
1. Introduction
Various climate-related indicators suggest that European Alpine water courses will be substantially altered by 
climate change (FOEN, 2021; Stoffel et al., 2014). In recent times, more frequent flooding has been observed 
in several parts of Europe, affecting society as well as ecosystems (e.g., Blöschl et  al.,  2020). Flood-related 
hazards like bedload transport pose a significant threat to human life and infrastructure, especially in small 
alpine catchments (Badoux et al., 2014). However, monitoring and predicting such bedload transport processes 
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still represents a considerable challenge because of their large spatio-temporal variability (e.g., Ancey, 2020; 
Einstein, 1937; Habersack et al., 2008; Mühlhofer, 1933; Reid et al., 1985; Rickenmann, 2017).

Traditional direct bedload sampling methods such as retention basins, slot samplers or mobile bag samplers 
(e.g., Helley & Smith,  1971) have a limited resolution in space and time, determined by factors such as the 
sampler capacity (e.g., Habersack et al., 2017), the flow conditions (e.g., Bunte et al., 2004) or the bed material 
texture (Camenen et al., 2012). In the last decade or so, more effort was put into the development of indirect 
bedload surrogate monitoring technologies, in order to overcome some of the limitations of direct methods (Gray 
et  al.,  2010; Rickenmann,  2017). This is achieved by using active sensors, such as acoustic Doppler current 
profilers (aDcp; Le Guern et al., 2021), that emit acoustic signals, or by using passive sensors that record acous-
tic or elastic waves generated by bedload. Seismometers installed on streambanks (Dietze et al., 2019; Gimbert 
et al., 2019; Roth et al., 2016) and underwater microphones (Geay et al., 2017; Thorne, 1986) record the signal 
produced by both the interparticle collisions of moving bedload material and the collision of bedload particles 
with the bed. Devices such as the Japanese pipe microphone (Mao et al., 2016; Mizuyama, Laronne et al., 2010, 
Mizuyama, Oda et  al.,  2010) or the impact plate system equipped with either a microphone, a piezoelectric 
sensor, or a geophone (e.g., Hilldale et al., 2015; Koshiba et al., 2018; Krein et al., 2008; Kuhnle et al., 2017; 
Raven et al., 2010; Rickenmann & McArdell, 2007; Wyss et al., 2016c) are intended to record the vibration or 
sound produced by the elastic impact of particles directly on a metallic structure.

Surrogate monitoring techniques such as these offer many advantages over the traditional direct methods in terms 
of robustness, spatial coverage and temporal resolution. However, numerous recent studies have demonstrated that 
concurrent bedload sampling is still indispensable to efficiently calibrate impact plates (Habersack et al., 2017; 
Kreisler et al., 2017; Nicollier et al., 2021; Rickenmann et al., 2012, 2014), hydrophones (Geay et al., 2017) and 
pipe microphones (Dell'Agnese et al., 2014; Mao et al., 2016; Mizuyama, Laronne, et al., 2010). Typically, linear 
or power-law calibration relationships are developed between measured signal properties and bedload transport 
characteristics. Such calibration equations enable spatio-temporal estimates of bedload fluxes and the detection 
of the start and end of bedload transport. However, each site must be individually calibrated, because the current 
bedload surrogate measuring techniques lack generally applicable signal-to-bedload-flux calibration equations 
that are valid across multiple field sites. A further limitation to the use of surrogate monitoring systems can arise 
from the bedload transport itself. Seismometers installed on the banks, for instance, have been found to be unable 
to record bedload transport if the particle size or the impact rate was too low (e.g., Anthony et al., 2018; Barrière, 
Oth, et al., 2015).

Surrogate monitoring techniques can also be impaired by ambient noise sources. Water turbulence, for example, 
can significantly reduce the ability of aDcp systems (Conevski et al., 2018), seismometers (Roth et al., 2016) 
or hydrophones (Geay et al., 2017; Gray et al., 2010) to measure bedload transport. In addition, anthropogenic 
sources (Barrière, Krein, et al., 2015) and rainfall (Roth et al., 2016) can both generate ground vibrations in a 
similar frequency band as bedload transport. Recent studies report the successful implementation of time-fre-
quency based methods to increase the signal-to-noise ratio and improve the detectability of bedload particles 
using pipe hydrophones (Choi et al., 2020) and impact plate systems (Barrière, Krein, et al., 2015; Koshiba & 
Sumi, 2018).

Among the passive monitoring techniques, the Swiss plate geophone (SPG) system has been deployed and tested 
in 21 steep gravel-bed streams and rivers, mostly in the European Alps (Rickenmann, 2017). Although the simi-
larities between calibration measurements from various field sites are encouraging, it is not well understood why 
the site-specific linear calibration coefficients can vary by about a factor of six among different sites, excluding 
the special case of the ephemeral Nahal Eshtemoa stream (Halfi et  al.,  2020; Rickenmann & Fritschi,  2017; 
Rickenmann et al., 2014). Wyss et al. (2016a) found that the flow velocity can matter, with higher flow veloci-
ties inducing a weaker signal response. Another important site-dependent factor influencing the signal response 
is the grain-size distribution (GSD) of the transported bedload (Nicollier et al., 2021): coarser grain mixtures 
yield stronger signal responses, per unit bedload weight, in the SPG system. SPG systems have typically been 
assumed to be insensitive to background noise such as water turbulence, because of damping by the elastomer 
supports for the impact plates, and due to the high threshold value used for impulse counts (Wyss et al., 2016a). 
However, recent impact tests performed at various field sites suggest that the energy released by an impact on a 
plate can propagate over several plate lengths and register as false detections across multiple sensors (Antoniazza 
et al., 2020).
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Here, we examine the propagation of seismic waves generated by impacts as a possible noise source affecting 
the signal response of the SPG system and biasing calibration relationships. We characterize the propagated 
waves detected by the SPG system using field and flume calibration data, in order to distinguish signal packets 
originating from measurement artifacts versus real bedload transport. Furthermore, we analyze a set of full-scale 
controlled flume experiments conducted at the Obernach flume facility (Bavaria, Germany), where we used a 
partition wall to shield one sensor plate from impacting bedload particles. Finally, we propose a signal process-
ing method that aims to isolate each sensor plate from propagating waves and apply it to field calibration data. 
Hence, the objectives of this study are (a) to detect and characterize parts of the raw signal (or packets) recorded 
by the SPG system that originate as impacts occurring beyond each individual plate, (b) to quantify the number 
of (unwanted) “apparent” packets generated by waves that propagate from these impacts, as a function of the size 
of the transported bedload material, (c) to develop a filter method that distinguishes real from apparent packets 
and (d) to show that filtering calibration data from four field sites reduces the differences between the site-spe-
cific calibration coefficients, and enables the derivation of a general calibration equation (or signal conversion 
procedure) valid at all four sites.

2. Methods
2.1. The SPG System

The SPG system consists in a geophone sensor fixed under a steel plate of standard dimensions 492 × 358 × 15 mm 
(Figure 1a; Rickenmann, 2017). The geophone (GS-20DX by Geospace technologies; www.geospace.com) uses 
a magnet moving inside an inertial coil (fixed on springs) as an inductive element. The voltage induced by 
the moving magnet is directly proportional to the vertical velocity resulting from particle impacts on the plate. 
This raw voltage output is then digitized using an analog-to-digital converter (NI 9205 by National Instruments) 
connected to a computer located on one of the banks. Typically, a SPG array includes several plates next to 
each other, acoustically isolated by elastomer elements. The array is either embedded in a concrete sill or fixed 
at the downstream face of a check dam. A detailed description of the SPG system can be found in Rickenmann 
et al. (2014).

Due to data storage limitations, field stations usually do not continuously record the full raw 10 kHz geophone 
signal. Instead, it is typically pre-processed, and summary values, such as the maximum amplitude and the 
number of impulses, are recorded at one-minute intervals. However, for the relatively short duration of a single 
calibration measurement, ranging from a few seconds to one hour, the full raw signal is stored for subsequent 
post-processing. Wyss et al. (2016c) introduced the packet-based amplitude histogram method to derive the size 
of individual bedload particles from the geophone signal. Wyss et al. (2016c) define a packet (see Figure 1b) as 
a brief interval, typically lasting 5–30 milliseconds, reflecting a single impact of a particle on a plate; it starts 

Figure 1. (a) Swiss plate geophone (SPG) array embedded in concrete including two steel plates, each equipped with a uniaxial geophone sensor fixed in a watertight 
aluminum box attached to the underside of the plate. The plates are acoustically isolated from each other by elastomer elements (black). (b) Example of two packets 
(light blue area) detected by the SPG system. The start of a packet, as defined by Wyss et al. (2016c), begins 2 ms before the signal envelope crosses the lowest 
amplitude threshold of 0.0216 V and ends 2 ms after the last crossing of the lowest amplitude threshold of 0.0216 V.

http://www.geospace.com/
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2 ms before the signal envelope crosses the lowest amplitude threshold of 
0.0216 V and ends 2 ms after the last crossing of the lowest amplitude thresh-
old of 0.0216 V. The signal envelope is computed with the Hilbert transform 
(Jones et al., 2002), which compensates for the asymmetric offset of the raw 
seismic signal around the zero-amplitude level. Each packet is then assigned 
to a predefined amplitude class (AC; Table 1) depending on its maximum 
amplitude, yielding a packet-based amplitude histogram. Following Wyss 
et al. (2016c), each AC j is assumed to be representative of a corresponding 
grain-size class. The following relationship relates the mean amplitude Am,j 
(V) to the mean particle size Dm,j (mm) for each class j:

𝐴𝐴m,𝑗𝑗 = 4.6 ⋅ 10
−4

⋅𝐷𝐷m,𝑗𝑗
1.71 (1)

The grain-size classes are delimited by the size of the meshes used to sieve 
the bedload samples obtained during field calibration measurements. In the 
present study, we have extended the seven classes used by Wyss et al. (2016c) 
to ten classes, to examine in more detail the behavior of larger bedload parti-
cles and their effect on the signal response. Wyss et al. (2016c) showed that 
the packet-based amplitude histogram method provides reasonable estimates 
of the fractional bedload mass for the Erlenbach calibration measurements. 
Since 2016, in addition to the summary values, sections of the raw signal 
corresponding to packets, as well as their time of occurrence, have been 
stored at multiple field monitoring stations. To facilitate its implementation 
at the field stations and to limit the required computing power, the filtering 
method described in this study is based on packet information only.

Calibration coefficients linking the recorded packet rate PACKT to the measured total bedload flux qb can be 
obtained from the following power-law regression equation,

PACKT = 𝑎𝑎 ⋅ 𝑞𝑞b
𝑏𝑏 (2)

where a is the linear coefficient and b the exponent determined by regression. In Equation (2), qb is expressed in 
(kg m −1 s −1) and includes all particles with a diameter larger than 9.5 mm, while PACKT is expressed in (pack-
ets m −1 s −1) and includes all packets with an amplitude larger than 0.0216 V. Because each plate is 0.5 m wide, 
PACKT equals twice the packet generation rate for an individual plate, and qb is twice the transport rate (in (kg 
s −1)) measured across the width of each plate. To facilitate comparisons among calibration coefficients a from 
different field sites, we also consider the linear form (b = 1) of Equation (2), which yields calibration coefficients 
a that are comparable to the linear calibration coefficient kb with units (kg −1) determined in previous studies 
employing the SPG system (e.g., Rickenmann et al., 2014; Wyss et al., 2016a).

To determine the coefficient a and exponent b of Equation (2), we used the reduced major axis (RMA) instead of 
the ordinary least squares fit. RMA regression has the advantage of defining a bivariate relationship with a unique 
line (Harper, 2014). Our choice of this method assumes that error is present in both the sampled bedload (e.g., 
due to an incorrect positioning of the sampler) and the recorded signal, which is influenced by the impact loca-
tion on a given impact plate, the type of particle motion (e.g., rolling, sliding, saltation), and the impact velocity 
(Rickenmann & McArdell, 2008), all factors that cannot be quantified, particularly under field conditions. Since 
we use log-log rating plots, we also improved the estimates by applying a bias correction factor, as suggested by 
Ferguson (1986).

2.2. Seismic Wave Attenuation

Seismic wave attenuation is often quantified using the quality factor Q. The quality factor is dimensionless but 
material-dependent; it is inversely proportional to the fractional loss of energy per oscillation cycle. Ammon 
et al. (2020) describe the quality factor as “the ratio of the mass- and spring-related terms to the coefficient of 
friction, γ. Q has an inverse relationship with attenuation, such that the smaller Q is, the larger is the attenuation. 
Higher Q indicates that friction has less influence on the mass' motion”. More generally, Q increases together 

AC (j) (-)
Lower threshold 

(V) Am,j (V)
Lower sieve size 

(mm)
Dm,j 

(mm)

1 0.0216 0.0336 9.5 12.30

2 0.0527 0.0608 16.0 17.40

3 0.0707 0.0894 19.0 21.80

4 0.1130 0.1381 25.0 28.10

5 0.1670 0.2272 31.4 37.60

6 0.3088 0.4112 45.0 53.20

7 0.5489 0.6783 63.0 71.29

8 0.8378 1.1189 80.7 95.49

9 1.4919 1.8453 113.0 127.87

10 2.2760 (3.0442) 144.7 (171.53)

Note. Amplitude classes (AC) j derived from sieve mesh sizes (for classes 
1–7) and from Equation (1) according to Wyss et al. (2016c), including mean 
amplitude Am,j and mean particle diameter Dm,j. Particles in classes 8–10 were 
manually sorted on the basis of linearly extrapolated Dm,j values. The values 
of Am,j and Dm,j for the largest class (10) in brackets are estimates.

Table 1 
Characteristics of the Amplitude Classes (AC) j
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with the density of the material and the seismic wave speed in the material. Ammon et al. (2020) describe the 
attenuation of a propagating seismic wave as a function of the distance traveled A(r) using

𝐴𝐴(𝑟𝑟) = 𝐴𝐴0 exp

(

−𝑓𝑓𝑓𝑓𝑟𝑟

𝑐𝑐𝑐𝑐

)

 (3)

where A0 is the initial amplitude, f is the frequency, r is the distance traveled by the wave and c is the wave veloc-
ity. The filter method described further in this study is based on three qualitative observations. (a) The longer 
the travel distance of a seismic wave, the stronger is its attenuation. (b) High frequencies are more effectively 
attenuated than low frequencies. (c) In the context of a bedload monitoring station, the elastomer used to acous-
tically isolate the plates from each other attenuates the signal more strongly than does the steel in the supporting 
structure and the impact plates.

2.3. Packet Classification

The filtering method presented in this study classifies each packet detected by a geophone sensor into the catego-
ries “real” and “apparent”. While a “real” packet results from a particle impacting on a given plate, an “apparent” 
packet results from an impact either on a neighboring plate or on the surrounding concrete sill (Figure 2). From 
Equation (3), one can expect that both the maximal envelope amplitude and the power spectral density of the 
signal recorded by the SPG will be influenced by the distance between the location of apparent impact and the 
SPG. Accordingly, the filtering method is based on the packet information listed in the following subsections. We 
used the stochastic basin-hopping minimization algorithm described by Wales and Doye (1997) and available on 
SciPy (https://docs.scipy.org) to find the optimal filter parameters for each individual monitoring station as well 
as for all stations combined. The coefficient of determination R 2 of Equation 2 was used as the objective function 
for determining the optimal filter parameters.

Figure 2. (a) Snapshot of a video recording of a single-grain-size experiment using particles of class j = 8 in the original flume setup, without the partition wall. 
The dashed black line marks the contour of the two impact plates. The left circled particle illustrates an impact on plate G1, which can lead to the recording of one 
real packet by G1 and one apparent packet by G2. The right circled particle illustrates an impact on the concrete bed, which can lead to the recording of an apparent 
packet by both sensors. A magnetic-inductive flow meter (1) was used to measure and adjust the flow velocity. (b) Upstream view of the test reach with dimensions 
of 24 × 1 m. The visible particles were embedded at a fixed position to replicate the bed roughness measured at field sites. During tests, grains were fed into the 
channel 8 m upstream from the Swiss plate geophon system location. The 4 m–long wooden partition wall and the impact plates are decoupled from each other by a 
2 mm gap. The sensor plate G1 is shielded from direct particle impacts. However, both plates can detect impacts on the concrete bed. The red arrows indicate the flow 
direction.

https://docs.scipy.org/
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2.3.1. Maximum Amplitude of the Envelope

Antoniazza et al. (2020) performed impact experiments at the Albula, the Navisence, and the Avançon de Nant 
field sites in order to quantify the attenuation of signals propagating along a SPG array. The amplitude of the 
signals recorded on the first neighboring impact plate (r = 50 cm) was found to be reduced by 83%–90% relative 
to the signal recorded on the impacted plate. The maximum amplitude of a given packet MaxAmpenv is compared 
here to the maximum amplitude recorded by the two closest neighboring geophones MaxAmpenv, neighbor within 
a predefined time window (see subsection 2.3.4). If larger amplitudes were recorded by neighboring plates, one 
can expect that the packet was triggered by a propagating wave originating from outside the considered plate. 
The amplitude information is retrieved from the envelope that was initially used to delimit the beginning and end 
of each packet (Wyss et al., 2016c). Compared to the raw signal, the envelope has the advantage of returning the 
magnitude of the analytical signal and thus better outlines the waveform by omitting the harmonic structure of 
the signal.

2.3.2. Centroid Frequency

According to the Hertz contact theory, the frequency at which the geophone plate vibrates will depend on the size 
of the colliding particle (Barrière, Krein, et al., 2015; Bogen & Møen, 2003; Johnson, 1985; Rickenmann, 2017; 
Thorne, 1986). In previous studies, the frequency spectrum of a packet was characterized by the spectral centroid 
fcentroid (Wyss et al., 2016a). It indicates the center of mass of the spectrum and is computed as

𝑓𝑓centroid =

∑

𝑓𝑓𝑛𝑛 ⋅ 𝐴𝐴FFT,𝑛𝑛
∑

𝐴𝐴FFT,𝑛𝑛

 (4)

where AFFT,n (V·s) is the Fourier amplitude (computed with the Fast Fourier Transform) corresponding to the 
frequency fn (Hz). Before applying the FFT, the raw data (voltage output by the geophone) in each packet is 
preprocessed in two steps. First, a 30% cosine taper is applied at the edges of a max. 8 ms time window around 
the peak amplitude of each packet (see subsection 2.3.4). Second, the signal contained in this time window is 
zero-padded on either side to reach an optimal number of sample points nFFT. The taper is used to smooth the 
transition between the packet and the concatenated zeros, and to suppress spectral leakage, which results in a 
more accurate amplitude spectrum. The value of nFFT was set to 2 7 (12.8 ms) in order to adequately resolve the 
amplitude spectrum of the raw signal contained in the max. 8 ms time window. The single-sided Fourier trans-
form of the processed packet is then computed in order to extract the AFFT and derive the fcentroid (Equation 4). For 
a given Q, high frequencies will be more rapidly attenuated than low frequencies along the travel path of a seismic 
wave (Equation 3). Here we take advantage of this phenomenon and use fcentroid as threshold to define whether a 
packet-triggering impact took place on a given plate.

2.3.3. Peak Frequency

A further characteristic of the packet's power spectrum used to classify packets is the peak frequency fpeak. fpeak is 
the frequency with the largest amplitude AFFT,n of the single-sided Fourier transform. Real packets are character-
ized by high fpeak values (>1,500 Hz) for a large range of grain sizes. This enables a straightforward classification 
of packets based on a unique threshold. fpeak is implemented in the filtering method as secondary step aiming 
to classify overlapping packets, that is, packets having an amplitude smaller than the amplitude of the signal 
recorded by neighboring sensors.

2.3.4. Time Window

Both the comparison of the amplitude with the neighboring signal channel traces and the spectral analysis are 
carried out within a time window of max. 8 ms around the maximum amplitude of each packet. This time window 
contains the first arrival waveform. In case the packet duration is shorter than 8 ms, the window is reduced to the 
length of the packet. The aim of this window is twofold. First, it usually avoids overlapping two packets generated 
close enough in time but on two different plates. Second, in the words of Barrière, Krein, et al. (2015), “when 
a sediment particle impacts on the plate, the amplitude and frequency of the first arrival waveform are the two 
fundamental properties related to the force that the bedload imposes on the plate and the contact time defined as 
the duration over which the applied impact force is non-zero”. Focusing on the first arrival waveform results in a 
more accurate evaluation of the high-frequency content of the packet.
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Note that in previous studies, the traces recorded by the geophones of an SPG array have always been analyzed 
individually. The novel strategy presented in this study analyzes multiple geophone traces simultaneously, similar 
to traditional reflection or refraction seismic surveys.

2.3.5. Continuous Wavelet Transform

We attempted to develop a filter method based on the continuous wavelet transform (CWT) as a summary of 
the time-frequency information of each packet. The CWT was introduced in the field of seismic processing by 
Goupillaudet al. (1984) and was applied to bedload measurements by Barrière, Krein, et al. (2015). The advan-
tage of the CWT over the more common FFT is its flexible time–frequency resolution. The CWT is computed 
with the integral over time of the signal multiplied by scaled and shifted versions of a function called the mother 
wavelet (Kristeková et al., 2006). The CWT was implemented in the filtering method using the tf_misfit package 
available on Obspy. As suggested by Barrière, Krein, et al. (2015), we used the complex Morlet wavelet as the 
mother wavelet. However, the CWT is computationally more demanding than the FFT and requires too much 
buffer memory to be applied in real time at monitoring stations when transport rates are high. Additionally 
the FFT proved to be accurate enough to retrieve the necessary information from the power spectral density 
of the signal. Nonetheless we continue to use the CWT as a powerful tool to visualize and better understand 
the  time-frequency evolution (i.e., the spectrogram) of each packet.

2.4. Controlled Flume Experiments

The idea for the filter design comes from controlled experiments conducted at the outdoor flume facility of the 
Oskar von Miller institute of TU Munich in Obernach, Germany. At this facility, we reconstructed the bed charac-
teristics of the Albula, Navisence, and Avançon de Nant field sites, one after another, in a test reach with dimen-
sions of 24 × 1 m equipped with two impact plates (Figure 2). Each site reconstruction used bedload material 
collected during field calibration measurements, and we adjusted the flow velocity, flow depth, and bed rough-
ness to match those field observations. A detailed description of the original flume set-up and the performed 
experiments can be found in Nicollier et al. (2020). In the present study, we took advantage of the flume to (a) 
characterize the effect of wave propagation as a function of the grain size and (b) test the filter method. In a first 
stage, the original set-up was modified and a partition wall was installed in the center of the flume, guiding all of 
the transported bedload particles over a single plate (plate G2; Figure 2b). The non-impacted plate, G1, served 
as a reference to characterize apparent packets. Single-grain-size experiments were run with a fixed number of 
grains for each of the ten particle-size classes, resulting in a total of 51 runs in the modified setup (Tables 1, 
and 3). The flow velocity was set to 3 m/s to facilitate the transport through the narrower flume section and the 
bed slope was 4%. In a second stage, after having defined an optimal filter, we applied it to the entire data set 
collected during a series of single-grain-size experiments performed in the original flume set-up between 2018 
and 2020 (1,095 runs in total, all without the partition wall). Videos recorded at 120 fps during these experiments 
were used as a supplementary source of information to identify the location of impacts and to help classifying the 
generated packets (Figure 2a).

To illustrate the increasing importance of energy propagation with increasing particle diameter during these flume 
experiments, we use a further calibration coefficient. The coefficient αtot,j, as defined by Wyss et al. (2016b), 
compares as follows the total number of recorded packets PACKtot having a maximum envelope amplitude larger 
than 0.0216 V to the total number of particles Nj fed into the flume for a given grain-size class j:

𝛼𝛼tot,𝑗𝑗 =

PACKtot

𝑁𝑁𝑗𝑗
 (5)

Ideally, αtot,j should equal one. Values lower than one indicate missed particle detections, while values greater 
than one indicate the presence of either particles impacting multiple times a plate, or apparent packets.
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2.5. Field Calibration

After having defined the general structure of the filter, the optimal filter parameters were obtained using cali-
bration data collected at four Swiss bedload monitoring stations equipped with the SPG system (Table 2). The 
Albula, the Navisence, and the Avançon de Nant stations were all calibrated and subsequently replicated in the 
flume. The extensive field calibration data set from the Erlenbach site was also included in this analysis, in order 
to test the filter method under different channel and flow characteristics. A calibration consists of the follow-
ing steps: (a) direct sampling downstream of an impact plate using one of the listed techniques (Table 2), (b) 
synchronous recording of the raw geophone signal, (c) sieving and weighing the sample according to the ten sieve 
classes presented in Table 1, (d) comparing both the fractional and the total bedload mass of each sample to the 
packet-based amplitude histogram data to derive the corresponding calibration coefficient a (Equation 2). A more 
detailed description of the procedure is reported in Supporting Information S1. This study focuses on the calibra-
tions for the total bedload mass; the calibrations for individual size classes will be the focus of an upcoming paper.

3. Results
3.1. Identification of Wave Propagation in Flume and Field Data

By synchronizing the videos and the seismic traces recorded during the flume experiments performed without 
the partition wall, we were able to make a first step toward packet classification. The following observations can 
be made from the example shown in Figure 3. (a) Within the first 0.06 s, Figure 3 shows three impacts on the 
concrete in the vicinity of the SPG array, detected by both sensors as packets with similarly low amplitudes, and 
fpeak and fcentroid values below 900 Hz. (b) Between 0.08 and 0.11 s, and again between 0.17 and 0.19 s, Figure 3 
shows impacts on plate G2 and plate G1, respectively. Both impacts are detected by the impacted sensor plate 
as real packets with fpeak and fcentroid ranging from 1,300 to 2,000 Hz. (c) These same two impacts are detected 
by the neighboring sensor plate as apparent packets with fpeak and fcentroid values ranging from 250 to 1,000 Hz. 
The attenuation of the high frequencies is visible in the spectrograms of these packets, obtained using the CWT 
(Figures 3b and 3d). Finally, (d) the maximum amplitude of the real packets is about three times larger than the 
maximum amplitude of the corresponding apparent packets. Note that these real and apparent packets were also 
independently determined from the video traces.

The flume is equipped with only two impact plates, whereas field stations can include up to 72 plates (Hilldale 
et al., 2015). The examples from the Navisence site (Figure 4) illustrate the increasing significance of seismic 
wave propagation with the number of plates. Note that the exact impact location cannot be verified in the field. 
Therefore, the examples in Figure 4 only serve as illustrations of the occurrence of wave propagation, and do 
not constrain the filter design. In Figure 4b, the impact on plate G7 generated an excursion of the signal of about 
3.2 V (equivalent to a particle with 177 mm diameter) and was detected by 11 out of 12 plates along the 6 m-long 
transect. In Figure 4c, all 12 plates have detected the same propagating seismic wave. The parabolic shift of the 
arrival time and the regular shape of the signal suggest that the impact took place on the concrete in the vicinity 
of G3. These two field examples are also consistent with the packet characteristics described in Figure 3: impacts 
on a plate generate centroid and peak frequencies exceeding ∼1,000 Hz and maximum amplitudes that are much 

Field Site Location (canton) Bed Slope (%) a Flow Velocity Vw (m/s) b No. Plates Year Technique No. of Samples

Albula c Tiefencastel (Grisons) 0.7 2.6 30 2018 crane-mounted net sampler 51

Navisence c Zinal (Valais) 3 3.2 12 2019 crane-mounted net sampler 80

Avançon de Nant d Les Plans-sur-Bex (Vaud) 4 1.3 10 2019/2020 manual basket sampler 55

Erlenbach e Alpthal (Schwyz) 16 5 2 Since 2009 automatic basket sampler 123

Note. The year of the field calibration campaigns, the sampling technique and the number of collected samples are indicated.
 aGradient measured upstream of the site.  bDepth-averaged mean flow velocities measured during the calibration measurements.  cMore information available in Nicollier 
et al. (2021).  dMore information available in Antoniazza et al. (2022).  eMore information available in for example, Rickenmann et al. (2012), Wyss et al. (2016b), 
Rickenmann et al. (2018).

Table 2 
Channel and Flow Characteristics From In Situ Measurements Made During the Calibration Campaigns at the Four Field Sites



Earth and Space Science

NICOLLIER ET AL.

10.1029/2021EA001962

9 of 22

greater than those on adjacent plates, whereas impacts on the concrete generate lower peak frequencies, and a 
more uniform distribution of maximum amplitudes across the plates. Finally, note that all the packets originating 
from the same impacts do overlap.

3.2. Characterization of Real and Apparent Packets

Results from the single-grain-size flume experiments conducted with the partition wall show that the number 
of packets recorded by the non-impacted plate (G1) increases together with the particle size (Table 3; Figure 5). 
While particles of the three smallest classes remained undetected by G1, the largest particles (j = 10) gener-
ated almost as many packets on G1 as on G2. Also note that the number of recorded packets per particle (αtot,j) 
increases for both sensors with increasing Dm,j (Table 3). αtot,j values larger than 1 signify that multiple impacts are 
being identified per particle. With increasing particle size, the maximum centroid frequency of packets decreases 
and the maximum amplitude increases (Figure 5), consistent with the Hertz contact theory (Barrière, Krein, 
et al., 2015). In general, the packets detected by G1 appear to have lower amplitude and frequency values than 
those recorded by G2. Still, the packet characteristics of the two sensors overlap over a significant area of the 
amplitude-frequency plots (Figure 5). With the help of video material, it was found that these overlapping pack-
ets originate from impacts on the concrete bed. One must therefore keep in mind that the partition wall does not 
prevent seismic waves generated by impacts on the concrete bed from reaching both the shielded plate G1 and 
the unshielded plate G2.

Figure 3. Raw signal (blue lines) recorded by the impact plates (a) G1 and (c) G2 during single-grain-size flume experiments with particles of class j = 6. The dashed 
black lines indicate the centroid frequency within the maximum 8 ms-long time window around the maximum amplitude of each packet, and the dashed red lines 
indicate the peak frequency within the same time window. In (b) and (d) the spectrogram derived using the continuous wavelet transform is shown for each sensor and 
each packet. Each spectrogram section is normed with the highest power detected for the corresponding packet, in order to improve the readability of the low-amplitude 
packets.
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We now merge all the single-grain-size experiments conducted with the modified set-up to illustrate the packet 
characteristics for heterogeneous grain mixtures (under the assumption that any grain-size interactions are 
minor). In Figure 6, we define real packets as packets recorded by the unshielded sensor (G2; blue dots) that 
do not lie in the areas of the amplitude-frequency plots shown in Figure 6 occupied by packets recorded by the 
shielded sensor (G1; red dots). The three types of packet information listed in subsections 2.3.1, 2.3.2 and 2.3.3 
help to distinguish real from apparent packets, namely the maximum envelope amplitude (MaxAmpenv) as well as 
the maximum envelope amplitude recorded by the two closest neighboring geophones (MaxAmpenv, neighbor), the 
centroid frequency fcentroid, and the peak frequency fpeak. While MaxAmpenv, neighbor and fcentroid are efficient criteria 
over the whole range of MaxAmpenv values (Figures 6a and 6b), fpeak shows more overlap between G1 and G2 
packets for lower MaxAmpenv values, and returns stable high frequency values over a large range of MaxAmpenv 
values (Figure 6c).

To extrapolate the filter to field data, the signal responses of SPG systems in the field need to be similar to the 
signal response observed during the flume experiments. This can be examined using density histograms of the 
three types of packet information. In general, MaxAmpenv, neighbor (Figure 7, column 1), fcentroid (Figure 7, column 
2) and fpeak values (Figure 7, column 3) recorded during the flume experiments correlate well with the field data. 
Only the MaxAmpenv, neighbor values from the Erlenbach data are more scattered than the values from the flume 
(Figure 7e, column 1). There, the propagating signal appears to be more strongly attenuated, which leads to larger 
differences between MaxAmpenv and MaxAmpenv, neighbor. Table 4.

Figure 4. (a) Raw signal recorded by the 12 impact plates during a calibration measurement at the Navisence site (Table 2). The two purple stripes mark the time 
sections depicted in (b) and (c). Characterization of packets generated by (b) an impact on plate G7 and (c) an impact on the concrete sill close to the right bank. The 
packets identified by the automated algorithm that are analyzed in the subplots on the right are marked in bright purple. The packets that are ignored are marked in 
faded purple. MaxAmpenv is the maximum amplitude of the packet's envelope, and fcentroid and fpeak are the centroid and peak frequencies, respectively.



Earth and Space Science

NICOLLIER ET AL.

10.1029/2021EA001962

11 of 22

3.3. Filter Parameters

By considering the findings presented in the previous section, we can now design the filter. Each packet recorded 
by an impact plate is classified as “real” if either of the two criteria applies. The first criterion is that the maxi-
mum amplitude recorded on one plate exceeds the maximum amplitude on both adjacent plates (or on the one 
adjacent plate, if the considered plate is located at the end of an SPG array) by a factor p1, and the centroid 
frequency exceeds a specified exponential function of the maximum amplitude (because both will vary with the 
size of the impacting particle):

 Criterion 1:  𝐴𝐴 MaxAmpenv > 𝑝𝑝1 ⋅ MaxAmpenv,neighbor & 𝐴𝐴 𝐴𝐴centroid > 𝐴𝐴1 ⋅ 𝑒𝑒(
expcoeff⋅MaxAmpenv)

The second criterion is that the maximum amplitude recorded on one plate exceeds the maximum amplitude on 
adjacent plates by a different factor p2, and the peak frequency exceeds a value f2:

 Criterion 2:  𝐴𝐴 MaxAmpenv > 𝑝𝑝2 ⋅ MaxAmpenv,neighbor & 𝐴𝐴 𝐴𝐴peak > 𝐴𝐴2

The best values for the filter coefficients p1, p2, f1, f2 and expcoeff (Table  4) were defined for various station 
configurations after multiple runs of the basin-hopping algorithm (as described in Section 2.3) optimizing the 
coefficient of determination R 2 of Equation 2. This was done using the calibration data from the four field sites 
where both SPG data measurements and direct bedload samples were collected. The value of coefficient p1 was 
constrained to be greater than or equal to 1, to ensure that Criterion 1 excludes packets resulting from impacts on 
neighboring plates. The fcentroid threshold was set as an exponential function in order to best reproduce the bound-
ary line between the domain where G1 and G2 packets (visually) overlap in Figure 6b, and the domain where 
they do not. The value of coefficient p2 in Criterion 2 is constrained to be less than one in order to accommodate 

Figure 5. Centroid frequency fcentroid as a function of the maximum envelope amplitude MaxAmpenv for each packet detected during the single-grain-size experiments 
conducted using the partition wall (Figure 2b). Each dot corresponds to one packet. The red and blue dots indicate packets recorded by the shielded plate (G1) and the 
unshielded plate (G2), respectively.
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some ambiguity in the recorded amplitudes, thus facilitating the classification of impacts with less marked signa-
tures, for example, impacts close to the edge of a plate. An illustration of the frequency thresholds can be found 
in Figure 7.

3.4. Filtering Flume and Field Data

Figure 8 illustrates the effect of each criterion (as well as of their combination) on the data recorded during the 
flume experiments conducted with the partition wall. Ideally, all packets recorded by the shielded sensor G1, 
which are apparent packets, should be filtered out through the application of the two criteria. Sensor G2 records 
both real and apparent packets, although it is difficult to define the exact proportion of each type of packet (see 
Section 3.2). Criterion 1 filters out all the packets recorded by the shielded sensor G1 and 71.5% of the packets 
recorded by the unshielded sensor G2. Criterion 2 misses 3.9% of the packets recorded by sensor G1, all with 
MaxAmpenv < 0.1 V, but filters out significantly less packets recorded by sensor G2 (47.7%). The combination of 
both criteria result in the removal of 42.6% of all the packets recorded by G2.

Figure 9 shows the application of the calibrated filter to the time series shown in Figure 3. One can notice that 
the two real packets originating from direct impacts on plate G2 (between 0.08 and 0.11 s) and plate G1 (between 

Grain-Size Class j 1 2 3 4 5 6 7 8 9 10

Dm,j 12.3 17.4 21.8 28.1 37.6 53.2 71.3 95.5 128 171.5

No. Repetitions 5 5 5 7 5 5 5 5 5 4

Nj 500 500 400 462 200 200 125 50 25 23

αtot,G1,j 0 0 0 0.02 0.20 1.08 2.00 3.46 8.12 10.00

αtot,G2,j 0 0.03 0.27 0.89 1.43 2.30 2.99 4.80 10.44 12.30

PACKG1/PACKtot 0 0 0 0.02 0.12 0.32 0.40 0.42 0.44 0.45

Note. For each grain-size class j, the following information is listed: the mean particle diameter (Dm,j), the number of experimental runs (No. repetitions), the number of 
grains summed over all repetitions (Nj), the average number of recorded packets per particle by each sensor (αtot,G1,j and αtot,G2,j), and the proportion of packets recorded 
by the shielded sensor G1 (PACKG1/PACKtot).

Table 3 
Quantitative Evaluation of the Single-Grain-Size Experiments Conducted in the Modified Flume Set-Up Including the Partition Wall (Figure 5)

Figure 6. Illustration of all three packet attributes implemented in the filter method after having merged the single-grain-size experiments that used the partition wall 
(Figure 5). The panels show the relationships between the maximum amplitude of each packet's envelope MaxAmpenv and (a) the maximum envelope amplitude of the 
closest neighboring sensor plates MaxAmpenv, neighbor, (b) the centroid frequency fcentroid and (c) the peak frequency fpeak. Note that points lying on the dashed 1:1 line in 
(a) correspond to packets having the same maximum amplitude recorded by the two sensors.
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Figure 7.
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0.17 and 0.19 s) have been successfully identified (Figures 9a and 9b). Addi-
tionally, packet pairs generated by impacts on the concrete were correctly 
classified as “apparent”. Applying the filter to the raw signals recorded 
during all of the single-grain-size flume experiments (without the partition 
wall) provides further information on the number of apparent packets gener-
ated by each grain-size class. The mean αtot,j values, that is, the number of 
packets generated by a single particle, for both unfiltered (αtot,all,j) and filtered 
(αtot,real,j) data, begin to diverge at class j = 4 (Figure 9c). This is consistent 
with the detection of apparent packets beginning at j = 4 in the partitioned 
wall flume experiment (Figure 5). Note that for size classes j = 9 and 10, 
less than 10% of the packets remain after filtering, implying that over 90% 
of the packets generated by these size classes are “apparent” rather than real. 
Interestingly, the filtering process results in a relatively stable signal response 
over the grain-size classes j = 4–10, with αtot,real,j values ranging from 0.78 to 
1.68. Before the filter was applied, αtot,all,j varied by more than a factor of 15, 
ranging from 1.1 to 18 for the same seven grain-size classes.

Finally, we apply the filter to the calibration data from the four field sites, 
using the optimal parameters listed in Table 4. While the power-law regres-
sion lines fit the data better (Figure  10), the linear relations are useful to 
evaluate the effect of the filtering (Table 5). The following observations can 
be made. First, 48%–57% of the packets recorded at the Albula, Navisence 

and, Avançon de Nant sites were removed through the filtering procedure (i.e., identified as apparent packets). At 
the Erlenbach site, only 20% of the packets were removed. Second, as the example of the Albula data set shows, 
filtering may not necessarily improve the calibration relation at individual stations. Third, the linear coefficient a 
in Equation 2 has a reduced variability after application of the filter. Before filtering, a varies by a factor of 3.25, 
and after filtering, a varies by a factor of 2.12, showing that the Erlenbach station still records significantly less 
packets than the other stations for a given bedload flux. Last, filtering improves the coefficient of determination 
R 2 of the global calibration relation valid for all four sites from 0.80 to 0.91. However, R 2 does not increase after 
filtering when considering only three stations, excluding the Erlenbach site, whose channel and flow characteris-
tics strongly differ from the other sites (Table 2).

4. Discussion
4.1. Importance of Filtering

The reasons for the six-fold site-to-site variation in the linear calibration coefficients linking SPG signals to 
the transported bedload (e.g., Rickenmann et al., 2014; Rickenmann & Fritschi, 2017) are gradually becoming 
clearer. Wyss et al. (2016a) found that in flume experiments, higher flow velocities result in fewer packets per 
unit mass being recorded, due to longer saltation lengths and flatter impact angles. Another important factor 
influencing the signal response was found to be the GSD of the transported bedload (Nicollier et al., 2021). By 
comparing results from field and flume calibration measurements, Nicollier et al. (2021) found that the coarser 
a grain mixture is, the more packets are recorded by the SPG system per unit weight, mainly in the four smallest 
ACs (Table 4). The findings presented in the present study support the hypothesis that the effect of the GSD on 
the signal response is related to the phenomenon of wave propagation. The field data analyzed here demonstrate 
that strong impacts can generate seismic waves that propagate far enough to be detected by multiple sensors 
(Figure 4). Consequently, the coarser the mobilized bedload is, the more packets are being generated by waves 
propagating from outside an individual plate. Unfortunately the GSD will typically be unknown in a given stream, 
unless bedload samples are collected or unless it can be inferred from the SPG signals themselves. A further 

Figure 7. Density histograms of all three packet attributes implemented in the filter method using a resolution of 50 × 50 bins. The panels show the amplitude and 
frequency information for all the packets detected during single-grain-size flume experiments (a), without the partition wall, reproducing the Albula, the Navisence, and 
the Avançon de Nant field sites (Nicollier et al., 2021). The same amplitude and frequency information is shown for the field calibration measurements conducted at the 
Albula (b), the Navisence (c), the Avançon de Nant (d), and the Erlenbach site (e). Each dashed line in the panels of the first column is the 1:1 line. Each dotted line in 
the panels of the second column illustrates the fcentroid threshold derived for the given station (Table 4). Each dash-dotted line in the panels of the third column illustrates 
the fpeak threshold derived for the given station (Table 4).

Criterion 1 Criterion 2

Stations p1 (-) f1 (Hz) expcoeff (-) p2 (-) f2 (Hz)

Albula 1.56 1,867 −4.51 0.31 1,728

Navisence 1.33 2196 −1.43 0.31 1,593

Avançon de Nant 1.43 2123 −4.28 0.74 1,817

Erlenbach 1.48 2046 −3.19 0.77 1,611

3 stations a 1.57 2017 −2.92 0.35 1,616

4 stations b 1.75 2390 −3.44 0.37 1,662

Note. The filter coefficients p1, p2, f1, f2 and expcoeff were estimated by using 
the basin-hopping algorithm, optimizing the coefficient of determination R 2 
of Equation 2 for various station configurations.
 aIncludes the following three stations: Albula, Navisence, and Avançon de 
Nant.
 bIncludes the following four stations: Albula, Navisence, Avançon de Nant, 
and Erlenbach.

Table 4 
List of the Best Filter Coefficients



Earth and Space Science

NICOLLIER ET AL.

10.1029/2021EA001962

15 of 22

complication is that the GSD effect on the signal response varies with the station's geometry. The wider a moni-
tored transect is and the more plates are installed, the more apparent packets will be recorded for a given bedload 
mass. At the Erlenbach, almost all of the bedload is carried over only two plates because of the convex shape of 
the artificial stream bed. At the other sites, bedload transport is distributed over 10 to 30 plates (Table 2). Addi-
tionally, the samples collected at the Erlenbach generally have a finer GSD than at all other three sites. Finally,  the 
flow velocity Vw at the Erlenbach is 1.6–3.8 times higher than at the other sites (Table 2). These differences in 
geometry, GSD and flow velocity may explain why the Erlenbach station records about three times fewer packets 
per unit mass than the three other stations, before the filter is applied (Table 5).

The filter method described in this study was developed to function similarly to the physical elastomer layer 
that insulates the impact plates from seismic waves generated outside of the plate boundaries. The advantage of 
filtering is twofold: (a) it attenuates the effect of the station's geometry and the GSD on the signal response, and 
(b) the remaining site-dependent factors that influence SPG signals are all measurable quantities, such as the flow 
velocity, the bed slope or the bed roughness.

Figure 8. Attributes of the packets recorded by the shielded sensor G1 (red dots) and the unshielded sensor G2 (blue dots) that met Criterion 1 (a), Criterion 2 (b), 
and either Criterion one or Criterion 2 (c) using the filter coefficients obtained for the four stations combined (see Table 4). The packet's attributes (the maximum 
envelope amplitude of the closest neighboring sensor plates MaxAmpenv, neighbor, the centroid frequency fcentroid, and the peak frequency fpeak) are shown as function of 
the maximum amplitude of each packet's envelope MaxAmpenv. The percentage of packets filtered out by each criterion or combination of criteria is indicated for each 
sensor on the right hand side.
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4.2. Field- and Flume-Based Identification of Propagating Waves

Two sources of apparent packets were identified: (a) impacts on neighboring plates and (b) impacts on the 
surrounding concrete bed. In Figures 3 and 4, it was shown that each source has a different seismic signature. 
An impact on a plate generates a wave with attributes that vary systematically as it propagates along the array of 
sensors, that is, the amplitude decreases and the high frequencies are progressively attenuated. By contrast, an 
impact on the concrete bed generates packets with similar attributes at multiple sensors. The travel path followed 
by the waves was hypothesized as a possible explanation for these distinct signatures. For an impact on concrete, 
the wave is only slightly attenuated by the dense concrete and then propagates through similar amounts of steel 
and elastomer at all sensor plates. This would explain the similarities in the recorded waveforms, with the only 
major differences between the detected packets being their starting time (Figure 4c). In the case of an impact on 
a plate, we hypothesize that the signal is strongly attenuated along its lateral travel path from sensor to sensor, as 
it repeatedly crosses the soft elastomer layer (Figure 4b).

Even though the propagation of the seismic waves is clearly visible in the field data (Figure 4), investigating their 
origin required flume experiments. Thanks to the video material recorded during each of these experiments, we 
were able to draw links between the signal response of the SPG system and the impact location. The installation 
of a partition wall provided a simple but efficient way to shield one plate from direct impacts and to investigate 
the origins of “apparent” packets. In Figures 5 and 6, impacts on the concrete are shown to generate overlap-
ping packet characteristics at plates G1 and G2; thus isolating the plates from each other with elastomer is not 
sufficient to avoid the recording of apparent packets. The flume set-up was designed to replicate the flow and 
transport conditions during the field campaigns, including the transport of natural bedload particles (Nicollier 
et al., 2021). This possibly explains the good correlation between the flume and field-based density histograms 
of the three packet attributes used in the filter (Figure 7). Because the optimization process used to find the best 
filter coefficients is based only on the field data, a perfect match between the flume and field data is not required.

Figure 9. Raw signal recorded by the impact plates (a) G1 and (b) G2 during a single-grain-size flume experiment with particles of class j = 6. This figure corresponds 
to Figure 3, but after the application of the filter based on all 4 stations (Table 4). Real packets are marked in blue and apparent packets are marked in red. (c) Shows 
the change of the αtot,j value from pre-filtering (dashed gray line, αtot,all,j) to post-filtering (solid blue line, αtot,real,j) as a function of the mean particle diameter Dm,j. 
Here αtot,all,j and αtot,real,j were calculated for each grain-size class j from the mean value over all the single-grain-size flume experiments reproducing the Albula, the 
Navisence, and the Avançon de Nant field sites (without the partition wall).
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Figure 10. Total flux calibration relations linking the packet rate PACKT to the unit transport rate qb before (red) and after filtering (blue) for each field site as well as 
for all four field sites combined. Each dot corresponds to one calibration measurement. The dashed lines are power-law regression lines (Equation 2); their coefficients 
are listed in Table 5. The filtered data was obtained using the optimal filter coefficients listed in Table 3.

Unfiltered Filtered

Field Sites a b R 2 a b R 2

Power-law Albula 24.81 0.83 0.93 12.21 0.87 0.91

Navisence 18.35 0.79 0.86 7.76 0.73 0.88

Avançon de Nant 25.69 0.86 0.86 11.82 0.89 0.86

Erlenbach 7.89 0.82 0.94 7.04 0.88 0.96

3 stations a 24.20 0.86 0.90 11.46 0.84 0.89

4 stations b 17.21 0.84 0.80 8.94 0.85 0.91

Linear least squares Albula 28.73 1 0.87 13.65 1 0.87

Navisence 34.92 1 0.74 18.26 1 0.67

Avançon de Nant 35.40 1 0.80 15.35 1 0.82

Erlenbach 10.90 1 0.88 8.62 1 0.93

3 stations a 33.18 1 0.86 16.75 1 0.82

4 stations b 24.93 1 0.71 12.23 1 0.85

Note. The corresponding coefficients of determination R 2 are also listed. The “filtered” coefficients were obtained from data 
filtered using the optimal filter parameters listed in Table 4.
 aIncludes the following three stations: Albula, Navisence, and Avançon de Nant.
 bIncludes the following four stations: Albula, Navisence, Avançon de Nant, and Erlenbach.

Table 5 
The Coefficients a and b of the Power-Law and Linear Least-Squares Regression Equations (Equation 2) for Different 
Field Sites Combinations
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4.3. Filter Design

Results have shown that in order to isolate an individual plate, we must discriminate recordings generated by 
actual grain impacts on the plate from recordings generated by elastically propagating seismic waves resulting 
from impacts away from the plate. The filtering procedure developed in this paper attempts to perform this 
discrimination using only amplitude and frequency information, for two main reasons. First, the flume experi-
ments with the partition wall showed that this information can be used to distinguish real from apparent packets 
(Figures 5 and 6). Second, extracting this information from the packets is computationally efficient, which is 
crucial to avoid any data loss from overloading the buffer memory.

The filter was designed to encompass most impact cases. Criterion 1, with its amplitude-ratio coefficient p1 of 
around 1.5 and its exponential fcentroid threshold line (Table 4, Figures 7 and 8), identifies the most obvious real 
packets. Criterion 2 is meant as a complementary filter element that classifies packets with less distinct charac-
teristics. These could be apparent packets generated by impacts on the concrete, often resulting in a MaxAmpenv/
MaxAmpenv, neighbor ratio close to 1 and low fpeak values. Furthermore, due to the stochastic nature of bedload 
transport, a particle can impact onto any point on a plate (Turowski et al., 2013). Particles impacting close to a 
neighboring plate will often yield MaxAmpenv/MaxAmpenv, neighbor ratios close to 1, making it difficult to correctly 
classify the resulting packets. In order to include these real packets in the calibration, we forced the filter coef-
ficient p2 to be lower than 1, and filtered the packets based on their fpeak value. fpeak values larger than 1,500 Hz 
were found to be characteristic for real packets in most cases and this for a large range of grain sizes (Figure 6c). 
This characteristic of real packets probably results from the travel path of the elastic wave, which does not prop-
agate through the dampening elastomer layer before reaching the geophone sensor. Criterion 2 also covers the 
few cases where the real packet has a ratio of MaxAmpenv/MaxAmpenv, neighbor lower than 1 but a high frequency 
content (e.g., when two distinct particles impact close enough in time on two different plates). We hypothesize 
that the probability of overlapping packets increases together with the transport rate. Finally, the slightly larger 
tolerance of Criterion 2 with regard to apparent packets (Figure 8b) is, in our opinion, negligible because all the 
missed apparent packets had an amplitude smaller than 0.1 V. Including them in the calibration procedure would 
therefore have only little effect on the resulting calibration relationship for total load. A quantitative evaluation 
of the relevance of each criterion can be found in the Supporting Information (Tables S1 and S2 in Supporting 
Information S1).

The general structure of the filter was defined from results of the flume experiments that included the partition 
wall (Figure 6). However, the optimal coefficients were derived using field data only, in order to account for 
site-to-site differences in flow and transport conditions as well as station geometries. These site-specific char-
acteristics could explain the (limited) variability in the coefficients listed in Table 4. Yet, given the wide ranges 
covered by the frequency attributes, the fpeak and fcentroid thresholds differ only slightly from each other. Another 
encouraging result lies in the optimized fcentroid threshold lines shown in Figure 7 (column 2), which approximately 
follow the upper border of the apparent packet characteristics for G1 in Figure 6b.

4.4. Application of the Filter to Field and Flume Data

Before addressing the results from the filtering of field and flume data, it is necessary to go one step back and 
discuss the meaning of the calibration. Whether we calibrate a SPG system installed at a field site or in the flume, 
the procedure is the same. Using Equation 2, we relate the number of detected packets to the bedload mass that 
was either sampled with the basket or transported in the flume over a given time interval. Additionally, we can use 
the αtot,j coefficient (Equation 5) to define the detectability of particles. Applying the filtering method reduces the 
number of packets per particle (e.g., Figure 9c), which would imply less accurate calibration relationships. The 
αtot,j values observed for the single-grain-size experiments after filtering (Figure 9c) suggest that filtering roughly 
equalizes the detectability of the seven largest particle classes, with unfiltered data yielding greater numbers of 
“apparent” packets as particle size increases. Two further observations support the efficacy of the filter method. 
First, the differences between αtot,all,j and αtot,real,j in Figure 9c correlate with the PACKG1/PACKtot ratios in Table 3, 
that is, the classes for which filtering strongly reduced the number of packets were also the classes that yielded 
many apparent packets in the flume experiments using the partition wall. Second, the R 2 values obtained for the 
site-specific calibration relationships changed only slightly after the filter was applied, even though doing so 
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removed half of the packets (Table 5). Including apparent packets in the calibration will therefore influence the 
calibration relationship for a given station, but not necessarily reduce its accuracy.

The main purpose of the filter is to diminish the effect of the station geometry on the signal response. The 
comparison of the linear coefficient a for the stations listed in Table 5 shows that removing apparent packets 
significantly reduces the differences among the site-specific calibration relationships. However, after filtering, 
the Erlenbach station still records fewer packets per unit mass than the other three sites, likely for the following 
reasons. First, the high flow velocity Vw measured at the Erlenbach, may allow more particles to hop over the 
array of SPG plates than at the other sites (Section 4.1). Second, after having noticed the site-to-site differences 
visible in Figure  7 (column 1), we computed the mean MaxAmpenv-MaxAmpenv,neighbor ratio for each station, 
obtaining 4.0 for the Albula, 4.2 for the Navisence, 4.8 for the Avançon de Nant and 9.3 for the Erlenbach. This 
result suggests that the plates at the Erlenbach are particularly well isolated from their surroundings. Note that the 
Erlenbach station is equipped with the first version of the SPG system, which differs slightly from the SPG system 
installed at the other sites. The watertight casing for the geophone and both the type and the positioning of the 
screws holding the plate are somewhat different. Third, the application of the filter method to the flume experi-
ments conducted with the partition wall (Figure 8), has shown that Criterion 2 does not eliminate all the packets 
detected by the shielded geophone plate G1. This possibly explains why the αtot,real,j values of the larger grain-size 
classes in Figure 9c are greater than 1. Yet, this would have only a limited impact at the Erlenbach station, since 
we saw that the SPG system installed there is less prone to recording apparent packets for a set of reasons.

The most encouraging result from the filtering is certainly the improvement of the coefficient of determination R 2 
of the global calibration relationship valid across all four sites from 0.80 to 0.91. Applying an individual filter to 
each site also reduces the variability of the a coefficient for linear calibrations (b = 1), with a varying by a factor 
of only 2.12 (Table 5). We can therefore conclude that (a) “apparent” packets arise primarily from seismic wave 
propagation, (b) filtering out these “apparent” packets yields a more consistent model among all four sites but 
does not significantly improve the accuracy of site-specific calibration relationships, and (c) the most effective 
filters will be those based on site-specific calibrations, because the effects of seismic wave propagation vary 
among SPG sites.

5. Conclusion
The SPG is a bedload surrogate monitoring system that has been installed in several gravel bed streams and cali-
brated using direct sampling techniques. In this study, video recordings of controlled flume experiments and raw 
data recorded at bedload monitoring stations in the field both confirm the findings from Antoniazza et al. (2020) 
that the SPG system is biased by seismic waves propagating through the apparatus. These waves were found to 
originate from particles impacting either on the surrounding concrete sill or on neighboring plates. Flume setups 
replicated natural transport conditions, but with the addition of a partition wall to shield one plate from impacts. 
Single-grain-size experiments were performed to characterize the “apparent” packets, that is, packets generated 
by impacts occurring beyond an individual plate, and to design a filter that identifies and removes these packets. 
The experiments confirmed that larger particles generated larger numbers of apparent packets. Amplitude and 
frequency patterns arising from the flume experiments suggest that packet characteristics can be used to distin-
guish real from apparent packets. The findings of these single-grain-size flume experiments were used to design 
a filter method, which was subsequently optimized using field data. Applying this filter results in more consistent 
calibration relationships among the different sites. It also facilitates the derivation of a single calibration relation-
ship that yields reasonable estimates of the bedload transport rates measured during the calibration campaigns 
at all four field sites. These findings suggest that the filter method could also potentially improve estimates of 
fractional transport rates, particularly for the smaller grain-size fractions. Seismic waves are attenuated by their 
propagation through an SPG installation, so apparent packets will mostly have small amplitudes that would be 
mistakenly attributed to small particles. Removing these apparent packets could therefore improve SPG estimates 
of transport rates for smaller size fractions in grain-size mixtures. Removing apparent packets also clarifies how 
site-specific factors (e.g., flow velocity, bed slope, and bed roughness) influence transport rate estimates from 
SPG systems. Preliminary results also suggest that this filter may improve estimates of the spatial distribution 
of bedload transport along transects of SPG plates. In the future, packet classification based on this filter could 
be used to build a labeled data set on which machine learning algorithms could be trained to potentially further 
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improve the transport estimates. More generally, this study highlights the importance of insulating sensors as 
much as possible from surrounding noise sources, or correcting for the resulting signal contamination.
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