Title: Tracking sucking herbivory with nitrogen isotope labelling: Lessons from

an individual trait-based approach

Authors: Felix Neff^{a,b,*}, Marco M. Lehmann^c, Marco Moretti^d, Loïc Pellissier^{e,f} &

Martin M. Gossner^{b,g}

a: Agroecology and Environment, Agroscope, 8046 Zürich, Switzerland

b: Forest Entomology, Swiss Federal Research Institute WSL, 8903 Birmensdorf,

Switzerland

c: Forest Dynamics, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland

d: Conservation Biology, Swiss Federal Research Institute WSL, 8903 Birmensdorf,

Switzerland

e: Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, 8092 Zürich,

Switzerland

f: Landscape Ecology, Swiss Federal Research Institute WSL, 8903 Birmensdorf,

Switzerland

g: Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH

Zürich, 8092 Zürich, Switzerland

*Corresponding author. Tel.: 0041 58 463 54 20.

E-mail address: mail@felixneff.ch.

Present address: Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.

ORCIDS: Felix Neff 0000-0001-7266-2589, Marco M. Lehmann 0000-0003-2962-3351,

Marco Moretti 0000-0002-5845-3198, Loïc Pellissier 0000-0002-2289-8259, Martin M.

Gossner 0000-0003-1516-6364

This document is the accepted manuscript version of the following article: Neff, F., Lehmann, M. M., Moretti, M., Pellissier, L., & Gossner, M. M. (2022). Tracking sucking herbivory with nitrogen isotope labelling: Lessons from an individual trait-based approach. Basic and Applied Ecology. https://doi.org/10.1016/j.baae.2022.06.004

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

1 Highlights

- In mesocosms, sucking herbivory on grasses was tracked with ¹⁵N isotope labelling
 - Process rates (herbivory, plant growth) were strongly linked to insect identity
 - Also, process rates depended on the interacting plant and insect species
 - This indicates trait matching, but common plant and insect traits explained little

Response and effect traits help to understand how changes in ecological communities (e.g. in

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3

4

5

Abstract

response to land use) relate to changes in ecosystem functioning. In grasslands, plants and insect herbivores are involved in many ecosystem processes such as herbivory and plant biomass production. Simultaneous changes in the trait composition of both plants and herbivores should affect herbivory rates, with consequences for plant growth and potentially biomass production. The mechanisms underlying these links are little understood for grasses and sucking insects, which build a major part of grassland communities. In a mesocosm experiment, we manipulated the composition of grasses and sucking herbivores (Hemiptera) to study the role of plant traits, herbivore traits and their interaction on herbivory and plant growth. Because sucking herbivory is generally difficult to quantify, we developed a novel experimental setting, in which we labelled plants with ¹⁵N isotope. This allowed to quantify ¹⁵N uptake and thus sucking rates of individuals. We found that herbivory and simultaneous plant growth reduction are most strongly linked to herbivore species identity. Unexpectedly, herbivory did not increase with herbivore size, but was highest for small species and for thinbodied Heteroptera. Additionally, herbivory and plant growth reduction depended on the interacting herbivore and plant species, indicating trait matching, which could, however, not be explained with commonly used traits. This indicates that mechanisms linking ecological communities and ecosystem processes are highly context-specific. To understand how global

- 26 change affects ecosystem functioning, studies need to cover all functionally relevant groups,
- 27 including plant sap suckers.

28 Keywords:

29 ecosystem functioning, grasses, Hemiptera, multitrophic interactions, trait matching

Introduction

31	Global change drivers such as land-use change and intensification shift the composition of
32	ecological communities across ecosystems and trophic levels, with consequences for
33	ecosystem functioning (Allan et al., 2015). In semi-natural grasslands, which are important
34	hotspots of biodiversity in temperate regions (Habel et al., 2013), intensive agricultural use
35	has been shown to be a major filter in the assembly of both plant and insect communities
36	(Neff et al., 2019; Socher et al., 2012). At the same time, the rates of different ecosystem
37	processes have been found to be strongly affected by land-use intensity (Ambarlı et al., 2021)
38	and these changes have been related to shifts in diversity or composition of ecological
39	communities (Wang et al., 2020). The underlying mechanisms by which changes in
40	community composition affect ecosystem processes are, however, understudied.
41	An important ecosystem process in semi-natural grasslands is insect herbivory, which might
42	be strongly linked to plant growth and thus affects plant biomass production. Plant biomass
43	production in these systems is an important provisioning service contributing to agricultural
44	production (Bengtsson et al., 2019). Insect herbivory might either reduce plant biomass
45	production through reduced plant growth (Crawley, 1989) or stimulate plant growth (Dungan
46	et al., 2007). Plant blomass production and insect herbivory are tightly linked to plant and
47	insect communities (Lavorel et al., 2013), but how changes in these multi-trophic
48	communities affect ecosystem processes is still poorly understood.
49	The use of effect traits, i.e. species or individual morphological or physiological
50	characteristics that affect ecosystem processes, can improve the understanding of the
51	mechanisms linking ecological communities and ecosystem processes (Lavorel & Garnier,
52	2002). For example, plants characterised by high specific leaf area (SLA) and leaf nitrogen

53	content (LNC) tend to be associated with faster plant growth and contribute to higher plant
54	biomass production (Funk et al., 2017; Wright et al., 2004). At the same time, plant biomass
55	production was found to be more strongly reduced by larger grasshoppers (Moretti et al.,
56	2013) with stronger mandibles (Deraison et al., 2015). Additionally, traits of organisms
57	belonging to different trophic levels might have interactive effects on ecosystem processes
58	through trait matching (Schleuning et al., 2015). For example, plant biomass consumption
59	depends on the interaction between plant toughness and the grasshopper's mandible strength
60	(Ibanez, Lavorel, et al., 2013). Thus, we need to better understand how traits of organisms at
61	different trophic levels jointly affect ecosystem processes to predict how shifts in
62	communities affect ecosystem functioning.
63	Such questions have rarely been studied at the level of single species or functional groups
64	(but see Ibanez, Bison, et al., 2013). Furthermore, studies addressing similar questions so far
65	never addressed herbivores that feed by sucking plant saps, which are, however, accounting
66	for a large share of herbivore communities in grasslands (e.g. Risch et al., 2015) and can
67	significantly reduce plant growth (e.g. Meyer & Whitlow, 1992). This is not least because
68	sucking herbivory rates are genuinely hard to quantify, given that feeding marks are hard to
69	see and may not well be related to uptake rates (Schowalter, 2011). However, sucking
70	herbivore communities are substantially affected by intensive land use, which changes their
71	trait composition, e.g. by filtering for smaller species (Neff et al., 2019). How these changes
72	in trait composition affect insect herbivory and relate to plant growth, and consequently plant
73	biomass production are still open questions.
74	Here, we manipulated the trait composition of plants and herbivores in a fully crossed
75	mesocosm experiment to study how traits are related to insect herbivory and plant growth and
76	whether there is indication for trait matching between the two trophic levels. We focused on

77	hemipteran species sucking on grasses, both of which are important functional groups in
78	semi-natural grasslands (Neff et al., 2021). To overcome the difficulty of assessing sucking
79	herbivory, we developed a novel experimental setting, where plants were labelled with a
80	heavier isotope of nitrogen (15N), which enabled us to track the flow of nitrogen in the system
81	(e.g. Steffan et al., 2001). Stable isotope techniques are increasingly used in insect ecology
82	(e.g. Quinby et al., 2020), and also to study nutrient flows in food webs or to assess herbivory
83	(e.g. Schallhart et al., 2012; Porras et al., 2020). Here, labelling of plants with $^{15}\mathrm{N}$ allowed us
84	to quantify herbivory rates of single sucking herbivores, which has to our knowledge not
85	been done before, but provides large potential for more mechanistic studies on insect
86	herbivory. The grass species included in the experiment were chosen to cover a gradient in
87	palatability inferred from three traits (leaf dry matter content (LDMC), SLA, LNC), which
88	have commonly been used to relate plant palatability to chewing herbivory (e.g. Schädler et
89	al., 2003). Herbivore species were chosen to cover a trait space defined by three potential
90	effect traits (body volume, body shape, rostrum length). We were interested in the interplay
91	of these traits in determining insect herbivory and changes in plant growth.
92	We predicted that herbivory rates would be highest on plant species characterised by high
93	palatability and for the largest herbivore species, resulting in reduced plant growth, unless
94	there is a stimulation of compensatory plant growth by herbivory. Additionally, if there is
95	trait matching evident for the trophic relations between these two groups, we predicted that
96	highest herbivory and consequently highest plant growth reduction should be observed at
97	certain combinations of plant and herbivore traits. For example, we expect that plants with
98	thicker leaves (i.e. low SLA; Wilson et al., 1999) are better accessible to herbivores with
99	longer rostra and thus deeper leaf penetration potential, inducing trait matching.

Materials and methods

Plant and herbivore material

100

102	Plant species were restricted to Poaceae and were selected based on three traits, which are
103	essential determinants of the global leaf economic spectrum (Wright et al., 2004) and are
104	related to palatability and herbivory rates (e.g. Schädler et al., 2003): LDMC, SLA and LNC.
105	Three species were selected from each of three clusters of species sharing similar traits (Fig.
106	1A): Agrostis capillaris, Arrenatherum elatius and Poa trivialis in the high palatability
107	cluster (low LDMC, high SLA and high LNC); Cynosurus cristatus, Festuca arundinacea
108	and Holcus lanatus in the medium palatability cluster (with low LDMC, high SLA and low
109	LNC); and Deschampsia cespitosa, Festuca ovina agg. and Sesleria caerulea in the low
110	palatability cluster (high LDMC, low SLA and low LNC) (Appendix A for details).
111	Insect herbivore species were selected from grass feeding Hemiptera (suborders
112	Auchenorrhyncha and Heteroptera) based on three morphometric traits related to sucking
113	herbivore effects, i.e. body volume, rostrum length and body shape (see Appendix A for
114	inclusion rationales). Species were selected to cover the trait space (Fig. 2A) and included
115	Aelia acuminata, Lygus spp., Notostira spp., Trigonotylus caelestialium, Stenodema
116	laevigata, Laodelphax striatella, and Deltocephalus pulicaris (Appendix A for details).
117	Experimental design and setup
118	The mesocosm experiment was performed in experimental cages in August/ September 2019
119	with a completely randomized design with two crossed treatment factors (Appendix B: Figs
120	1–3): plant palatability (three factor levels) and herbivore species identity (seven species and
121	one control treatment without herbivores). Each treatment combination was replicated five
122	times (3 plant treatments \times 7 herbivore treatments \times 5 replicates = 105 cages), except for the

control treatments, to which some additional cages originally planned to contain further herbivore species were added, resulting in up to eight replicates (3 plant treatments \times 1 herbivore control \times 7–8 replicates = 23 cages). Because some cages were built with a plexiglass that was unexpectedly preventing plant growth, these cages were excluded from analyses. These cages had been randomly assigned to the study treatments and together with other, minor incidents, we ended up with two to five (seven for some controls) replicates per treatment combination and a total of 94 experimental cages (see Appendix B: Table 1 for a complete overview of replicates), which still enabled robust analyses given the fully crossed experimental design.

At the start of the experiment, each cage contained an individual of each of the three plant species selected for the palatability cluster, which were labelled with ¹⁵N to track the flow of nitrogen in the system, and two individuals of a herbivore species (Appendix B: Fig. 1). Different measures were taken on plants and herbivores at the start and the end of the experiment (Appendix B: Table 2), which were used to quantify traits, plant growth and herbivory rates. For details on the experimental setup, see Appendix A.

138 Estimation of ecosystem processes

For each plant individual, we predicted dry mass at the end of the experiment ($m_{end,pred}$) that would have been expected in the absence of herbivores from estimated dry mass at the beginning of the experiment and growth observed for control plants not affected by herbivores (Appendix A). Predicted dry mass was related to measured dry mass at the end of the experiment (m_{end}) to determine relative deviation from expected growth g_{off} as

$$g_{off} = \frac{m_{end,pred} - m_{end}}{m_{end}} \tag{1}$$

with positive values representing lower than expected growth and negative values representing higher than expected growth. These values were used as proxies of plant growth reduction.

Insect herbivory was estimated based on uptake of 15 N by herbivores (u_{abs}) and mean 15 N concentration of the available plants ($\overline{c_{15}_N}$), which were determined from $\delta^{15}N$ ratios, nitrogen content and biomass of plant and herbivore samples (Appendix A). 15 N uptake by herbivores relative to available 15 N in plants (u_{rel}) was determined as

$$u_{rel} = \frac{u_{abs}}{\overline{c_{15}_N}} \tag{2}$$

and was used as a proxy of insect herbivory.

154 Statistical analyses

155

156

157

158

159

160

161

162

163

164

165

All analyses were conducted in R v3.5.2 (R Core Team, 2018). Linear mixed effects models were used to relate herbivory and plant growth reduction to (i) herbivore species and plant palatability cluster identities and (ii) herbivore traits and plant traits. The identity models contained herbivore species identity, plant palatability cluster identity, their interaction as well as the potentially confounding variables herbivore survival and distance to light (integer denoting the row at which the cage was positioned; Appendix B: Fig. 4) as fixed effects and a random effect for the cage. Herbivory was analysed at the level of individual herbivores, with survival indicating whether the individual was found alive at the end of the experiment (0/1), whereas plant growth reduction was analysed at the level of the individual plants, with survival indicating the number of individual herbivores that were found alive at the end of the experiment (0–2). Herbivory was log-transformed prior to analyses to meet distributional

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

assumptions. The trait models had the same structure as the identity models, but herbivore species and plant palatability cluster identities were replaced with herbivore and plant PC axes. Based on the principal component analyses that were used for the selection of herbivore and plant species, study specimens were placed on the same PC axes based on their measured trait values. PERMANOVA from the package 'vegan' (Oksanen et al., 2018) was used to check whether plant palatability clusters for the study plants were also represented by their PC axis values based on measured traits (9999 permutations). The two PC axes per trophic level were then included in the models. Additionally, all possible interactions between herbivore PC axes and plant PC axes (n = 4) were included in the model. Backward model selection (based on χ^2 tests) was used to find the optimal interaction structure for each model. Only interactions but no main effects were excluded during model selection. As for the identity models, herbivory was analysed at the level of individual herbivores, whereas plant growth reduction was analysed at the level of individual plants. Trait values of the respective other level were aggregated at cage level by taking mean values. The effect of sex on herbivory was tested in both the identity and trait models, but was not found to be significant, which is why it was excluded from the final models. All linear mixed effects models were run through the package 'glmmTMB' (Magnusson et al., 2020).

Results

184	Plant palatability clusters were represented by traits measured for the study plants
185	(PERMANOVA: $P < 0.001$ for all pairwise comparisons based on PC axes), although
186	variation within the clusters was quite large (Fig. 1B). On average, the study plants had
187	higher LNC than plants in the data base, indicating a fertilisation effect caused by the ¹⁵ N
188	labelling (Appendix B: Fig. 5). All study plants were strongly enriched in ¹⁵ N compared to
189	plants of the same species that were not included in the experiment (Appendix B: Fig. 5). Dry
190	mass of control plants without herbivores present increased by 230% \pm 16% (mean \pm SE)
191	relative to predicted dry mass at the start of the experiment, while dry mass of plants with
192	herbivores present increased by 160% \pm 8%, which was significantly less than for control
193	plants (LMM: $\chi^2 = 14.36$, $P = 1.5e-04$; Appendix B: Fig. 6).
194	The traits measured on the study herbivore specimens matched closely the expected trait
195	ranges (Fig. 2B). Mortality among retrieved study specimens was 52.7% ($n = 68$).
196	Additionally, 14.0% ($n = 21$) of individuals could not be retrieved at the end of the
197	experiment and were thus recorded as dead, resulting in an overall survival rate of 40.7%
198	(n = 61), which differed greatly among study species (Appendix B: Table 3). All specimens,
199	including the ones that had died, had clearly elevated ¹⁵ N concentrations, indicating
200	(premortem) feeding activity of all specimens (Appendix B: Fig. 7). Average absolute ¹⁵ N
201	uptake by herbivores was estimated to $0.590 \mu g$ ($0.006 - 2.939 \mu g$ [5% and 95% quantiles]),
202	which relative to plant content of ^{15}N corresponds to $97.7\mu g$ ($1.09-476.8\mu g$) of dry plant
203	material that was taken up (Appendix B: Fig. 8). Average dry mass of herbivores was 3.73mg
204	(0.214 – 16.44mg; Appendix B: Fig. 9). Differences in relative ¹⁵ N uptake between herbivore
205	species were ranging from $27.1\mu g$ ($1.68-103.2\mu g$) of dry plant material for <i>Stenodema</i>
206	laevigata to 188.9μg (0.294 – 518.0μg) for Trigonotylus caelestialium (Appendix B: Fig. 8).

207 Signs of herbivory on the plants were recorded on 25 plants (11.3%), 12 of which were on 208 plants that were with *T. caelestialium*. 209 Effect of plant and herbivore species on herbivory and plant growth reduction Herbivory (¹⁵N uptake of herbivores relative to average plant ¹⁵N content) was strongly 210 211 affected by the interaction of plant palatability cluster identity and herbivore identity (LMM: $\chi^2 = 41.40$, P = 4.2e-05; Appendix B: Table 4), while plant growth reduction (relative 212 deviation in plant growth from control) was marginally significantly related to the interaction 213 (LMM: $\chi^2 = 18.55$, P = 0.10; Appendix B: Table 5). Also, there was a significant effect of 214 herbivore identity on herbivory (LMM: $\chi^2 = 52.09$, P = 1.8e-09; Appendix B: Table 4). Apart 215 from the interactive effects, plant palatability cluster identity did neither show a significant 216 217 relation to herbivory nor plant growth reduction. Herbivory but not plant growth reduction was higher for surviving individuals (Appendix B: Table 4). Model predictions from both 218 process models indicate that the higher herbivory, the higher plant growth reduction (Fig. 3). 219 220 Highest predicted herbivory and plant growth reduction were observed for T. caelestialium 221 on plants of the medium and high palatability cluster and for *Notostira* spp. on plants of the low palatability cluster (Fig. 3). While for *Notostira* spp., no difference in herbivory rates 222 were found between the two species N. elongata and N. erratica (student's t-test: P = 0.39), 223 224 there was a tendency for higher herbivory rates in Lygus rugulipennis compared to L. 225 pratensis (student's t-test: P = 0.068). Accounting for the different Lygus species in the analyses of herbivory rates did, however, not change the overall picture (Appendix B: Fig. 226 227 10).

228 Effect of plant and herbivore traits on herbivory and plant growth reduction 229 Herbivory was highest for specimens with small body volume (low herbivore PC axis 1 230 values) and thin bodies (high herbivore PC axis 2 values) (Fig. 4, Appendix B: Table 6). 231 Neither plant PC axes nor the interactions between herbivore and plant PC axes were 232 significantly related to herbivory. Plant growth was reduced most strongly by large 233 herbivores (herbivore PC axis 1) on plants with high LNC (plant PC axis 2) or by small 234 herbivores on plants with low LNC, as was indicated by a significant interaction between the 235 two PC axes (Fig. 5, Appendix B: Table 7).

Discussion

Plant growth was clearly inhibited by herbivore presence and tended to be most strongly
reduced in settings that showed highest herbivory rates, supporting the potential of sucking
herbivores to affect plant biomass production. Because sucking herbivores withdraw
photosynthates from the plants, they potentially reduce their ability for growth. Furthermore,
herbivory can lead to plant stress-responses such as lowered photosynthesis (Sulaiman et al.,
2021), also resulting in lowered plant growth. Alternatively, plants may hold their C uptake
constant but invest a large part of their photosynthetically obtained C into defence (and thus
respiration) or store it in the roots, which would reduce the relative amount of C available for
aboveground growth (Dyer et al., 1991; Walling, 2000). Although these different
mechanisms can explain the observed plant growth reduction, it might still be unexpected,
given that in non-outbreak situations, insect herbivory is often expected to increase plant
productivity (Dyer et al., 1993). However, such stimulation in growth might only be apparent
once herbivory pressure is reduced again (Hawkins et al., 1986), which was not the case here
with herbivores being present during the whole experiment. Also, the study design only
allowed us to study the plants for two weeks after infestation with herbivores, which might
not be long enough to observe compensatory growth. Thus, although the observed reduction
in plant growth with increasing herbivory was considerable, more work needs to be done to
understand its quantitative impact in real-world ecosystems.
Process rates differed between herbivore species, but the observed relations did not match our
expectation that large herbivore species would consume more and reduce plant growth more,
as is the case for grasshoppers (Moretti et al., 2013). Although survival was included in our
models, this result may still have been partly influenced by differences in survival rates
between herbivore species. As survival rates were high for very different species such as

large bugs (e.g. Aelia acuminata) and small leafhoppers (e.g. Deltocephalus pulicaris), we
expect other factors to be more important in explaining the observed species differences.
Increasing consumption rates and thus herbivory increasing with body size are generally
expected due to higher metabolic rates (Brown et al., 2004). While the positive relation
between body size and metabolic rates in herbivores is undisputed (e.g. Ehnes et al., 2011),
other factors can affect metabolic rates of herbivores. For example, species that are engaged
in regular activities with high metabolic demand (e.g. flying, producing sounds) tend to have
higher metabolic rates (Reinhold, 1999). The smaller species included in our study have
shorter generation times (Biedermann & Niedringhaus, 2004; Wachmann et al., 2004–2012),
which might require more activities with high metabolic demand in a shorter time to fulfil
their life cycle. Measures such as metabolic rate should be further addressed as potential
effect traits related to herbivory and plant growth reduction.
Mechanical plant palatability traits such as LDMC and SLA have been related to leaf
toughness and are thus regularly postulated to be negatively related to plant palatability for
chewing herbivores (e.g. Descombes et al., 2020). The lack of clear relationships in this study
suggests that those traits are less related to accessibility of leaf tissue and transport vessels for
sucking herbivores and that other traits such as nutrient contents could be stronger
determinants (Prestidge, 1982). Because LNC is of essential value for sucking herbivores,
given it is generally a major limiting nutrient in their diet (Elser et al., 2000), the lacking
relation between LNC and herbivory in our study is surprising. It might, however, be related
to the elevated LNC of all study plants compared to values reported in previous studies,
which was a consequence of the fertilization imposed by the labelling. Thus, the plant
palatability clusters that were defined based on literature traits were partly blurred.
Consequently, all herbivores might have met their nitrogen demand in all palatability

clusters, such that differences in consumption rates rather reflect differences in physiological
needs of herbivores than of plant palatability defined by the three investigated plant traits.
While the results of our study question the usefulness of commonly used plant palatability
traits for sucking herbivores, further work needs to investigate which traits might be more
relevant for this important group of insect herbivores.
Both herbivory and plant growth reduction depended on the combination of herbivore species
and plant palatability cluster. This indicates trait matching, but because the interactive effect
could at best weakly be explained by the investigated traits, other traits might be involved to
explain the specialisation of sucking herbivores to certain grasses. In dicotyledons,
specialisation is often explained by the highly diversified composition in terms of secondary
compounds, which is postulated to be an evolutionary response to herbivores (Ehrlich &
Raven, 1964). Grasses, however, lack this diversity in secondary compounds (Tscharntke &
Greiler, 1995), posing the question of what is mainly driving specialisation. A probable factor
are once more varying nutrient levels among grass species and individuals, with herbivores
being physiologically adapted to very specific host stoichiometries (Denno & Roderick,
1990). Furthermore, grasses are known to use elevated silicon concentrations as defence
against herbivores (Vicari & Bazely, 1993). Thus, differences in silicon concentrations could
explain the observed patterns, although their efficacy against sucking herbivory is not well
understood so far (Keeping & Kvedaras, 2008). Investigating trait matching by assessing host
and herbivore stoichiometries and additional host defence structures could be a way forward
to extend this concept to sucking herbivores.
By labelling plants with ¹⁵ N isotope, we successfully quantified sucking herbivory at the
level of single individuals, which is otherwise hard to observe. As such, the method provides
great notential for future mechanistic studies on insect herbivory. We show that different

herbivore species differently affect herbivory and plant growth and find indications for interactive effects between herbivores and plants in determining process rates, which suggest trait matching. Such relationships are in line with previous studies from grasslands with grasshoppers and indicate the importance of plant and herbivore community shifts for ecosystem functions such as plant biomass production. However, the traits generally recognised to be involved in the relationships among plants, grasshoppers and ecosystem processes had little explanatory power in our model system. This suggests that new traits should be addressed to understand the consequences of changes in multi-trophic community composition, e.g. in response to land-use intensification, for ecosystem functioning.

317	Acknowledgements
318	We thank S. Bänziger, G. Casciano, C. Cattaneo, N. Feddern, G. Flückiger, U. Graf, T.
319	Juchli, M. Laski, M. Oettli, A. Perret-Gentil, G. Reiss, D. Schneider, B. Sneiders, G. Szemes,
320	M. Tran and B. Wermelinger for their help in setting up the experiment and in collecting and
321	analysing samples. We are grateful to the fenaco Genossenschaft and to J. Heinze for
322	providing seeds for the experiment. We thank two anonymous reviewers for their valuable
323	inputs. This study was funded by the SNF [310030E-173542/1, granted to MMG] and by the
324	SNF Ambizione project 'TreeCarbo' [No. 179978, granted to MML].
325	Appendix A. Supplementary materials and methods
326	Appendix B. Supplementary figures and tables
327	Supplementary data associated with this article can be found, in the online version, at
220	VVVVV

329	Declaration of interests
330	The authors declare that they have no known competing financial interests or personal
331	relationships that could have appeared to influence the work reported in this paper.
332	References
333	Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Blüthgen, N., Böhm, S., Grassein,
334	F., Hölzel, N., Klaus, V. H., Kleinebecker, T., Morris, E. K., Oelmann, Y., Prati, D.,
335	Renner, S. C., Rillig, M. C., Schaefer, M., Schloter, M., Schmitt, B., Fischer, M.
336	(2015). Land use intensification alters ecosystem multifunctionality via loss of
337	biodiversity and changes to functional composition. <i>Ecology Letters</i> , 18(8), 834–843.
338	https://doi.org/10.1111/ele.12469
339	Ambarlı, D., Simons, N. K., Wehner, K., Kämper, W., Gossner, M. M., Nauss, T., Neff, F.,
340	Seibold, S., Weisser, W., & Blüthgen, N. (2021). Animal-mediated ecosystem process
341	rates in forests and grasslands are affected by climatic conditions and land-use
342	intensity. Ecosystems, 24(2), 467–483. https://doi.org/10.1007/s10021-020-00530-7
343	Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O'Connor, T., O'Farrell, P.
344	J., Smith, H. G., & Lindborg, R. (2019). Grasslands—More important for ecosystem
345	services than you might think. Ecosphere, 10(2), e02582.
346	https://doi.org/10.1002/ecs2.2582
347	Biedermann, R., & Niedringhaus, R. (2004). Die Zikaden Deutschlands—Bestimmungstafeln

für alle Arten. Wissenschaftlich Akademischer Buchvertrieb-Fründ.

349	Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a
350	metabolic theory of ecology. <i>Ecology</i> , 85(7), 1771–1789. https://doi.org/10.1890/03-
351	9000
352	Crawley, M. J. (1989). Insect herbivores and plant population dynamics. <i>Annual Review of</i>
353	Entomology, 34(1), 531–562. https://doi.org/10.1146/annurev.en.34.010189.002531
354	Denno, R. F., & Roderick, G. K. (1990). Population biology of planthoppers. <i>Annual Review</i>
355	of Entomology, 35(1), 489–520.
356	https://doi.org/10.1146/annurev.en.35.010190.002421
357	Deraison, H., Badenhausser, I., Börger, L., & Gross, N. (2015). Herbivore effect traits and
358	their impact on plant community biomass: An experimental test using grasshoppers.
359	Functional Ecology, 29(5), 650-661. https://doi.org/10.1111/1365-2435.12362
360	Descombes, P., Kergunteuil, A., Glauser, G., Rasmann, S., & Pellissier, L. (2020). Plant
361	physical and chemical traits associated with herbivory in situ and under a warming
362	treatment. Journal of Ecology, 108(2), 733-749. https://doi.org/10.1111/1365-
363	2745.13286
364	Dungan, R. J., Turnbull, M. H., & Kelly, D. (2007). The carbon costs for host trees of a
365	phloem-feeding herbivore. Journal of Ecology, 95(4), 603–613.
366	https://doi.org/10.1111/j.1365-2745.2007.01243.x
367	Dyer, M. I., Acra, M. A., Wang, G. M., Coleman, D. C., Freckman, D. W., McNaughton, S.
368	J., & Strain, B. R. (1991). Source-sink carbon relations in two Panicum coloratum
369	ecotypes in response to herbivory. <i>Ecology</i> , 72(4), 1472–1483.
370	https://doi.org/10.2307/1941120

371 Dyer, M. I., Turner, C. L., & Seastedt, T. R. (1993). Herbivory and its consequences. 372 Ecological Applications, 3(1), 10–16. https://doi.org/10.2307/1941781 373 Ehnes, R. B., Rall, B. C., & Brose, U. (2011). Phylogenetic grouping, curvature and 374 metabolic scaling in terrestrial invertebrates. Ecology Letters, 14(10), 993–1000. 375 https://doi.org/10.1111/j.1461-0248.2011.01660.x 376 Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. 377 Evolution, 18(4), 586. https://doi.org/10.2307/2406212 Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A., 378 Interlandi, S., Kilham, S. S., McCauley, E., Schulz, K. L., Siemann, E. H., & Sterner, 379 380 R. W. (2000). Nutritional constraints in terrestrial and freshwater food webs. *Nature*, 408(6812), 578–580. https://doi.org/10.1038/35046058 381 Funk, J. L., Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender-Bares, J., Firn, J., 382 Laughlin, D. C., Sutton-Grier, A. E., Williams, L., & Wright, J. (2017). Revisiting the 383 384 Holy Grail: Using plant functional traits to understand ecological processes. Biological Reviews, 92(2), 1156–1173. https://doi.org/10.1111/brv.12275 385 Habel, J. C., Dengler, J., Janišová, M., Török, P., Wellstein, C., & Wiezik, M. (2013). 386 387 European grassland ecosystems: Threatened hotspots of biodiversity. Biodiversity and 388 Conservation, 22(10), 2131–2138. https://doi.org/10.1007/s10531-013-0537-x 389 Hawkins, C. D. B., Whitecross, M. I., & Aston, M. J. (1986). Long-term effects on cowpea 390 plant growth of a short-term cowpea aphid infestation. Canadian Journal of Botany, 391 64(8), 1727–1732. https://doi.org/10.1139/b86-231

392	Ibanez, S., Bison, M., Lavorel, S., & Moretti, M. (2013). Herbivore species identity mediates
393	interspecific competition between plants. Community Ecology, 14(1), 41–47.
394	https://doi.org/10.1556/comec.14.2013.1.5
395	Ibanez, S., Lavorel, S., Puijalon, S., & Moretti, M. (2013). Herbivory mediated by coupling
396	between biomechanical traits of plants and grasshoppers. Functional Ecology, 27(2),
397	479–489. https://doi.org/10.1111/1365-2435.12058
398	Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S.,
399	Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C.,
400	Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., C, C. A., Aleixo, I., Ali, H.,
401	Wirth, C. (2020). TRY plant trait database – enhanced coverage and open access.
402	Global Change Biology, 26(1), 119–188. https://doi.org/10.1111/gcb.14904
403	Keeping, M. G., & Kvedaras, O. L. (2008). Silicon as a plant defence against insect
404	herbivory: Response to Massey, Ennos and Hartley. Journal of Animal Ecology,
405	77(3), 631–633. https://doi.org/10.1111/j.1365-2656.2008.01380.x
406	Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and
407	ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional
408	Ecology, 16(5), 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
409	Lavorel, S., Storkey, J., Bardgett, R. D., de Bello, F., Berg, M. P., Le Roux, X., Moretti, M.,
410	Mulder, C., Pakeman, R. J., Díaz, S., & Harrington, R. (2013). A novel framework for
411	linking functional diversity of plants with other trophic levels for the quantification of
412	ecosystem services. Journal of Vegetation Science, 24(5), 942–948.
413	https://doi.org/10.1111/jvs.12083
414	Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van
415	Bentham, K., Bolker, B., Sadat, N., Lüdecke, D., Lenth, R., O'Brien, J., & Brooks, M.

416 (2020). Generalized linear mixed models using template model builder (1.0.2.1). https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf 417 418 Meyer, G. A., & Whitlow, T. H. (1992). Effects of leaf and sap feeding insects on 419 photosynthetic rates of goldenrod. *Oecologia*, 92(4), 480–489. 420 https://doi.org/10.1007/BF00317839 421 Moretti, M., de Bello, F., Ibanez, S., Fontana, S., Pezzatti, G. B., Dziock, F., Rixen, C., & 422 Lavorel, S. (2013). Linking traits between plants and invertebrate herbivores to track 423 functional effects of land-use changes. Journal of Vegetation Science, 24(5), 949-962. https://doi.org/10.1111/jvs.12022 424 425 Neff, F., Blüthgen, N., Chisté, M. N., Simons, N. K., Steckel, J., Weisser, W. W., Westphal, C., Pellissier, L., & Gossner, M. M. (2019). Cross-scale effects of land use on the 426 functional composition of herbivorous insect communities. Landscape Ecology, 427 428 34(8), 2001–2015. https://doi.org/10.1007/s10980-019-00872-1 Neff, F., Brändle, M., Ambarlı, D., Ammer, C., Bauhus, J., Boch, S., Hölzel, N., Klaus, V. 429 430 H., Kleinebecker, T., Prati, D., Schall, P., Schäfer, D., Schulze, E.-D., Seibold, S., Simons, N. K., Weisser, W. W., Pellissier, L., & Gossner, M. M. (2021). Changes in 431 432 plant-herbivore network structure and robustness along land-use intensity gradients in 433 grasslands and forests. Science Advances, 7(20), eabf3985. 434 https://doi.org/10.1126/sciadv.abf3985 435 Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. 436 R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & 437 Wagner, H. (2018). Community ecology package (2.4-6). https://CRAN.R-438 project.org/package=vegan

439 Porras, M. F., López-Londoño, T., Rost, J., Biddinger, D., Calvin, D., & Rajotte, E. G. 440 (2020). A method for a long-term marking of spotted lanternfly (Hemiptera: 441 Fulgoridae) using a stable isotope of nitrogen. Environmental Entomology, 49(4), 442 993–997. https://doi.org/10.1093/ee/nvaa067 443 Prestidge, R. A. (1982). The influence of nitrogenous fertilizer on the grassland 444 Auchenorrhyncha (Homoptera). Journal of Applied Ecology, 19(3), 735–749. 445 https://doi.org/10.2307/2403278 446 Quinby, B. M., Creighton, J. C., & Flaherty, E. A. (2020). Stable isotope ecology in insects: 447 A review. Ecological Entomology, 45(6), 1231–1246. https://doi.org/10.1111/een.12934 448 449 R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing 450 Reinhold, K. (1999). Energetically costly behaviour and the evolution of resting metabolic 451 rate in insects. Functional Ecology, 13(2), 217–224. https://doi.org/10.1046/j.1365-452 453 2435.1999.00300.x Risch, A. C., Schütz, M., Vandegehuchte, M. L., Van Der Putten, W. H., Duyts, H., 454 455 Raschein, U., Gwiazdowicz, D. J., Busse, M. D., Page-Dumroese, D. S., & Zimmermann, S. (2015). Aboveground vertebrate and invertebrate herbivore impact 456 457 on net N mineralization in subalpine grasslands. *Ecology*, 3312–3322. https://doi.org/10.1890/15-0300.1 458 459 Schädler, M., Jung, G., Auge, H., & Brandl, R. (2003). Palatability, decomposition and insect 460 herbivory: Patterns in a successional old-field plant community. Oikos, 103(1), 121– 461 132. https://doi.org/10.1034/j.1600-0706.2003.12659.x

462 Schallhart, N., Tusch, M. J., Wallinger, C., Staudacher, K., & Traugott, M. (2012). Effects of 463 plant identity and diversity on the dietary choice of a soil-living insect herbivore. 464 Ecology, 93(12), 2650–2657. https://doi.org/10.1890/11-2067.1 465 Schleuning, M., Fründ, J., & García, D. (2015). Predicting ecosystem functions from 466 biodiversity and mutualistic networks: An extension of trait-based concepts to plantanimal interactions. *Ecography*, 38(4), 380–392. https://doi.org/10.1111/ecog.00983 467 468 Schowalter, T. D. (2011). *Insect ecology: An ecosystem approach* (3rd ed.). Academic Press. 469 https://doi.org/10.1016/B978-0-12-381351-0.00019-6 470 Socher, S. A., Prati, D., Boch, S., Müller, J., Klaus, V. H., Hölzel, N., & Fischer, M. (2012). 471 Direct and productivity-mediated indirect effects of fertilization, moving and grazing on grassland species richness. Journal of Ecology, 100(6), 1391–1399. 472 https://doi.org/10.1111/j.1365-2745.2012.02020.x 473 Steffan, S. A., Daane, K. M., & Mahr, D. L. (2001). 15N-enrichment of plant tissue to mark 474 475 phytophagous insects, associated parasitoids, and flower-visiting entomophaga. 476 Entomologia Experimentalis et Applicata, 98(2), 173–180. https://doi.org/10.1046/j.1570-7458.2001.00772.x 477 478 Sulaiman, H. Y., Liu, B., Kaurilind, E., & Niinemets, Ü. (2021). Phloem-feeding insect 479 infestation antagonizes volatile organic compound emissions and enhances heat stress 480 recovery of photosynthesis in Origanum vulgare. Environmental and Experimental 481 Botany, 189, 104551. https://doi.org/10.1016/j.envexpbot.2021.104551 482 Tscharntke, T., & Greiler, H. J. (1995). Insect communities, grasses, and grasslands. Annual 483 *Review of Entomology*, 40(1), 535–558. 484 https://doi.org/10.1146/annurev.en.40.010195.002535

485	Vicari, M., & Bazely, D. R. (1993). Do grasses fight back? The case for antiherbivore
486	defences. Trends in Ecology & Evolution, 8(4), 137–141.
487	https://doi.org/10.1016/0169-5347(93)90026-L
488	Wachmann, E., Melber, A., & Deckert, J. (2004–2012). Wanzen Band 1-5. Goecke & Evers.
489	Walling, L. L. (2000). The myriad plant responses to herbivores. Journal of Plant Growth
490	Regulation, 19(2), 195–216. https://doi.org/10.1007/s003440000026
491	Wang, X., Li, F. Y., Tang, K., Wang, Y., Suri, G., Bai, Z., & Baoyin, T. (2020). Land use
492	alters relationships of grassland productivity with plant and arthropod diversity in
493	Inner Mongolian grassland. Ecological Applications, 30(3), e02052.
494	https://doi.org/10.1002/eap.2052
495	Wilson, P. J., Thompson, K., & Hodgson, J. G. (1999). Specific leaf area and leaf dry matter
496	content as alternative predictors of plant strategies. New Phytologist, 143(1), 155-
497	162. https://doi.org/10.1046/j.1469-8137.1999.00427.x
498	Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-
499	Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E.,
500	Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C.,
501	Villar, R. (2004). The worldwide leaf economics spectrum. <i>Nature</i> , 428(6985), 821–
502	827. https://doi.org/10.1038/nature02403
503	

Figure captions

505	Fig. 1. (A) Allocation of Poaceae species in a two-dimensional trait space derived from
506	principal component analysis (PCA) on LDMC, SLA and LNC (derived from a trait data
507	base; Kattge et al., 2020). Each point is a species, colours represent assignment to three
508	different palatability clusters (low, medium, high palatability). Arrows show PCA loadings of
509	the three trait variables. Study species are indicated by strong colours and labels. (B)
510	Allocation of study plants in the same two-dimensional trait space as in (A). Each point is an
511	individual, colours show the palatability cluster and shapes represent the species. Ellipses
512	show cluster allocations based on a multivariate normal distribution for a confidence level of
513	0.66. Agr_cap: Agrostis capillaris, Arr_ela: Arrhenatherum elatius, Poa_tri: Poa trivialis,
514	Cyn_cri: Cynosurus cristatus, Fes_aru: Festuca arundinacea, Hol_lan: Holcus lanatus,
515	Des_ces: Deschampsia cespitosa, Fes_ovi: Festuca ovina, Ses_cae: Sesleria caerulea
516	Fig. 2. (A) Allocation of Heteroptera and Auchenorrhyncha species that feed on Poaceae in a
517	two-dimensional trait space derived from principal component analysis (PCA) on body
518	volume, rostrum length and body shape. Species selection is based on a study by Neff et al.
519	(2019), from which also species-level trait values are derived. Arrows show PCA loadings of
520	the three trait variables. Colours indicate the two suborders. The herbivore species that were
521	selected for the experiment are indicated by strong colours and labels. (B) Allocation of study
522	specimens in the same two-dimensional trait space as in (A). Each point is an individual,
523	colours show the species. Ellipses show cluster allocations based on a multivariate normal
524	distribution for a confidence level of 0.66. Here and in other figures, insect icons in the
525	legend show the outline of the study species true to scale. Ael_acu: Aelia acuminata,
526	Lyg_spp: Lygus spp., Ste_lae: Stenodema laevigata, Not_spp: Notostira spp., Tri_cae:
527	Trigonotylus caelestialium, Del_pul: Deltocephalus pulicaris, Lao_str: Laodelphax striatella

528	Fig. 3. Predictions from models analysing the joint effect of plant and herbivore treatment
529	and their interaction on herbivory and on plant growth reduction. Predictions are shown for
530	different plant palatability clusters (panels; high, medium, low palatability) and for different
531	herbivore species (colours). Model predictions and standard errors are shown. Herbivory was
532	log-transformed prior to modelling to meet distributional assumptions, but transformed back
533	for the illustration of this figure. Models also account for herbivore survival and cage
534	position. Ael_acu: Aelia acuminata, Lyg_spp: Lygus spp., Ste_lae: Stenodema laevigata,
535	Not_spp: Notostira spp., Tri_cae: Trigonotylus caelestialium, Del_pul: Deltocephalus
536	pulicaris, Lao_str: Laodelphax striatella. Detailed model results in Appendix B: Tables 4 and
537	5
538	Fig. 4. Predicted herbivory from a model analysing the joint effect of plant and herbivore
539	traits and their interactions (colour gradient). Plant and herbivore traits were represented by
540	PC axes (Fig. 1 and Fig. 2), whose meaning is indicated by the arrows below and right to the
541	graphs. Points show the spread of underlying observations in trait space. All non-significant
542	interactions were excluded from the model, leaving no interaction between plant and
543	herbivore traits in this model. Models also account for herbivore survival and cage position.
544	Significance of variables is indicated next to axis labels (***: $p \le 0.001$, **: $p \le 0.01$,
545	*: $p \le 0.05$). ¹⁵ N uptake was log-transformed prior to modelling to meet distributional
546	assumptions, but transformed back for the illustration of this figure. Detailed model results in
547	Appendix B: Table 6
548	Fig. 5. Predicted plant growth reduction from a model analysing the joint effect of plant and
549	herbivore traits and their interactions (colour gradient). Plant and herbivore traits were
550	represented by PC axes (Fig. 1 and Fig. 2), whose meaning is indicated by the arrows below
551	and right to the graphs. Points show the spread of underlying observations in trait space. All

552	non-significant interactions were excluded from the model, leaving only the interaction
553	between herbivore PC axis 1 and plant PC axis 2 in the model. Models also account for
554	herbivore survival and cage position. Significance of variables is indicated next to axis labels
555	(***: $p \le 0.001$, **: $p \le 0.01$, *: $p \le 0.05$). Detailed model results in Appendix B: Table 7

Figure 1

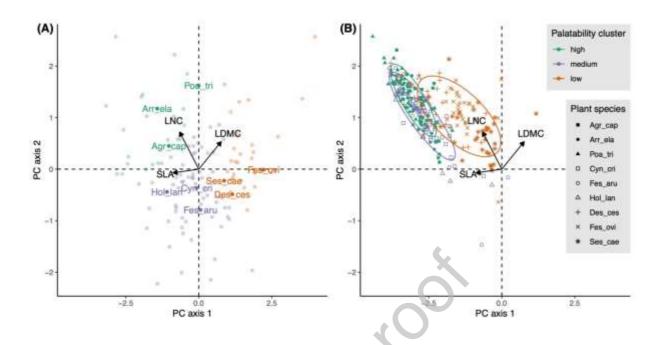


Figure 2

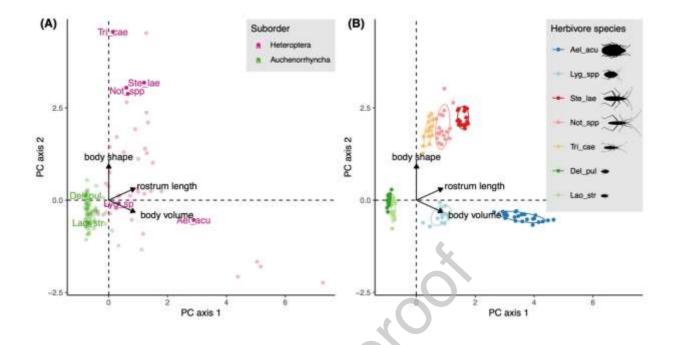


Figure 3

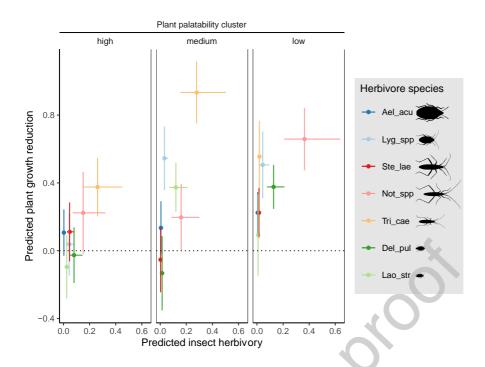


Figure 4

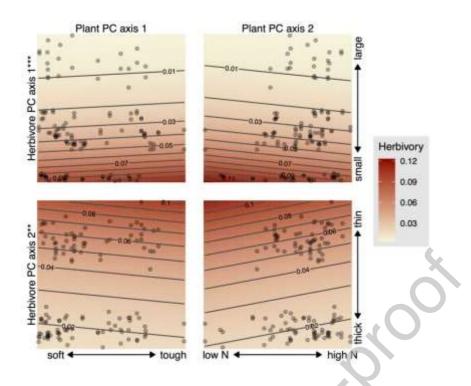
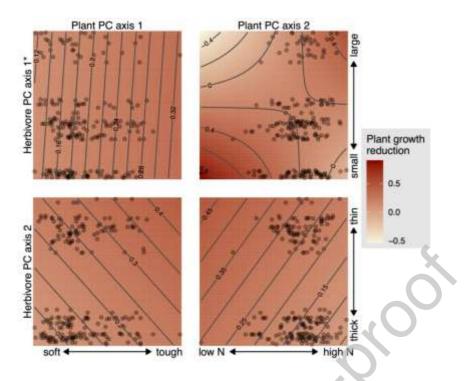



Figure 5

