates in the near-infrared range (905 
nm). It has a field of view of 100◦, with about 18,500 shots per second 
and up to three returns per shot with a precision of 10 cm. Its integrated 
Applanix APX-15 Inertial Navigation System (INS) offers accuracies 
after post-processing up to 5 cm for positioning, 0.015 m/s for velocity, 
0.025 degrees for roll and pitch, and 0.080 degrees for true heading. The 
operation at the specific wavelength of 905 nm is suitable for retrievals 

of snow, given the high backscattering intensity from the canopies or the 
snow surface at this wavelength. 

The sites were covered with four interlaced scan patterns consisting 
of four flight strips each (see Fig. 2), the combination of which is 
hereafter referred to as one acquisition. This acquisition structure was 
chosen to achieve a high point density, as well as to increase the sub- 
canopy returns by scanning the same area from different angles. The 

Fig. 1. The two forest slopes of our study show a) on the map of Switzerland (source: https://map.geo.admin.ch/) and b) on a topographic map (source: https://map. 
geo.admin.ch/); c) photographs of the forested slopes; d) timeline of the data acquisitions for both sites; e) UAV system with the LiDAR scanner. 

Fig. 2. Illustration of the scans and strips designed for Wariwald-sunny field site: interlaced scans (a); 4 strips of one of the scans (b), and all the four interlaced scans 
for one data acquisition (c). 
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latter is aimed at increasing the LiDAR returns from the below-canopy 
areas, especially in the denser parts of the forests. The flight trajec-
tories were programmed to follow the topography, to ensure a constant 
elevation of 70–80 m above ground, at a constant flying speed of 3 m/s. 
These specific survey parameters led to an average return density of 30 
points/m2 per flying pattern. 

All the flights were performed during calm weather conditions and 
minimal wind to reduce power consumption, to allow safe operation of 
the UAV, and to maximize positioning accuracy by minimizing INS drift. 
The flight duration was limited to approximately 13 min. The relatively 
short flying time was influenced by the increased power consumption at 
the high altitude as well as the reduced battery performance at cold 
temperatures. When possible, data acquisition was restricted to periods 
without snow intercepted by the canopy to maximize the occurrence of 
laser pulses penetrating the canopy. 

Data acquisition commenced at the beginning of February at both 
sites when the seasonal snowpack began to build up. It comprised eight 
winter (hereafter snow-on) acquisitions over Wariwald-sunny and thir-
teen acquisitions over Abiwald-shaded over the same number of days (i. 
e. one acquisition at each site per date in Fig. 1). Summer (hereafter 
snow-off) acquisitions were carried out at the end of April (Wariwald- 
sunny) and mid-May (Abiwald-shaded). A landslide event at the end of 
March close to the Wariwald-sunny site inhibited further acquisitions on 
a regular basis, as permission to access the site was only granted for two 
more data acquisitions. For this reason, only limited data is available for 
the final snowmelt period at Wariwald-sunny compared to Abiwald- 
shaded. Luckily, the dataset still includes acquisitions before, at, and 
after the peak of winter, allowing the characterization of snow cover 
dynamics over the season. 

2.3. Auxiliary data acquisition 

Snow depth stakes were established at five locations within each of 
the field sites to obtain ground truth data for the LiDAR acquisitions. The 
selection of stake locations was constrained by accessibility, steepness of 
the terrain, avalanche danger, and the necessity to limit disturbance to 
the snow surface. Stakes were installed before the first flight in February 
and removed when the sites became snow-free. Snow depth at all stakes 
at both sites was recorded on the same day as all winter data 
acquisitions. 

Further auxiliary data was retrieved from the meteorological station 
of the IMIS network (Interkantonales Mess- und Informationssystem) in 
Davos and the co-located snow depth measurement site. These data 
included hourly open-site solar radiation data used for sub-canopy ra-
diation modeling (section 3.4), as well as daily snow depth measure-
ments used as open-site reference values. 

3. Methods 

Information on both canopy characteristics and snow distribution 
can be extracted from LiDAR point clouds. Snow depth maps are ob-
tained by differencing digital elevation models (DEMs) of snow-off and 
snow-on acquisitions, while LiDAR returns from vegetation can be ras-
terized into canopy height models or used as input to radiation transfer 
models. The following sections outline the workflows applied for these 
purposes. 

3.1. UAV-borne LiDAR point cloud data processing 

Prior to creating any gridded product, several LiDAR point cloud 
post-processing steps were required. These included 1) registration 
workflows to create optimally georeferenced point clouds, and 2) point 
classification algorithms to allow discriminating between snow/ground 
and vegetation points, used to derive the snow depths and canopy 
structure datasets, respectively. 

3.1.1. Post-Processing kinematic correction and point cloud registration 
The position and attitude recordings of the INS were merged with the 

raw LiDAR returns and processed to georeferenced point clouds within 
the licensed CloudStation software (YellowScan CloudStation, 2021). To 
further improve the positioning accuracy, the flight trajectory was post- 
processed using the data of a Global Navigation Satellite System (GNSS) 
base station from the continuously operating reference stations (CORS) 
of the Swiss positioning system (SWIPOS). The base station chosen was 
within approximately 1 km of the two sites. This post-processing kine-
matic (PPK) correction was performed using the third-party licensed 
software POSPac UAV (Applanix, 2019). The outcome of the PPK 
correction was the post-processed Smoothed Best Estimate Trajectory 
(SBET) that was then used for improving the geolocation of the point 
clouds. 

The SBET-based correction of point clouds was assessed based on the 
alignment accuracy of the four strips for each individual scan, as illus-
trated in Fig. 2. For further improving alignment accuracy where 
necessary, we applied a manual strip adjustment workflow to neigh-
boring strips as follows: A vertical profile in the overlapping area of the 
point clouds corresponding to the two strips (e.g. the orange and green 
lines in Fig. 2a) was considered, and one was manually registered to the 
other to minimize offsets between the two, where the latter one 
remained static as reference. The 3D transformation matrix derived from 
this manual registration was then applied to the whole strip. 

The next step was the registration of all the four scans into one point 
cloud. Each individual LiDAR scan includes inaccuracies that might 
generate from GPS or INS drifts, the PPK correction, or during the 
manual adjustment of the strips of each scan. The resulting geolocation 
errors should be minimized by the registration of the individual scans. 
We applied the same manual adjustment workflow as for the strips’ 
registration, now using the whole scans instead of individual strips. The 
result was one combined point cloud for each data acquisition. These 
combined point clouds featured return densities of approximately 120 
pts. / m2. The snow-on and snow-off point clouds were not fully regis-
tered to each other, despite the numerous registration algorithms we 
tested (see discussions section). However, the misalignments between 
snow-on and snow-off point clouds were minimized through the previ-
ous steps and further fine-tuning of the so-far alignment procedure was 
not considered beneficial at this point. 

3.1.2. Point cloud classification 
The classification of each of the LiDAR point clouds into ground and 

non-ground points is an essential prerequisite for deriving any gridded 
product from the point clouds. In our case, this classification served to 
discriminate between returns from the snow or bare-earth surface (in 
snow-on and snow-off acquisitions, respectively), and returns from the 
vegetation (understory and trees). For snow mapping studies, a robust 
ground point classification is especially critical, as errors will translate 
into inaccuracies in snow depths. However, forested slopes represent a 
particularly challenging terrain for classification algorithms, as eleva-
tion differences between neighboring points can occur either because 
the ground is sloped, or because they belong to different classes (snow/ 
ground or vegetation). 

We used the lasground tool from LAStools software (LAStools, Aca-
demic Version 190812, 2019) that classifies points into ground and non- 
ground points. The most satisfying results, based on visual inspection, 
were obtained with the settings “step = 3m” and “offset = 1m” (for both 
sites). To account for any remaining noise within the classified point 
clouds, we performed additional filtering using the lasthin tool (LAS-
tools). In the case of snow-on acquisition, we kept “snow points” that 
were between the 50th and 60th percentiles of all elevation values 
within a 20 cm by 20 cm horizontally moving window, similar to the 
approach applied in Mazzotti et al. (2019a). 

In the case of the snow-off point clouds, the main challenge was the 
separation between bare-earth and understory vegetation points (Riaño 
et al., 2007; Spaete et al., 2011; Streutker and Glenn, 2006). Understory 
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vegetation at our sites consisted mainly of tall grasses and blueberry 
bushes, which are completely buried and pushed down by the snow and 
hence do not represent an issue during winter acquisition. However, in 
the case of snow-off flights, returns from understory vegetation are 
possible and could be misclassified as ground points, resulting in an 
overestimation of the elevation of the bare earth surface, and an even-
tual underestimation of the snow depths (Currier et al., 2019; Hopkinson 
et al., 2004; Tinkham et al., 2012). To minimize the occurrence of such 
artifacts, we slightly adapted the filtering with the lasthin tool, keeping 
“ground” points that were between the 40th and 50th percentiles of all 
elevation values within a 20 cm by 20 cm horizontally moving window. 

The classified point clouds obtained with the above workflow 
constituted the basis for extracting snow depth grids (Fig. 3/section 3.2), 
as well as for producing the canopy height models and corresponding 
canopy structure descriptor derivatives (Fig. 4/section 3.3). 

3.2. Snow depth data processing 

The workflow to obtain snow depth maps is summarized in Fig. 3. 
Following the classification of point clouds, snow or bare-ground returns 
for each acquisition were rasterized into 1 m DEMs, producing maps of 
snow depth (snow-on DEMs) or bare-earth (snow-off DEMs) respec-
tively. We applied the lasgrid tool (LAStools) to every individual snow- 
on and snow-off point cloud, where each pixel in the DEM was calcu-
lated as the average elevation of all points contained within that pixel. 
The resulting grids contained gaps corresponding to the below-canopy 
areas where no returns were captured. 

To fill these gaps, we applied the procedure suggested by Mazzotti 
et al. (2019a) which relies on the las2dem tool from LAStools. This tool 
triangulates LiDAR returns by using a temporary triangulated irregular 
network (TIN) and then rasterizes the TIN into a grid of 1 m resolution. 
During the TIN creation, all triangles bigger than 10 m were discarded 
and these areas remained as gaps in the final DEMs. Subsequently, the 
las2dem-derived DEMs were used to fill the gaps in the lasgrid-derived 
DEMs. To remove the high-frequency noise present in the DEMs, we 

smoothed the DEMs by applying a 3 by 3 kernel low-pass filter. 
Snow depth grids were calculated by differencing each snow-on DEM 

to the relevant snow-off DEM. The TIN-based gap-filling process of the 
DEMs led to a small number of artifacts that could be detected as un-
realistic snow depth values in the snow depth grids. We removed these 
by masking out the snow depth pixels with values higher than 1.5 m and 
lower than − 0.5 m to minimize these artifacts. The upper limit was 
chosen since no accumulation higher than 1.5 m was observed at our 
field sites. The remaining negative snow depth values (− 0.5–0 m) were 
not removed at this stage. 

Because our sites lacked permanently snow-free areas that could 
have served as zero snow depth reference, snow depths measured at the 
five stakes following each data acquisition flight were used as a final step 
to calibrate the snow depth raster datasets. We calculated a bulk cali-
bration offset for each snow depth grid by averaging the difference be-
tween the in-situ snow depths measured on the snow stakes and the 
LiDAR-derived snow depth values at the same pixel locations. 

3.3. Canopy structure data processing 

The snow-off point clouds were used to create 1 m resolution canopy 
height models for both sites. To this end, the snow-off point clouds were 
first height-normalized then rasterized by the maximum normalized z- 
value of all the points within each 1 m pixel. The resulting canopy height 
model was further converted into a binary canopy map, where all pixels 
with canopy height ≥ 2 m were considered canopy pixels and all pixels 
with canopy height < 2 m were considered non-canopy pixels. This 
binarization threshold is consistent with existing literature (Mazzotti 
et al., 2019a; Currier and Lundquist, 2018; Harpold et al., 2014) and was 
found to be sufficient for filtering understory vegetation. The binary 
canopy map provided the basis for the extraction of further canopy 
descriptors used in this study (see Fig. 4). We focus our analysis on 
canopy descriptors that characterize the local canopy structure, espe-
cially the canopy density around each pixel. The motivation for this 
choice is that local canopy density exerts a primary control on the 

Fig. 3. Workflow to obtain snow depth maps from the raw INS data and the LiDAR returns.  
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amount of snow intercepted by the canopy, and, consequently, on snow 
accumulation patterns below the canopy (Broxton et al., 2015; Moeser 
et al., 2015; Moeser et al., 2020). 

3.3.1. Distance from canopy edge (DCE) 
The Distance to Canopy Edge (DCE, Mazzotti et al., 2019a) algorithm 

was used to delineate different regions within the site, representing 
different small-scale canopy structure categories. The DCE algorithm is 
an edge-detection routine, which is applied on a binary canopy map. It 
outputs a map at the same resolution as the binary canopy height model, 
where every pixel is given the value of its distance to the nearest canopy 
edge (DCE), with negative values denoting values inside the canopy and 
positive values denoting values outside the canopy, respectively (Fig. 4). 
The DCE maps were used to define five canopy structure classes char-
acterizing the forest stand as follows: under canopy, far from edge; 
under canopy, near edge; at canopy edge; canopy gap, near edge; and 
canopy gap, far from edge. The corresponding DCE thresholds are re-
ported in Fig. 4. 

3.3.2. Canopy closure (CC) 
Canopy closure (CC), defined as the percentage of canopy pixels 

divided by the total number of pixels around a specific pixel location 
within a given radius, quantifies the vertical projection of canopy cover 
around a point. It was derived to provide a spatially continuous quan-
titative measure of local canopy density at each point within the site. It is 
thus a second canopy descriptor, which complements the categorical 
DCE-based classes. In the context of this study, a radius of 5 m was 
chosen to compute CC (Fig. 4), since this metric was shown to have the 
highest spatial correlation with forest snow depth in an earlier study 
conducted at nearby sites with heterogeneous canopy structures (Maz-
zotti et al., 2020a). We chose CC as a simple and established canopy 
structure metric that is linked to process variability across our sites, such 
as the interception of snow in the canopy. It should be noted that an 
analogous analysis in forests with mixed species (evergreen and 

broadleaf) may have required the use of more sophisticated metrics 
(including canopy height and/or foliage density). 

3.4. Radiation modeling 

To explore the links between snow distribution and ablation pro-
cesses, we further assessed sub-canopy irradiance patterns at our sites. 
Sub-canopy SWR and LWR are the two main drivers of snowmelt in 
forests, and both feature strong spatio-temporal variability (Lundquist 
et al., 2013; Musselman et al., 2015). The spatial distribution of sub- 
canopy incoming LWR is mainly dictated by sky-view fraction (Vf), 
which determines the patterns of LWR enhancement by the trees relative 
to above-canopy incoming LWR (Mazzotti et al., 2019b; Webster et al., 
2017). Sub-canopy incoming LWR patterns are thus approximately 
constant in time. In contrast, SWR transmission is a highly complex 
three-dimensional process, where sub-canopy incoming SWR at any 
location depends on the (changing) position of the sun relative to the 
overhead canopy (Jonas et al., 2020; Webster et al., 2020). While Vf (and 
therefore incoming LWR) is itself correlated to CC (Moeser et al., 2015), 
incoming SWR is not. For this reason, it was of particular interest for this 
study to investigate the complex spatiotemporal structure of SWR input 
to the snow surface at our sites, in addition to CC. 

SWR was assessed by applying the radiation modeling workflow 
described in Webster et al. (2020). This radiation model computes Vf 
and direct-pulse transmissivity (τdir) at each modeled location based on 
synthetic hemispherical images derived from LiDAR using the method 
from Jonas et al. (2020). Incoming SWR at a point is controlled by all 
canopy and terrain within a 180◦ hemispherical view and can be 
influenced by canopy up to 100 m away (Moeser et al., 2015), and 
terrain up to 10 km away. To include all canopy and terrain influences 
on measured snow depth within the field areas, the radiation model was 
run using ALS data collected in 2017 (Mazzotti et al., 2019a). A visual 
comparison between the 2017 data and the point clouds collected in this 
study showed no changes in canopy structure between the two data 

Fig. 4. Workflow illustrating the steps for the extraction of the canopy height models from the snow-off point clouds (left) as well as the two canopy structure 
descriptors that were estimated from the canopy height models (right). 
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acquisitions. The model included both canopy and terrain effects on 
SWR transmission. 

Total sub-canopy incoming SWR is given by the sum of above-canopy 
direct and diffuse SWR components multiplied by τdir and Vf, respec-
tively. We used the open-site SWR data recorded at the Davos meteo-
rological station (section 2.3) as a proxy for the above-canopy SWR. To 
partition the total above-canopy incoming solar radiation into diffuse 
and direct components, we used the scheme presented in Erbs et al. 
(1982), which estimates this partitioning based on atmospheric trans-
missivity. The calculation of the atmospheric transmissivity requires the 
solar zenith angle, which we computed with the parameterization 
developed by NOAA (https://www.esrl.noaa.gov/gmd/grad/solcalc/ca 
lcdetails.html). 

Total sub-canopy SWR was calculated at every pixel and for hourly 
timesteps between December 1st 2019 and the end of our observation 
period. Additionally, the cumulative SWR input between the beginning 
of December and each flight date was computed. The workflow is shown 
in Fig. 5, yielding cumulative sub-canopy SWR input maps at 1 m res-
olution for both sites and each data acquisition date. Note that our 
approach only allowed to infer the spatio-temporal variability of 
incoming radiation components, contrary to studies such as Malle et al. 
(2019) and Hotovy and Jenicek (2020) who were able to quantify net 
radiative fluxes owing to the measurement of the upwelling radiation 
components. Such data were unavailable at our site; analysis of spatio- 
temporal variation in net snowpack energy fluxes was thus beyond the 
scope of this study. 

4. Results 

4.1. Snow depth maps accuracies 

Manually measured and LiDAR-derived snow depths were compared 
and the coefficients of determination (R2) were calculated for both sites 
separately, before and after the implementation of the calibration offset 
(Fig. 6a and b). Based on these graphs, a systematic bias can be excluded 
and mismatches between the manual measurements and the LiDAR data 
mainly attributed to noise. The match between the manual measure-
ments and the LiDAR data was quantified in terms of root mean squared 
error (RMSE) for all the dates. The RMSE fluctuates between 5 and 17 cm 

and 5–10 cm for Wariwald-sunny and 5–21 cm and 4–20 cm for 
Abiwald-shaded before and after applying the calibration offset 
(Fig. 6c). The average RMSEs for all the dates presented in Fig. 6c is 13 
cm and 11 cm for Abiwald-shaded and 11 cm and 8 cm for Wariwald- 
sunny (before/after the calibration offset). The comparison of the 
RMSE values for both sites reveals that in Wariwald-sunny the accu-
racies are higher than in Abiwald-shaded. This is in accordance to the 
expected increased vertical biases of a LiDAR system in steeper terrain 
since Abiwald-shaded is steeper than Wariwald-sunny on average. Note 
that data acquired at Abiwald-shaded on the 3rd and 27th of April had to 
be discarded from our analysis due to an unacceptable level of noise 
despite following the workflow outlined in section 3.1. 

4.2. Spatio-temporal snow distribution dynamics relative to canopy 
structure 

This section relates snow distribution patterns to canopy structure at 
the two sites. In the first sub-section, snow depth distribution is quali-
tatively compared to the canopy height models. In the second sub- 
section, a more quantitative exploration of snow depth evolution in 
the context of the DCE-based canopy classes is presented. 

4.2.1. Qualitative overview of snow depth pattern evolution 
Fig. 7 presents the snow depth patterns at the two sites for three 

representative dates corresponding to roughly the beginning (7th 
February) and the end of the accumulation phase (i.e. peak of winter, 
11th March), and the middle of the ablation phase (1st of April). The 
canopy height models of the two sites are displayed for reference. 
Overall, these data reveal that the highest snow depths were consistently 
found in forest gaps, while snow amounts in the below- and close-to- 
canopy areas were generally lower. The snow depths reached their 
highest values on the 11th of March for both sites throughout the forest. 

However, comparing the two sites also highlights some important 
differences: The gaps in Abiwald-shaded featured deeper snow depths 
during the three depicted dates than the gaps in Wariwald-sunny. The 
gaps in Abiwald-shaded retained snow depths up to 80 cm even at the 
beginning of April whereas the snow depths were close to zero under 
dense canopy. In contrast, gaps at Wariwald-sunny had less snow 
throughout the season and retained less snow at the beginning of April 

Fig. 5. (a) Workflow for the calculation of the incoming sub-canopy cumulative SWR that reaches the snow surface from the 1st of December until each flying date; 
(b) SWR maps for three representative dates. 
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compared to Abiwald-shaded. The snow patterns for the three dates also 
show that Wariwald-sunny became snow-free earlier than Abiwald- 
shaded, especially in the areas below canopies which were already 
almost snow-free at the beginning of April. Notably, the gap on the 
lower-south part of the forest was almost snow-free by that time as well. 

4.2.2. Snow depth evolution for the DCE-based classes 
For a more quantitative assessment of snow depth dynamics relative 

to canopy structure, the evolution of the mean snow depth per DCE- 
based class for both sites is presented in Fig. 8. These plots confirm 
the general increase in snow depth from dense canopies towards large 
gaps identified in section 4.2.1. Comparing both sites, there was more 
snow at Abiwald-shaded than at Wariwald-sunny for DCE each class and 
acquisition, and the differences between the two sites increased 
throughout the ablation period. In the canopy gaps (see corresponding 
DCE classes), snow depths did not exceed 70 cm at Wariwald-sunny, 

with the highest average of the respective classes found on the 11th of 
March (peak of winter). On the same date, the corresponding mean snow 
depth value reached almost 1 m in the gaps at Abiwald-shaded. During 
all the dates, the mean snow depths at Wariwald-sunny remained be-
tween 20 and 60 cm in the gaps, whereas for all the corresponding dates 
at Abiwald-shaded the snow depths in the gaps had higher values, be-
tween 20 and 80 cm. 

We further observed a different temporal evolution of the mean snow 
depth per class at the two sites: In Abiwald-shaded the mean snow depth 
increased steadily from the two under-canopy classes to the gaps away 
from the canopy edges, and this behavior was consistent throughout the 
season. Wariwald-sunny showed the same behavior, but in this case, 
there was no discernible difference in the mean snow depths between 
the two DCE classes below-canopy and in the gaps. Furthermore, the 
data at Wariwald-sunny suggest a faster snow depletion rate in gaps than 
below canopy right after the peak of snow. As the first acquisitions after 

Fig. 6. Scatterplots of manual against LiDAR-derived snow depths for Wariwald-sunny (a) and Abiwald-shaded (b); RMSE for all the dates and both sites, after 
applying the calibration offset on each snow depth grid (c). 

Fig. 7. Snow maps for the two sites for three representative dates (right) where black shading denotes no data, and the respective canopy height models (left).  
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peak snow still featured 100% snow coverage, this finding indicates that 
the slower depletion in areas with, on average, less snow, was not only 
an effect of partial snow cover. 

Mean snow depths for each class at both sites are further compared to 
the snow depths measured at the reference open site (Fig. 8; black lines 
in lower panels). In Wariwald-sunny, the snow accumulation in the open 
site was almost 20 cm higher than in the gaps. On the contrary, in 
Abiwald-shaded there was almost the same amount of snow in the gaps 
compared to the open site during accumulation. After the onset of 
snowmelt (11th of March onwards), this trend shifted and the canopy 
gaps at Abiwald-shaded retained, on average, greater snow depths than 
the open site. Consequently, melt-out at the open site (April 20th) 
occurred earlier than for any DCE class in Abiwald-shaded, but later 
than in Wariwald-sunny, which was largely snow-free by that time. 

4.3. Spatio-temporal dynamics of sub-canopy incoming SWR 

To provide context to the between-sites differences identified by the 
results presented in section 4.2, this section provides an analysis of sub- 
canopy incoming SWR dynamics relative to canopy structure at the two 
sites. Fig. 9 presents the evolution of cumulative sub-canopy incoming 
SWR for both sites. Fig. 9a shows the site-averaged sub-canopy incoming 
SWR for all flight dates throughout the whole data acquisition period. 
The cumulative average sub-canopy SWR input increased steadily over 
time at both sites, but it is larger for Wariwald-sunny than for Abiwald- 
shaded for all the dates. While this finding was expected due to the 
orientation of the two sites, it is worth noting since the average CC at 
Abiwald-shaded was lower (0.55) than Wariwald-sunny (0.71). 

Within-site differences in cumulative incoming sub-canopy SWR are 
visualized in Fig. 9b, expressed as average sub-canopy incoming SWR 
within each DCE-based class for three representative dates (see Fig. 7). 

All the five different classes at Wariwald-sunny received more SWR than 
the corresponding classes at Abiwald-shaded, for all three dates. For 
reference, the class-average of cumulative sub-canopy incoming SWR in 
the largest gaps at Abiwald-shaded on April 1st was of comparable 
magnitude to cumulative sub-canopy incoming SWR under the dense 
canopy at Wariwald-sunny for the same date. At the same time, it was 
still lower than cumulative sub-canopy incoming SWR for the same 
canopy class at Wariwald-sunny on February 7th. 

Both differences between classes for the same site and between sites 
for the same class increased over the season, mainly due to increasing 
cumulative above-canopy incoming SWR. However, due to its exposure 
to direct insolation, Wariwald-sunny featured a stronger increase in sub- 
canopy incoming SWR over time than Abiwald-shaded, which resulted 
in larger between-class differences. At Abiwald-shaded, in contrast, 
given the lack of direct insolation, the differences between classes only 
reflected spatial variation in sub-canopy diffuse SWR, which is 
controlled by Vf. Overall, this analysis illustrates how the controls of 
terrain (i.e. exposure) on incoming solar radiation to the snow surface 
can be of similar or larger magnitude as controls exerted by the canopy. 

4.4. Correlations between snow distribution and local canopy structure 

We finally combine findings from sections 4.2 and 4.3 to explain 
correlation patterns between snow depth distribution and local canopy 
structure, and how they varied in time between the two sites. Fig. 10a 
shows the temporal evolution of the correlations between local CC and 
snow depths, which is further illustrated by the density scatterplots of 
CC versus snow depth for the three representative dates at both sites 
(Fig. 10c). The evolution of the correlation coefficients is further 
compared to the evolution of mean snow depth at each site throughout 
the season (Fig. 10b). Two key observations follow from these graphs. 

Fig. 8. Overview of snow depths per DCE class at the two slopes over the entire season (a and b) and mean snow depths per DCE class for all the dates and both sites 
(c and d). 
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Firstly, the negative correlation between local CC and snow depth was 
consistently stronger for Abiwald-shaded than for Wariwald-sunny: In 
fact, the Pearson correlation coefficient at Abiwald-shaded reached 
values around − 0.8 for a large part of the season (around − 0.85 on the 
11th March which was the date with the strongest correlation), while 
the strongest correlation coefficients varied between − 0.6 and − 0.7 at 
Wariwald-sunny. Secondly, this correlation persisted for a longer time at 
Abiwald-shaded than at Wariwald-sunny. At Abiwald-shaded, correla-
tions were still strong for part of the ablation season and only weakened 
for the two last campaigns as snow cover started to become partial. In 
contrast, the correlation strength deteriorated right at the peak of winter 
at Wariwald-sunny (R = − 0.5 on March 16). 

The vertically projected local canopy cover, here quantified by way 
of CC, is influential to processes driving sub-canopy snow accumulation 
and depletion dynamics, such as interception/throughfall and LWR. 
SWR represents an important exception: As a three-dimensional process, 
its complex spatiotemporal dynamics did not exhibit a direct depen-
dence on a local and purely two-dimensional canopy descriptor. Based 
on our analyses, we can thus suggest an interpretation of the difference 
in snow distribution dynamics between the two sites in terms of the 
varying relative importance of different physical processes at the two 
sites. 

Snow depth distribution early in the snow season was majorly 
affected by accumulation processes. At our sites, interception patterns 
were the main driver of snow cover dynamics during this phase, sup-
ported by the strongest correlations of snow depth and CC generally 
occurring during accumulation at both sites. The weaker correlations 
observed for Wariwald-sunny compared to Abiwald-shaded, however, 
were likely caused by the different exposure to direct SWR experienced 
by the two sites. Wariwald-sunny received much more sun already 
during the accumulation period (see Fig. 9), resulting in superimposed 
interception and insolation patterns at Wariwald-sunny but not at 
Abiwald-shaded. Additionally, stronger insolation also leads to more 
settling and/or midwinter melt, which also explains the lower average 
snow depths at Wariwald-sunny compared to Abiwald-shaded observed 

Fig. 9. Mean cumulative sub-canopy incoming SWR starting from the 1st of 
December (a) for all the dates and (b) per DCE class for three representative 
dates for both sites. 

Fig. 10. Pearson Correlation coefficient between CC and snow depth in time for both sites (a); Evolution of the mean snow depths per site and for all the dates (b); 
Density scatterplots between CC and snow depth for three representative dates for both sites (c). 
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already during accumulation. 
After the peak of winter, ablation processes can either exacerbate or 

diminish the initial correlation between snow distribution and local CC, 
depending on whether or not the ablation patterns themselves are 
spatially correlated with CC. No precipitation event occurred after 
March 11th. At Wariwald-sunny the process of insolation that already 
superimposed the accumulation processes immediately became the 
dominant control on snow distribution. At Abiwald-shaded, SWR input 
was likely too weak to disrupt the patterns created by accumulation 
processes, shown by the continually strong correlations between snow 
depth and CC into the ablation period. Due to the lack of direct insola-
tion, LWR was likely the main driver of snow ablation at this site. 

Overall, these findings reveal a higher complexity of the snow dis-
tribution dynamics and its relationship to canopy structure character-
istics at Wariwald-sunny. As shown by our analysis, this is linked to the 
longer and stronger exposure to the sun at this south-exposed side, as 
this entails the concurrent influence of processes that feature dissimilar 
canopy structure dependencies throughout the season. 

5. Discussion 

5.1. The interplay between canopy structure and topography shapes snow 
distribution dynamics in forested slopes 

The dataset presented in this study allowed a detailed comparison of 
forest snow dynamics and their spatio-temporal evolution at two 
opposing slopes using a UAV-borne LiDAR system. Snow cover dynamics 
were not only linked to a static canopy structure descriptor as in earlier 
studies (Broxton et al., 2015; Hojatimalekshah et al., 2021; Moeser et al., 
2020), but also to detailed sub-canopy SWR. The SWR dynamics at the 
two slopes exhibited substantial differences due to different topographic 
shading. Hence, our analysis enabled interesting insights into how 
topography and canopy structure interact to alter the relative impor-
tance of processes shaping snow cover dynamics at opposed slopes. 
These interactions, in turn, were shown to create distinctly different 
snow distribution pattern evolution at the two slopes. 

The general snow depth decrease from gaps to the dense canopy, 
which was shown using DCE-based classes, confirming findings of pre-
vious studies of Broxton et al. (2015), Mazzotti et al. (2019a), Moeser 
et al. (2015). However, our data also revealed generally higher mean 
snow depths in the shaded slope (Abiwald) compared to the sunny slope 
(Wariwald) throughout the season, particularly in the gaps. The close 
vicinity of the two sites means that any considerable differences in 
precipitation input and wind can be excluded, meaning accumulation 
processes at both sites adhere to the meteorological patterns. With SWR 
being the only highly variable meteorological input between sites, it is 
likely that SWR is the main driver of the differences in snow distribution 
patterns between the two sites. These findings support earlier observa-
tions by Golding and Swanson (1986) and Ellis et al. (2011), who 
established that the snow accumulation in forest clearings is affected by 
the exposure to solar radiation. Smaller mean snow depths in dense 
canopy areas than in open areas and accelerated melt at south-exposed 
forested slopes were also reported by Cartwright et al. (2020). Broxton 
et al. (2020), focusing on water equivalent estimations found accumu-
lation around 20–30% higher in gaps than in under-canopy areas and 
ablation rates at south-exposed slopes increased up to 15–30% relative 
to the north-exposed slopes. Zheng et al. (2016) found canopy strcuture 
and topographic characteristics to be relevant explanatory variables of 
snow distribution, using LiDAR-derived snow depths and regression 
analysis over a site in the Sierra Nevada. Very recently, the combined 
impact of canopy structure and topography was evidenced in a study by 
Safa et al. (2021), who applied machine learning algorithms to several 
LiDAR-derived snow distribution datasets from the Western US. 

Between-site differences throughout the season, illustrated by the 
different evolutions of the correlations between snow depth and CC at 
the two sites, demonstrate that discrepancies in snow cover dynamics 

between slopes of different aspects already build up during the accu-
mulation and not only during the ablation period. This is in line with the 
study of Grünewald et al. (2010), conducted in open terrain, which 
showed that areas of different aspects were characterized by different 
accumulation rates and also had differential depletion over the entire 
season. Schirmer and Pomeroy (2020) also highlighted that solar irra-
diance input in areas with different aspects causes different ablation 
rates and differences in early-season melting. Kostadinov et al. (2019) 
found higher fractional snow cover for below-canopy areas compared to 
open areas on south-exposed slopes at high elevation, confirming the 
dominant role of radiative processes in shaping snow distribution pat-
terns during ablation. 

Our results have important implications in the context of forest snow 
modeling. Latest hyper-resolution models that account for small-scale 
canopy structure and its influence on accumulation processes and ra-
diation patterns (Broxton et al., 2015; Moeser et al., 2020) should be 
inherently capable of resolving differences in snow cover dynamics be-
tween slopes. However, most models operate at coarser resolution and 
need to capture variability induced by canopy structure at the sub-grid 
level, either by parametrizations (Luce and Tarboton, 2004) or sub-tiling 
schemes (Currier and Lundquist, 2018). As suggested e.g. by Dickerson- 
Lange et al. (2015) and Mazzotti et al. (2021), sub-grid parametrizations 
specifically tailored to forested areas should be a priority of future 
research in the field. Our findings, indicate that such parametrizations 
would need to incorporate both, canopy structure and topography in-
formation, due to the distinct snow distribution patterns created by the 
two. Forest snow distribution maps as presented in this study could 
provide the basis for the sub-grid parametrizations, however, it should 
be kept in mind that the TIN-based gap filling method applied here likely 
overestimates snow depth under canopies and should be revisited in the 
context of LiDAR-derived forest snow maps. 

While providing meaningful insights, our analysis disregarded some 
factors that may additionally impact snow distribution patterns. Firstly, 
it should be pointed out that our findings are specific to the meteoro-
logical characteristics typical of our alpine sites. For instance, accumu-
lation patterns were unaffected by wind, due to generally low wind 
speeds given the location of our sites within larger forest stands (Maz-
zotti et al., 2020b), as well as relatively warm temperatures during 
snowfall events leading to limited wind transport (Mott et al., 2018). 
Studies conducted in colder and windier climates of the Western United 
States (Currier and Lundquist, 2018; Webb et al., 2020) have reported 
substantial snow redistribution by wind, which created accumulation 
patterns that were not directly linked to CC. Also, the ablation season in 
our study was characterized by fine weather and long periods of clear 
sky conditions. Under these conditions, direct solar radiation prevails, 
maximizing differences due to topography, and the range of LWR 
enhancement is largest, maximizing the link between LWR-driven 
ablation and CC (Mazzotti et al., 2019b). Prevalence of cloudy condi-
tions would have shifted the radiation patterns to more homogeneous 
LWR enhancement and stronger impact of diffuse radiation (i.e. negative 
correlation to CC). Such meteorological conditions would therefore 
likely have led to a faster decay of the correlation between snow depth 
and CC at Abiwald-shaded during the ablation season, and smaller dif-
ferences between the two sites. Consequently, and as suggested in 
existing literature (e.g. Mazzotti et al., 2021), any upcoming sub-grid 
forest snow parametrization should account for different controls rele-
vant in different climates, and only be applied in the context of the 
climatic conditions for which it has been developed. 

Secondly, and also as pointed out in previous literature, micro- 
topography (Hopkinson et al., 2012; Cho et al., 2021), as well as the 
ground roughness (Lehning et al., 2011; Cho et al., 2021), are additional 
controls on snow distribution that may confound canopy structure and 
topography effects. The forest floor at our sites indeed featured a 
considerable degree of roughness, due to rocks, fallen logs, and shrubs. 
However, initial attempts to characterize ground roughness from the 
snow-off LiDAR point cloud were unsuccessful, which hampered us from 
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investigating its influence on snow cover dynamics. Finally, our data 
was only able to capture snow depth distribution and could not resolve 
spatial differences in snow density, which does exhibit considerable 
variability in forests (Broxton et al., 2020; Raleigh and Small, 2017). 
While still providing insightful findings of the relative importance of 
different processes, our study cannot offer a full assessment of canopy 
and topographic impacts on snow water resources in terms of snow 
water equivalent. Canopy-class-specific snow density surveys at the two 
slopes would have been a useful complement to our dataset for this 
purpose. Unfortunately, accessibility restrictions made such efforts 
unfeasible. 

5.2. Technical challenges, lessons learned, and recommendations for 
future UAV-borne LiDAR forest snow studies in steep slopes 

The flexibility and the cost-effectiveness of UAVs make them an 
attractive tool for snow distribution surveying at high spatio-temporal 
resolutions. Given the unique assets of UAV-borne LiDAR compared to 
other platforms (e.g. LiDAR from crewed aircraft or UAV-borne optical 
sensors), it is a suitable choice for snow mapping studies on forested 
slopes. While a thorough accuracy assessment of this technology was 
beyond the scope of this study, the comparison against ground truth data 
(section 4.1) suggests that measurement errors were in the same order of 
magnitude as those observed for ALS-based studies in flat forests 
(Currier et al., 2019; Mazzotti et al., 2019a; Harder et al., 2020; Jacobs 
et al., 2021). However, our experience revealed that UAV-borne LiDAR 
technology is not straightforwardly applicable and that it comes with 
many challenges related both to the field data acquisition and the sub-
sequent data processing. Specific challenges we faced are discussed 
below followed by recommendations for future applications of this 
promising technology. 

The LiDAR-integrated INS proved to have operational difficulties, 
which became evident when analyzing misalignments between strips 
that persisted even after the PPK corrections. This could have been due 
to a changing flying height along the individual flight lines, which was 
implemented to maintain a fixed height above the terrain. Since no such 
difficulties were encountered with the same system when maintaining a 
constant flying height above flat terrain (see Koutantou et al., 2021), we 
conclude that higher-grade INS may be beneficial for such terrain- 
following applications for surveying in steep terrain. 

The return density of 30 pts./m2 granted by our LiDAR system is 
sufficient for resolving forest snow patterns at the meter scale and was 
comparable to other studies investigating snow depth distribution with 
ALS data (e.g. 18 pt./m2 in Currier et al. (2019), 5–30 pt./m2 in Mazzotti 
et al. (2019a) and 10–15 pt./m2 in Broxton et al. (2020)). However, 
occlusion turned out to be a limiting factor. Despite the manufacture- 
stated ability to record up to three returns per pulse, an inspection of 
our datasets revealed that most pulses yielded one return only, which 
meant that oftentimes the LiDAR pulse did not manage to penetrate the 
canopy. The overlapping flight patterns that yielded point densities of 
around 120 pts./m2 were designed to compensate for this circumstance 
and allowed us to restrict data gaps below the canopy to an acceptable 
level. However, this required strategy substantially reduced the area we 
could cover with our set of batteries. The resulting trade-off between 
spatial extent covered and point density achieved may have been avoi-
ded with a different LiDAR system, e.g. a system able to output the full 
waveform data to allow identifying even weak returns, e.g. such as the 
system used by Harder et al. (2020). Considering the amount of data 
gaps below dense canopy areas we still faced despite the high point 
densities reached by overlapping flight plans, we strongly advocate a 
careful choice of LiDAR system and survey parameters for forest snow 
studies, as these have different data requirements than typical applica-
tions of LiDAR. High pulse frequency, small pulse divergence and multi- 
angular scanning, as well as the possibility to post-process full waveform 
data would improve the concurrent capture of both canopy and the 
below-canopy surface. Where data gaps cannot be avoided, more 

sophisticated gap filling algorithms could be explored to avoid the likely 
overestimation of snow depth caused by the TIN-based gap-filling 
method used here. While already suggested by Mazzotti et al. (2019), 
the enhancement of this algorithm was beyond the scope of this study as 
it would require substantially more ground validation measurements. 

The manual registration adjustment procedure we had to apply to 
compensate for a lack of positioning accuracy of the INS is not consid-
ered part of a standard processing workflow. In fact, such a step is not 
reported by either Jacobs et al. (2021), Harder et al. (2020) or Cho et al. 
(2021). Yet, it was indispensable in our case, as misalignment issues and 
data gaps not only affected the accuracy of our data but substantially 
inhibited the application of subsequent processing algorithms. As dis-
cussed in detail in Koutantou et al. (2021) numerous existing algorithms 
were unsuccessfully tested prior to adopting the manual registration 
workflow. A major limitation to the use of these algorithms was the lack 
of stable objects at our sites that could have been used as tie points in 
feature-based registration algorithms. Since our acquisitions only 
occurred in the absence of wind and snow intercepted in the canopies, 
we even tested the use of treetops as stable features within our sites, as 
proposed by Ferraz et al. (2018), but failed to extract a global rotation 
and translation matrix applicable to the whole point cloud. 

A large set of Ground Control Points (GCPs) would have facilitated 
the registration procedures. We strongly recommend that future forest 
snow studies involve permanently installed GCPs that are evenly 
distributed across the site, to allow minimizing geolocation errors ho-
mogeneously across the entire point cloud. Snow depth measurements 
on the GCPs could be also useful for the validation of the snow depth 
maps. As with the GCPs, an even distribution of the validation stakes 
across the sites is recommended (Bühler et al., 2015, 2016; Vander Jagt 
et al., 2015; Avanzi et al., 2018). This was not possible at our sites due to 
accessibility issues; disturbance of the snow surface needed to be mini-
mized, and especially at Abiwald-shaded, accessibility was only granted 
at the lower end of the slope for avalanche safety reasons. An alternative 
solution could be the placement of stakes with cameras oriented towards 
them to avoid necessitating direct access to them on each campaign day. 
Where snow-free areas are present, a combination of the LiDAR datasets 
with optical imagery could be used to delineate these for later use to 
facilitate the registration of snow-on and snow-off point clouds, as in the 
workflow applied by the Airborne Snow Observatory (Painter et al., 
2016). Snow-free features could also provide a more robust validation 
target than point measurements from snow stakes. 

6. Conclusions 

This study presented, for the first time, an analysis of spatio-temporal 
snow dynamics in two heterogeneous forests on slopes of opposing as-
pects, based on repeated UAV-borne LiDAR surveys. Snow depth maps at 
1 m resolution derived from the point clouds were analyzed in 
conjunction with canopy structure information and detailed maps of 
sub-canopy incoming shortwave radiation obtained with a LiDAR-based 
radiation transfer model. 

Analysis of co-registered snow and canopy structure data revealed a 
strong correlation between spatial patterns of snow depth and local 
canopy closure early in the season. This correlation was stronger and 
persisted longer for the north-exposed site, but was weaker and decayed 
immediately after the peak of winter at the south-exposed site. The 
temporal evolution of the correlation between snow depth and local 
canopy closure suggests that at the shaded slope, snow distribution 
patterns were mainly governed by interception patterns formed during 
accumulation, and were not significantly altered during ablation. These 
consistent snow depth distribution patterns through the ablation period 
suggest longwave radiation was the dominant radiation flux at the 
shaded site. In contrast, direct insolation was the dominant radiation 
flux at the south-exposed slope, and its complex spatio-temporal pat-
terns lead to snow distribution dynamics that exhibit a less well-defined 
link to the local structure throughout the ablation period. 
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These findings corroborate the complexity of the snow processes in 
forests and the important role both local canopy cover and topography 
play in shaping them. Approaches to parametrize the sub-grid variability 
of forest snow in coarse-resolution models will thus need to account for 
both, and such approaches must be tested in a variety of topographic 
settings and meteorological conditions. 

In general, the UAV-borne LiDAR system proved efficient in mapping 
snow cover dynamics with a high spatial and temporal resolution. 
However, we identified technical challenges specific to applying this 
technology to forested slopes. Future application of UAV-borne LiDAR to 
snow studies in forested complex terrain should carefully consider sys-
tem specifications and the use of GCPs to facilitate subsequent data 
processing. Concurrent acquisition of snow density measurements 
would further allow extending this snow depth-based analysis to snow 
water equivalent in view of a more accurate quantification of snow 
water resources. 
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