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Abstract
To	understand	the	state	and	trends	in	biodiversity	beyond	the	scope	of	monitoring	
programs,	 biodiversity	 indicators	 must	 be	 comparable	 across	 inventories.	 Species	
richness	(SR)	is	one	of	the	most	widely	used	biodiversity	indicators.	However,	as	SR	
increases	with	the	size	of	the	area	sampled,	inventories	using	different	plot	sizes	are	
hardly	comparable.	This	study	aims	at	producing	a	methodological	framework	that	en-
ables	SR	comparisons	across	plot-	based	inventories	with	differing	plot	sizes.	We	used	
National	Forest	Inventory	(NFI)	data	from	Norway,	Slovakia,	Spain,	and	Switzerland	to	
build	sample-	based	rarefaction	curves	by	randomly	incrementally	aggregating	plots,	
representing	 the	 relationship	 between	 SR	 and	 sampled	 area.	 As	 aggregated	 plots	
can	be	far	apart	and	subject	to	different	environmental	conditions,	we	estimated	the	
amount	of	environmental	heterogeneity	(EH)	introduced	in	the	aggregation	process.	
By	 correcting	 for	 this	EH,	we	produced	adjusted	 rarefaction	 curves	mimicking	 the	
sampling of environmentally homogeneous forest stands, thus reducing the effect of 
plot	size	and	enabling	reliable	SR	comparisons	between	inventories.	Models	were	built	
using	the	Conway–	Maxell–	Poisson	distribution	to	account	for	the	underdispersed	SR	
data.	Our	method	successfully	corrected	for	the	EH	introduced	during	the	aggrega-
tion	process	 in	all	countries,	with	better	performances	 in	Norway	and	Switzerland.	
We	further	found	that	SR	comparisons	across	countries	based	on	the	country-	specific	
NFI	plot	sizes	are	misleading,	and	that	our	approach	offers	an	opportunity	to	harmo-
nize	pan-	European	SR	monitoring.	Our	method	provides	reliable	and	comparable	SR	
estimates	for	inventories	that	use	different	plot	sizes.	Our	approach	can	be	applied	to	
any	plot-	based	inventory	and	count	data	other	than	SR,	thus	allowing	a	more	compre-
hensive	assessment	of	biodiversity	across	various	scales	and	ecosystems.
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1  |  INTRODUC TION

As	 human	 activities	 continue	 to	 trigger	 rapid	 climate	 change	 as	
well	 as	high	biodiversity	 turnover	 and	extinction	 rates,	monitor-
ing	biodiversity	has	become	a	high	priority	for	the	scientific	com-
munity	 (IPBES,	2019).	 The	many	monitoring	programs	 that	were	
developed over the last decades at local- to- national scales pro-
vide	valuable	information	on	the	state	and	trends	of	biodiversity.	
Merging	 these	 existing	 datasets	 and	 comparing	 outputs	 beyond	
the	local	or	national	scale	are	essential	to	study	biodiversity	 in	a	
more	comprehensive	way	in	order	to	reliably	inform	decision	and	
policy makers (Lengyel et al., 2008;	Winter	et	al.,	2008).	 In	 fact,	
producing	robust	outputs	from	merged	datasets	is	a	key	objective	
of main European policy strategies (European Commission, 2021).	
However,	it	is	often	hampered	by	the	fact	that	sampling	designs,	
field protocols, and estimation procedures can differ strongly from 
one	inventory	to	another.	Thus,	comparability	of	the	many	existing	
datasets	constitutes	a	major	challenge.	For	example,	sampling	de-
signs	do	not	always	follow	a	spatially	systematic	(gridded)	design,	
can	have	different	 inclusion	probabilities,	or	different	plot	 sizes.	
Tackling	 these	 differences	 is	 challenging	 but	 important	 because	
sampling	designs	can	strongly	affect	derived	biodiversity	indices.	
Disregarding sampling design effects can thus lead to deceptive 
results.	With	an	increasing	demand	for	comparable	information	on	
biodiversity,	the	need	for	developing	methods	allowing	inference	
across	inventories	becomes	urgent.

Species	richness	(SR),	here	referring	to	the	number	of	species	
occurring in a given area, is an intuitive diversity index commonly 
used	as	a	proxy	for	biodiversity	components.	It	is	a	highly	import-
ant	ecological	 indicator	shown	to	be	a	key	driver	of	ecosystems’	
resilience (Oliver et al., 2015).	 For	 instance,	 forests	with	 higher	
SR	suffer	 less	from	the	 impact	of	disturbances	and	are	thus	bet-
ter	able	to	retain	their	carbon	stocks,	which	is	a	crucial	mitigation	
strategy in the face of climate change (Guyot et al., 2016;	 Silva	
Pedro	et	al.,	2015).	It	is,	however,	surprisingly	difficult	to	provide	
robust	estimates	of	SR	from	plot-	based	monitoring	data	(Gotelli	&	
Colwell, 2011).	 The	 size	of	monitored	plots	directly	 affects	how	
many	species	can	be	found	(Hill	et	al.,	1994)	because	SR	increases	
non- linearly with the area of the sampling units (Dengler, 2009; 
Gotelli	&	Colwell,	2001).	For	this	reason,	SR	estimates	should	al-
ways	be	provided	along	with	the	corresponding	plot	size.	Problems	
arise	when,	 for	 instance,	 one	wishes	 to	 compare	 the	 tree	 SR	 of	
two	different	countries,	but	one	country	uses	250	m²	forest	plots	
as	sampling	units	while	the	other	relies	on	500	m²	plots.	A	lower	
reported	mean	SR	across	all	plots	 in	the	first	country	may	be	an	
ecological	fact,	or	it	may	instead	be	rooted	in	the	smaller	plot	size.	
Avoiding	such	uncertainties	is	utterly	important	because	political	
decisions	regarding	biodiversity	are	based	on	indices	such	as	the	

mean	SR,	although	they	are	often	not	directly	comparable	across	
inventories.	A	simple	solution	to	the	problem	exists	when	the	lo-
cation of each sampled individual is known within the plots. In this 
case,	the	size	of	larger	plots	can	artificially	be	decreased	to	match	
the	size	of	the	smallest	plots.	Following	our	previous	example,	the	
size	of	 the	second	country’s	plots	could	be	artificially	decreased	
from	500	to	250	m²,	allowing	for	a	direct	comparison	of	its	SR	to	
that	of	the	first	country.	However,	not	only	is	the	location	of	every	
individual	rarely	available	in	monitoring	programs,	but	this	process	
leads to an immense information loss: larger plots would always 
need	to	be	downscaled	to	 the	smallest	sampled	plot	size.	 In	 this	
context,	 obtaining	 reliable	 comparisons	 of	 SR	 between	 invento-
ries	using	different	plot	sizes	must	involve	upscaling	SR	to	larger	
areas.	We	suggest	estimating	species–	area	relationships	from	rar-
efaction	curves	built	on	aggregated	plots	as	a	robust	approach	to	
do	so,	allowing	in	our	previous	example	to	compare	the	tree	SR	of	
both	countries	for	the	same	given	area.

Species–	area	 relationships	 are	 a	 well-	established	 concept	 in	
ecology	 and	 biodiversity	 science	 (e.g.,	 Dengler,	 2009;	 Gotelli	 &	
Colwell, 2001;	 Stein	 et	 al.,	2014; Tittensor et al., 2007).	 They	 are	
commonly	 built	 from	a	 nested	design,	where	 the	 area	of	 a	 plot	 is	
gradually	increased	in	a	continuous	manner	and	SR	is	calculated	ac-
cordingly (Dengler et al., 2020;	Gotelli	&	Colwell,	2001).	In	invento-
ries relying on a network of independent sample plots, increasing 
area	is	achieved	by	aggregating	non-	contiguous	plots.	The	relation-
ship	between	the	area	of	aggregated	plots	and	their	corresponding	
SR	is	referred	to	as	sample-	based	rarefaction	curves	(Crist	&	Veech,	
2006;	Gotelli	&	Colwell,	2001;	Steinmann	et	al.,	2011).	Plot	size	de-
termines	how	many	plots	must	be	aggregated	to	reach	a	given	area.	
In	our	previous	example,	the	mean	SR	of	the	second	country	for	an	
area	of	500	m²	simply	corresponds	to	the	mean	SR	across	all	 indi-
vidual	 sampled	plots.	However,	 it	 corresponds	 in	 the	 first	 country	
to	the	mean	SR	of	many	combinations	of	two	randomly	aggregated	
plots. It is crucial to note that any two plots of the first country that 
together make up the 500 m2	can	potentially	be	located	in	very	dif-
ferent	 habitats	 and	 subject	 to	 different	 environmental	 conditions.	
This makes it likely to find different sets of species, generally leading 
to	a	higher	combined	SR	in	two	different	plots	of	smaller	size	than	
in	one	homogeneous	plot	of	larger	size.	In	other	words,	the	smaller	
single	 plots	 are,	 the	more	 different	 environments	 are	 likely	 to	 be	
sampled	for	a	given	aggregated	area,	and	the	faster	SR	accumulates	
with	area	in	rarefaction	curves	(Gotelli	&	Colwell,	2001;	Steinmann	
et al., 2011).	As	a	consequence,	this	prevents	direct	comparisons	of	
rarefaction	 curves	 across	 inventories	 that	 use	different	 plot	 sizes.	
Here,	 we	 hypothesize	 that	 we	 can	 produce	 comparable,	 adjusted	
rarefaction	 curves	 by	 controling	 for	what	 drives	 the	 difference	 in	
species found in aggregated plots: environmental heterogeneity and 
spatial configuration.

T A X O N O M Y  C L A S S I F I C A T I O N
Applied	ecology;	Biodiversity	ecology;	Theorectical	ecology
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Environmental	heterogeneity	(EH)	is	a	key	determinant	of	the	
shape	 of	 sample-	based	 rarefaction	 curves.	 Simply	 because	 it	 is	
likely that a wide range of environmental conditions is encoun-
tered	when	aggregating	independent	plots,	the	probability	for	ad-
ditional species to occur rises (Drakare et al., 2006;	 Stein	 et	 al.,	
2014;	Steinmann	et	al.,	2011).	Plots	located	in	regions	that	differ	in	
terms of climate, topography, soil conditions, or vegetation struc-
ture	are	 likely	 to	also	differ	 in	 terms	of	species.	While	 there	 is	a	
growing	consensus	that	EH	across	aggregated	plots	increases	SR	
(Stein	et	al.,	2014),	disentangling	this	effect	from	the	effect	of	plot	
size	remains	challenging	(Steinmann	et	al.,	2011).	The	second	im-
portant aspect that affects the shape of rarefaction curves is the 
spatial configuration of aggregated plots, i.e., the geographic dis-
tance	between	plots	that	have	been	aggregated	and	the	resulting	
spatial	extent	of	the	total	area	that	has	been	sampled	(Güler	et	al.,	
2016).	 This	 can	 represent	 legacy	 effects	 such	 as	 demographic	
processes,	 dispersal	 limitation,	 colonization	 probabilities	 or	 spe-
ciation, and extinction processes that all affect the capacity of a 
given species to occur at a given location (Drakare et al., 2006).	
In	order	to	compare	SR	across	inventories	that	use	different	plot	
sizes,	the	key	challenge	is	therefore	to	develop	a	method	account-
ing	for	EH	and	the	spatial	configuration	of	aggregated	plots	when	
building	rarefaction	curves.

In this study, we propose a methodological framework for mod-
eling	SR	as	a	function	of	area,	EH,	and	spatial	configuration,	thus	ac-
counting	 for	 a	 variety	 of	 ecological	 factors	 known	 to	 affect	 SR	
(Figure 1).	Our	approach	artificially	removes	the	plot	size-	dependent	
effects	of	EH	and	spatial	configuration	that	are	introduced	when	ag-
gregating plots. The resulting adjusted rarefaction curves are then 
independent	 of	 plot	 size	 and	 represent	 the	 relationship	 between	
SR	and	area	as	if	the	aggregated	plots	were	subject	to	similar	envi-
ronmental conditions. In other words, the proposed methodological 
framework mimics a situation where species were recorded from a 
single,	large,	environmentally	homogeneous	plot.	Although	investi-
gating	the	effect	of	EH	on	rarefaction	curves	would	be	another	inter-
esting	avenue	itself,	here	we	focus	on	developing	a	method	to	obtain	
reliable	comparisons	of	SR	estimates	between	inventories	with	dif-
ferent	plot	sizes.	The	wealth	of	data	collected	within	National	Forest	
Inventories	(NFIs)	and	the	growing	relevance	of	the	NFI	community	
for	large-	scale	biodiversity	reporting	provide	a	valuable	opportunity	
to develop and test this approach (Corona et al., 2011;	Vidal,	Alberdi,	
Redmond, et al., 2016).	NFIs	are	conducted	in	most	European	coun-
tries (Tomppo et al., 2010;	Vidal,	Alberdi,	Redmond,	et	al.,	2016),	but	
each differs with respect to sampling design settings such as plot 
size,	 field	protocols,	or	estimation	procedures	 (Chirici	 et	 al.,	2011; 
Winter	et	al.,	2008).	We	gathered	NFI	tree	species	occurrence	data	
from	 Norway,	 Slovakia,	 Spain,	 and	 Switzerland,	 covering	 a	 wide	
ecological	and	bioclimatic	gradient	extending	over	seven	of	the	ten	
European	biogeographical	regions	(European	Environment	Agency,	
2016).	NFI	data	are	also	a	rare	case	where	the	location	of	individuals	
within	plots	is	known,	bringing	a	unique	opportunity	to	validate	our	
approach,	which	is	essential	to	demonstrate	its	general	applicability	
for other monitoring programs and their data.

2  |  MATERIAL S AND METHODS

2.1  |  National Forest Inventory data

Most	NFIs	consist	of	country-	specific	networks	of	independent,	sys-
tematically	 distributed	 sample	 plots	 and	 are	 representative	 of	 the	
forested area of each country (Tomppo et al., 2010;	Vidal,	Alberdi,	
Hernández	Mateo,	2016).	As	our	approach,	based	on	NFI	data	from	
Norway,	Slovakia,	Spain,	and	Switzerland,	relies	on	sample	plot	size,	
we	excluded	all	NFI	plots	for	which	size	was	reduced	by	a	road,	a	river,	
or	any	other	natural	or	anthropogenic	barrier.	In	Spain,	only	plots	lo-
cated	in	the	Peninsula	were	used.	The	total	number	of	selected	plots	
and species in each country is presented in Table 1.	We	defined	SR	at	
the	plot	level	as	the	number	of	tree	species	recorded	in	a	plot.

We	performed	further	data	harmonization	steps	 to	control	 for	
the	main	sampling	design	differences	between	countries.	Some	NFI	
plot	configurations	are	based	on	concentric	circles	associated	with	
different	 diameter	 at	 breast	 height	 (DBH)	 thresholds	 (e.g.,	 Spain,	
Slovakia,	and	Switzerland),	on	fixed-	area	plots	(e.g.,	Norway)	or	on	
angle	 count	 sampling.	 To	 minimize	 the	 effect	 of	 DBH	 threshold-
ing	and	to	base	our	analyses	on	fixed	areas,	we	selected	only	one	
circle	 in	 the	 NFIs	 that	 use	 concentric	 circles.	 In	 Switzerland	 and	
Slovakia,	we	 retained	 the	200	and	500	m²	 circles,	 respectively,	 in	
both	cases	associated	with	a	DBH	threshold	of	12	cm.	In	Spain,	we	
used	the	10-	m-	radius	circle	(314	m²,	DBH	threshold	=	12.5	cm)	that	
we	 cropped	 at	 300	m²	 to	 facilitate	 subsequent	 analyses	 requiring	
50	m²	increments.	In	Norway	(plot	size	=	250	m²),	we	removed	trees	
with	a	DBH	<12	cm	to	harmonize	the	DBH	threshold	throughout	the	
countries.	Note	 that	NFI	data	used	 in	 this	study	are	not	necessar-
ily	the	ones	used	for	international	reporting,	such	as	in	the	State	of	
Europe’s	Forests	report	(FOREST	EUROPE,	2020).	All	analyses	were	
performed in R.3.6.3 (R Core Team, 2020).

2.2  |  Building sample- based rarefaction curves 
(Figure 1a,b)

We	used	 these	NFI	data	 to	build	sample-	based	 rarefaction	curves	
(Gotelli	 &	 Colwell,	 2001, 2011),	 representing	 the	 relationship	 be-
tween	SR	of	aggregated	plots	and	area.	To	 this	end,	we	 randomly	
sampled	and	aggregated	independent	NFI	plots	within	each	country	
(Figure 1a)	to	incrementally	increase	area	from	that	of	a	single	plot	
to	a	maximum	of	10,000	m²	(1	ha).	We	did	not	limit	the	spatial	extent	
of the aggregated plots to smaller regions within countries as the 
goal	was	to	compare	the	SR	of	whole	countries,	as	per	the	State	of	
Europe’s	 Forest	 report	 (FOREST	EUROPE,	2020).	As	 plot	 size	 dif-
fered	between	countries,	the	number	of	plots	required	to	reach	1	ha	
varied	between	countries	(from	20	in	Slovakia	to	50	in	Switzerland).	
Aggregated	plots	are	hereafter	referred	to	as	“mega-	plots.”

Contrary	to	Slovakia	and	Switzerland	where	NFI	plots	are	evenly	
distributed	 on	 an	 equidistant	 grid,	 the	 grid	 resolution	 of	 Norway	
(Breidenbach	et	al.,	2020)	and	Spain	(Alberdi	et	al.,	2017)	differs	be-
tween	regions	(i.e.,	sampling	strata).	In	these	countries,	the	random	
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Methodological framework
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sampling for generating mega- plots was adjusted to account for 
region- specific sampling intensity, such that the chances of a plot to 
be	drawn	in	the	aggregation	process	were	reciprocally	proportional	
to the grid density. That means, plots in a stratum with a wider sam-
pling	grid	had	a	 larger	chance	to	be	drawn	than	plots	 in	a	stratum	
with a denser sampling grid. The random sampling was repeated 500 
times, resulting for each country in 500 mega- plots per aggregation 
step (Figure 1a).	We	calculated	the	SR	of	mega-	plots	at	each	step.	
Mega-	plots	were	used	 to	build	country-	specific	 sample-	based	 rar-
efaction curves (Figure 1b),	 representing	the	relation	between	the	
average	 SR	 over	 the	 500	 equal-	sized	mega-	plots,	 and	 the	 size	 of	
these	mega-	plots	(Crist	&	Veech,	2006;	Gotelli	&	Colwell,	2001).

2.3  |  Quantifying the EH contained in mega- plots 
(Figure 1c)

We	 used	 a	 broad	 set	 of	 environmental	 variables	 representing	 cli-
mate, topography, soil, and stand structure to cover the main fac-
tors	shaping	spatial	patterns	of	SR	(Field	et	al.,	2009).	Climate	data	
were downloaded from Karger et al. (2017).	 We	 included	 mean	
annual	precipitation	and	mean	growing	season	 temperature	based	
on	 monthly	 data	 for	 the	 years	 1979–	2013.	 Topography	 variables	
were	 derived	 from	 a	 pan-	European	 digital	 elevation	model	 (DEM)	
with	a	spatial	 resolution	of	25	m	 (EU-	DEM,	2018).	We	considered	
slope	 inclination	and	Beers	aspect,	 the	 latter	being	an	ecologically	
meaningful	index	ranging	from	0	(southwestern	slopes,	warm)	to	2	
(northeastern	slopes,	cold).	Beers	aspect	was	calculated	from	aspect	
shifted	by	a	45	degrees	angle	(Beers	et	al.,	1966):

Soil	 properties	 were	 represented	 by	 topsoil	 pH.	 For	 Spain	 and	
Slovakia,	 we	 downloaded	 topsoil	 pH	 data	 from	 the	 European	 Soil	
Database,	containing	maps	of	topsoil	properties	based	on	the	Land	Use	
and	Cover	Area	frame	Survey	(LUCAS)	(Ballabio	et	al.,	2019).	This	data-
base	does	not	provide	data	for	Norway	and	Switzerland,	for	which	we	
downloaded	topsoil	pH	from	SoilGrids,	a	global	grid	of	soil	information	
(Hengl	et	al.,	2017).	We	further	used	basal	area	per	hectare	(BA)	as	an	

indicator	of	forest	stand	structure,	representative	of	attributes	such	as	
stand density, light conditions, and competition at the local scale.

EH	measures	were	derived	from	these	variables	for	each	mega-	
plot to depict the differences in environmental conditions represen-
tative of climate (Hclim,	described	by	annual	precipitation	and	mean	
growing	season	temperature),	topography	(Htopo,	described	by	slope	
and	Beers	aspect),	soil	(Hsoil,	described	by	pH),	and	BA	(HBA)	across	
the	aggregated	plots.	EH	measures	were	calculated	in	three	steps.	
First,	the	scaled	value	of	each	environmental	variable	was	extracted	
for	each	plot.	Second,	within	each	mega-	plot	and	independently	for	
each	EH	measure	(i.e.,	Hclim, Htopo, Hsoil, and HBA),	we	calculated	the	
pairwise	 Euclidean	 distances	 between	 the	 values	 of	 the	 environ-
mental	 variables	 of	 each	 pair	 of	 aggregated	 plots	 (Figure 1c).	 The	
number	of	pairwise	distances	for	a	mega-	plot	made	of	n aggregated 
plots is (n∗(n	−	1))/2.	Pairwise	distances	were	calculated	as:

where disti,j	 represents	 the	 Euclidean	 distance	 between	 the	 scaled	
values	of	environmental	variables	1	and	2	(e.g.,	precipitation	and	tem-
perature for Hclim)	of	plot	i and plot j.	For	Hsoil and HBA	that	both	only	
contain	one	variable	(soil	pH	and	BA,	respectively),	the	same	formula	
using only Variable1	was	applied.	Third,	the	final	EH	measures	of	each	
mega- plot k were calculated as the mean of all pairwise Euclidean dis-
tances	between	the	n plots aggregated:

The	larger	an	EH	measure	of	a	given	mega-	plot	is,	the	more	envi-
ronmentally different the aggregated plots composing this mega- plot 
are.	An	additional	EH	measure	representing	the	spatial	configuration	
of aggregated plots was calculated to reflect that species composition 
does	not	depend	solely	on	climate,	topography,	soil,	and	BA	conditions.	
First,	we	calculated	Hgeo	using	latitude	and	longitude	as	input	variables	
in Equation (2),	representing	the	geographic	distance	between	aggre-
gated plots. This geographic distance, in addition to controling for spa-
tial autocorrelation in species composition, is considered a proxy for 
legacy effects and other environmental factors that can affect species 

(1)Beersaspect = 1 + cos(45 − aspect)

(2)disti,j =

√

(

Variable1i−Variable1j
)2

+
(

Variable2i−Variable2j
)2

(3)EHk =

∑n

1
(dist1,2 +⋯ + distn−1,n)

(n ⋅ (n − 1))∕2

F I G U R E  1 Conceptual	figure	describing	the	methodological	steps	taken	to	remove	the	effect	of	EH	introduced	in	the	aggregation	of	
plots.	These	steps	were	applied	independently	to	each	country,	but	are	shown	in	this	figure	for	Switzerland	as	an	example.	Each	step	is	
further	described	in	the	Materials	and	Methods	section

TA B L E  1 Characteristics	of	the	NFI	data	used	in	the	analyses	for	Norway,	Slovakia,	Spain,	and	Switzerland.	These	characteristics	do	not	
correspond	to	the	full	original	NFI	dataset	of	each	country,	but	to	the	NFI	plots	used	in	our	analyses	after	we	performed	data	harmonization	
steps

Country Plot size (m²) Number of plots Stratification Total number of species Inventory cycle

Norway 250 9844 Yes 29 2014– 2018

Slovakia 500 1277 No 56 2015–	2016	(NFI2)

Spain 300 65,236 Yes 126 1997–	2006	(NFI3)

Switzerland 200 5361 No 56 2009–	2013	(NFI4)
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composition.	Consequently,	the	information	contained	in	Hclim, Htopo, 
Hsoil, and HBA	is	likely	to	be	related	to	Hgeo. To guarantee the indepen-
dence	of	predictor	variables,	we	quantified	this	repeated	information	
by	fitting	a	linear	regression	performed	with	the	lm function:

where k	 stands	 for	mega-	plots.	 Although	 in	 reality,	 geographic	 dis-
tance	is	not	a	result	of	environmental	conditions,	this	model	was	built	
to	calculate	Hres,	which	was	then	defined	as	the	residuals	of	the	above-	
described	regression	(Hresk

= Hgeok
− Ĥgeok

).	Hres represents the resid-
ual	EH	captured	by	Hgeo once the effect of climate, topography, soil, 
and	BA	were	accounted	for.	All	EH	variables	were	then	standardized	to	
allow	comparisons	of	effect	sizes.

2.4  |  Modeling SR as a function of area and EH 
(Figure 1d)

The	SR	distribution	of	each	country	was	underdispered	(i.e.,	less	var-
iation	in	the	data	than	expected	under	a	Poisson	distribution	-		Figure	
A1).	We	therefore	assumed	that	SR	followed	a	Conway–	Maxwell–	
Poisson	(CMP)	distribution,	which	is	a	two-	parameter	extension	of	
the	Poisson	distribution	that	is	able	to	model	underdispersed	count	
data	(Sellers	&	Shmueli,	2010;	Shmueli	et	al.,	2005).	The	CMP	distri-
bution	relies	on	a	parameter	�CMP > 0 and on a dispersion parameter 
�	≥	0.	When	� =	1,	the	CMP	distribution	is	equivalent	to	a	Poisson	
distribution.	Values	of	� < 1 correspond to overdispersion, and val-
ues of � >	 1	 to	 underdispersion	 (Shmueli	 et	 al.,	2005).	 The	 SR	 of	
mega- plots k was thus specified as:

Independently	for	each	country,	we	performed	a	CMP	regression	
on	 the	whole	set	of	mega-	plots	based	on	maximum-	likelihood	esti-
mation using the glm.cmp	function	of	the	“COMPoissonReg”	package	
(Sellers	&	Raim,	2016).	This	implementation	allows	a	simultaneous	es-
timation of �̂k and �̂ ,	which	later	on	can	be	used	to	estimate	the	mean	
predicted	SR	 (see	below).	Rather	 than	directly	on	SRk, the glm.cmp 
function performs the regression on �̂k.	We	assumed	�	to	be	constant,	
i.e., �	was	not	made	dependent	on	the	variables	used	in	the	model.

Explanatory	 variables	 included	 area	 of	 mega-	plots,	 Hclim, Htopo, 
Hsoil, HBA, and Hres.	The	power	law	function	has	been	shown	to	be	well	
suited	to	describe	the	relationship	between	SR	and	area	(Dengler,	2009; 
Dengler et al., 2020).	Therefore,	we	formulated	the	CMP	model	as:

where Ak represents the area of mega- plot k, and β0 to β6 are the param-
eters	to	be	estimated.	ŜRk was then approximated using the following 
equation	(Sellers	&	Shmueli,	2010;	Shmueli	et	al.,	2005):

We	used	 the	 country-	specific	models	 to	 predict	 SR	 along	 the	
area	gradient	while	setting	all	EH	measures	(Hclim, Htopo, Hsoil, HBA, 
and Hres)	in	Equation (6)	to	the	value	corresponding	to	no	EH	and	no	
geographic	distance,	i.e.,	to	the	EH	value	of	mega-	plots	made	of	one	
plot (Figure 1d).	As	we	standardized	the	EH	measures,	the	absence	
of	EH	corresponds	to	the	standardized	equivalent	of	zero	for	Hclim, 
Htopo, Hsoil, and HBA, and no geographic distance corresponds to the 
standardized	equivalent	of	− �0 following Equation (4)	for	Hres.	For	
simplicity, this set of values— including that of Hres—	will	be	hereaf-
ter	 referred	 to	as	 “no	EH.”	With	 this	step,	we	aimed	at	artificially	
reproducing the aggregation of plots located in an environmentally 
homogenous	 forest	 stand.	We	 refer	 to	 these	predicted	curves	 as	
EH-	adjusted	rarefaction	curves.	In	each	country,	observed	and	EH-	
adjusted rarefaction curves were then compared (Figure 1d).

2.5  |  Validation with downscaled datasets (Figure 
1e- g)

As	the	investigated	NFIs	record	the	distance	of	each	sampled	tree	to	
the	plot	center,	we	could	artificially	reduce	the	size	of	plots	by	remov-
ing outermost trees to fit any desired new radius. Downscaled data-
sets with reduced radii were created independently in each country 
using	plot	sizes	ranging	from	100m²	to	the	original	plot	size	(Figure 1e).	
Different	datasets	sampling	the	exact	same	locations	but	with	differ-
ent	plot	 sizes	 can	 show	how	plot	 size	 affects	 the	 shape	of	 rarefac-
tion	curves.	Additionally,	they	provide	an	opportunity	to	validate	our	
method.	As	the	goal	is	to	obtain	reliable	SR	comparisons	between	in-
ventories	using	different	plot	sizes,	applying	our	method	to	the	down-
scaled and original datasets within a country should deliver the same 
EH-	adjusted	rarefaction	curves	for	the	method	to	be	successful.	The	
same	previously	described	methodological	steps	–		generating	mega-	
plots	and	modeling	SR	 (Figure 1a- d)	–		were	 therefore	applied	 inde-
pendently to each downscaled dataset (Figure 1e).	For	each	dataset	
of	each	country,	95%	bootstrap	prediction	intervals	were	calculated	
on	the	predicted	SR	by	re-	fitting	models	over	5000	iterations	where	
datasets were randomly re- sampled with replacement. In each coun-
try,	 EH-	adjusted	 rarefaction	 curves	 extracted	 from	 the	downscaled	
and full datasets were compared (Figure 1f,g).	The	removal	of	the	ef-
fect	of	EH	was	considered	successful	when,	contrary	to	the	observed	
rarefaction	curves,	the	EH-	adjusted	rarefaction	curves	from	the	dif-
ferent downscaled and full datasets did not significantly differ.

3  |  RESULTS

3.1  |  From observed to EH- adjusted rarefaction 
curves

In	all	countries,	we	observed	steeper	sample-	based	rarefaction	curves	
(SR	increased	faster	along	the	area	gradient)	when	plot	size	was	smaller	
(dotted lines Figure 2).	Estimates	of	the	CMP	models	are	presented	in	
Table	S1	in	the	Appendix.	In	all	countries,	the	EH-	adjusted	rarefaction	

(4)Hgeok
= �0 + �1 ⋅ Hclimk

+ �2 ⋅ Htopok
+ �3 ⋅ Hsoilk

+ �4 ⋅ HBAk

(5)SRk ∼ CMP
(

�k , �
)

(6)�k = A
�1
k

⋅ e

(

�0+�2 ⋅Hclimk
+�3 ⋅Htopok

+�4 ⋅Hsoilk
+�5 ⋅HBAk

+�6 ⋅Hresk

)

(7)
ŜRk ≈ �̂

1∕�̂

k
−

�̂ − 1

2�̂
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curves	were	 less	 steep	 than	 the	 observed	 rarefaction	 curves	 (solid	
lines Figure 2).	The	difference	between	the	curves	of	the	downscaled	
and	full	datasets	was	markedly	reduced	in	the	EH-	adjusted	rarefaction	
curves	compared	to	the	original	ones.	In	all	countries,	the	EH-	adjusted	
rarefaction curves from the various downscaled and full datasets did 
not significantly differ (Figure 3).	However,	the	EH-	adjusted	rarefac-
tion	curves	of	the	different	datasets	of	Switzerland	and	Norway	were	
closer	than	the	ones	of	Spain	and	Slovakia.

3.2  |  Comparison of SR between countries

The	 observed	 sample-	based	 rarefaction	 curve	 of	 Switzerland	was	
the	 steepest	 of	 all	 countries,	 followed	by	Slovakia.	 That	would	 in-
dicate,	without	any	consideration	for	differences	 in	plot	sizes,	 that	
Switzerland	 has	 the	 highest	 SR	 of	 all	 four	 countries	 for	 any	 given	
area (Figure 4a).	 However,	 the	 EH-	adjusted	 rarefaction	 curves	 of	
Switzerland	and	Slovakia	were	closely	matching	(Figure 4b).	The	ob-
served	rarefaction	curve	of	Norway	was	steeper	than	that	of	Spain	
for	small	areas,	but	leveled	off	earlier	so	that	both	countries	reached	
a	 similar	 SR	 around	2000	m²	 (Figure 4a).	 This	 pattern	persisted	 in	
the	EH-	adjusted	rarefaction	curves	(Figure 4b).	At	500	m²,	observed	

rarefaction	curves	indicated	similar	SR	in	Slovakia	and	Norway,	while	
the	EH-	adjusted	rarefaction	curves	showed	a	higher	SR	in	Slovakia	
than in Norway.

4  |  DISCUSSION

Getting	 a	 comprehensive	 picture	 of	 biodiversity	 –		 more	 particu-
larly	SR	–		across	different	ecosystems,	 regions,	or	countries	often	
implies	 combining	 multiple	 inventory	 datasets.	 However,	 as	 SR	 is	
strongly	related	to	the	area	that	 is	sampled,	comparisons	between	
inventories	are	hampered	by	differences	in	plot	size.	This	aspect	is	
not always acknowledged, which can result in misleading patterns 
of	 SR	 persisting	 in	 politically	 relevant	 reports	 such	 as	 “The	 State	
of	Europe’s	Forests”	 (FOREST	EUROPE,	2020).	 Indeed,	 this	 report	
compares	the	SR	of	forests	in	European	countries	without	controling	
for	how	these	measures	of	SR	are	obtained	in	each	of	these	coun-
tries.	Our	study	takes	the	example	of	NFIs	from	Norway,	Slovakia,	
Spain,	and	Switzerland	to	present	and	test	a	methodological	frame-
work	accounting	 for	 the	plot	 size-	dependent	EH	 introduced	when	
building	rarefaction	curves,	thus	enabling	direct	SR	comparisons	be-
tween	inventories	even	when	plot	sizes	differ.

F I G U R E  2 Observed	(a)	and	EH-	
adjusted	(b)	sample-	based	rarefaction	
curves of each country. Different colors 
represent different datasets (downscaled 
and	full	plot	size).	However,	colors	are	
not representative of the same plot 
sizes	across	countries	as	their	original	plot	
size	differs.	Each	point	in	(a)	represents	
the	mean	SR	of	the	500	mega-	plots	of	a	
given	size	for	a	given	dataset.	EH-	adjusted	
rarefaction	curves	in	(b)	represent	model	
predictions along the area gradient with 
no	EH
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4.1  |  Accounting for EH to enable SR comparisons 
between inventories using different plot sizes

As	expected,	we	found	that	EH-	adjusted	rarefaction	curves	were	
less	steep	than	their	corresponding	observed	rarefaction	curves.	
The	 EH-	adjusted	 curves	 represent	 the	 relationship	 between	 SR	

and area assuming the sampled area is essentially environmentally 
homogeneous. The validation process showed that our method 
was	successful	in	all	countries,	but	performed	best	in	Norway	and	
Switzerland.	This	could	indicate	that	the	EH	of	Spain	and	Slovakia	
was	not	as	well	captured	by	the	environmental	variables	we	used	
as	 in	 the	 other	 countries.	 Additionally,	 species	 composition	 and	

F I G U R E  3 Validation:	for	each	country,	
EH-	adjusted	rarefaction	curves,	along	
with	the	corresponding	95%	bootstrap	
prediction intervals. This figure represents 
a	zoomed-	in	version	of	the	EH-	adjusted	
rarefaction curves represented in Figure 
2b.	The	SR	axis	varies	between	countries.	
Different colors represent different 
datasets	(downscaled	and	full	plot	size).	
Colors are not representative of the same 
plot	sizes	across	countries	as	their	original	
plot	sizes	differ.	Note	that	the	step-	like	
appearance of the prediction intervals 
relates	to	the	fact	that	SR	by	definition	is	
an integer as it represents count data

F I G U R E  4 (a)	Observed	and	(b)	EH-	
adjusted rarefaction curves of Norway, 
Slovakia,	Spain,	and	Switzerland.	The	
spacing	between	the	points	of	each	curve	
differs from one country to another as 
their	plot	sizes	differ.	EH-	adjusted	curves	
represent predictions from the models 
with	no	EH
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diversity	 in	Slovakia	strongly	differ	between	regions,	mainly	as	a	
result	of	management	 legacies.	For	 instance,	 the	natural	beech–	
fir	forests	in	the	Orava	and	Kysuce	regions	have	been	widely	re-
placed	by	spruce	monocultures.	Species	composition	is	therefore	
more homogeneous than in other regions, regardless of the envi-
ronmental	 conditions	 these	 forests	 are	 subject	 to.	 In	 the	moun-
tainous	 Slovakian	 regions,	 however,	 species	 composition	 and	
environmental conditions are very diverse due to a highly complex 
orography.	The	relationship	between	SR	and	EH	thus	likely	varies	
between	regions,	and	the	global	databases	used	to	extract	envi-
ronmental	variables	might	not	be	able	to	capture	this	small-	scale	
variability.	This	could	explain	why	our	method	did	not	perform	as	
well	in	Slovakia	as	in	the	other	countries.

For	any	specific	area,	forests	in	Spain	had	a	rather	low	SR	com-
pared	to	the	other	countries.	This	could	be	because	most	of	the	for-
est	 ecosystems	 are	 located	 in	 the	Mediterranean	 biogeographical	
region	that	dominates	the	Iberian	Peninsula,	characterized	by	a	low	
crown	cover,	high	shrub,	and	herbaceous	plant	diversity,	and	where	
only few tree species are adapted to the harsh conditions prevalent 
in	 some	 forest	 types	 (such	as	 junipers	 forests,	 palm	 stands,	 carob	
tree	forests,	or	strawberry	tree	forests).	Dehesas	(agrosilvopastoral	
systems),	relatively	frequent	in	the	Mediterranean	area,	are	also	as-
sociated	with	reduced	SR	(Martín-	Queller	et	al.,	2011).	Furthermore,	
part of the country was reforested with monocultures over the last 
decades,	 artificially	decreasing	 the	SR	of	 these	planted	 forests.	 In	
Mediterranean areas, there are also numerous companion tree spe-
cies that cannot reach large diameters. This causes an underestima-
tion	of	SR	when	using	small	area	plots	or	concentric	plot	designs	that	
apply	a	caliper	threshold.	Therefore,	the	Spanish	NFI	also	measures	
total tree richness in 25- m- radius plots that in addition to sample 
trees	also	includes	regeneration	and	trees	below	the	caliper	thresh-
old.	The	resulting	total	SR	is	on	average	four	species,	indicating	that	
reliable	SR	estimations	 in	Mediterranean	 forests	should	not	solely	
rely	on	SR	of	sample	trees.

Slovakia	and	Switzerland	are	both	on	average	subject	to	less	ex-
treme	climates	 than	Norway	and	Spain	 that	are	 located	at	 the	ex-
tremes of the European climate range. Less extreme conditions are 
often	better	suited	to	the	local	cohabitation	of	more	species,	which	
could	explain	why	the	EH-	adjusted	rarefaction	curves	of	Slovakia	and	
Switzerland	 indicated	a	higher	SR	 for	any	given	area.	Additionally,	
Switzerland	and	Slovakia	might	be	more	environmentally	heteroge-
neous	than	Spain	and	Norway	for	similar	areas,	which	could	further	
explain	the	faster	accumulation	of	SR	over	area.	Contrary	to	Norway	
where	EH-	adjusted	 rarefaction	 curves	 leveled	off	 rapidly,	 SR	kept	
increasing	further	along	the	area	gradient	in	Spain,	suggesting	that	
higher	 SR	 values	 could	 potentially	 be	 attained	 if	 area	was	 further	
increased.	This	could	result	from	the	lower	total	number	of	species	
(gamma	diversity)	in	Norway	than	in	Spain	(29	and	126,	respectively),	
most	 likely	due	 to	 the	 larger	area	 that	has	been	 sampled	 (number	
of	 plots	multiplied	by	plot	 size)	 in	 Spain	 than	 in	Norway.	The	 few	
Norwegian	species	are	more	equally	spread	over	the	entire	country	
and	consequently,	the	total	species	pool	is	quickly	reached.	In	Spain,	
the	variety	of	 ecosystems	 is	much	 larger,	 although	 the	number	of	

species	able	to	reach	the	DBH	threshold	is	low.	Consequently,	many	
different	 ecosystems	must	 be	 sampled	 (and	 aggregated)	 to	 reach	
the	entire	species	pool,	making	both	the	observed	and	EH-	adjusted	
curves less steep and more gradual than in Norway.

Comparing	 rarefaction	 curves	 of	 countries	 before	 or	 after	 ad-
justing	for	differences	 in	plot	size	 led	to	different	conclusions.	For	
instance,	the	observed	curve	of	Switzerland	was	steeper	than	that	
of	 Slovakia,	 which	 uses	 larger	 plots.	 However,	 once	 the	 plot	 size	
difference	 was	 accounted	 for	 by	 removing	 the	 EH	 between	 ag-
gregated	plots,	 the	EH-	adjusted	 rarefaction	 curves	of	 Switzerland	
and	 Slovakia	were	 similar,	 suggesting	 that	 both	 countries	 had,	 for	
any	specific	area,	 similar	 levels	of	SR.	However,	 this	 could	also	be	
affected	 by	 the	 difference	 in	 the	 performance	 of	 the	 method	 in	
Switzerland	and	Slovakia.	Similarly,	without	accounting	for	plot	size	
differences,	 the	Slovakian	observed	 rarefaction	 curve	had	SR	val-
ues	higher	but	relatively	close	to	those	of	both	Spain	and	Norway.	
After	 removing	 the	effect	of	EH,	 this	 difference	was	much	 larger.	
These	 results	 showed	 that	 accounting	 for	 plot	 size	 differences	 is	
crucial	when	comparing	SR	between	inventories.	Our	methodologi-
cal	framework	could	enable	more	reliable	comparisons	between	SR	
of	 inventories	using	different	plot	 sizes.	For	 instance,	 the	State	of	
Europe’s	Forests	(FOREST	EUROPE,	2020)	that	reports	on	the	share	
of	European	countries	presenting	a	given	SR	does	so	without	con-
sideration	of	plot	size	differences.	Instead,	our	method	would	allow,	
for	example,	the	reporting	of	comparable	estimates	of	mean	SR	ob-
served	per	hectare.	Furthermore,	our	method	is	not	bound	to	NFIs	
or	to	the	diversity	of	tree	species,	but	 is	applicable	to	other	count	
data such as functional or phylogenetic diversity, thus adding value 
to already existing datasets.

4.2  |  Limitations

Our	method	relies	on	several	assumptions.	First,	we	built	rarefaction	
curves such that each aggregation step was independent of the pre-
vious	ones.	Plots	were	randomly	selected	from	the	entire	plot	pool,	
thus	not	building	on	previously	aggregated	plots.	Traditionally,	rar-
efaction	curves	are	based	on	trajectories,	where	at	each	step	a	plot	
is randomly selected and added to the already aggregated ones from 
the	previous	step	(Gotelli	&	Colwell,	2001).	The	intention	for	building	
such	 trajectories	 has	 often	 been	 to	 approximate	 the	 species–	area	
relationship in one homogeneous ecosystem or area such as an ag-
ricultural	 field	or	 a	 lake.	Since	plots	 in	 such	well-	defined	and	 spa-
tially constrained ecosystems are not independent, a trajectory- wise 
aggregation	is	appropriate.	In	our	case,	where	even	the	closest	NFI	
plots are located in different forest stands, we deemed the random 
aggregation more appropriate to reflect the independence of the ag-
gregated plots.

Second,	our	approach	relies	on	the	assumption	that	EH	is	a	key	
factor	driving	differences	in	species	composition	between	plots	(also	
termed	species	turnover	or	beta	diversity).	However,	different	envi-
ronmental	conditions	between	plots	might	not	always	translate	into	
different	species	compositions.	This	needs	to	be	considered	when	
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interpreting the country- specific degree to which our method ad-
justs rarefaction curves, and may explain why the proposed method 
works	better	in	some	countries	than	in	others,	for	instance,	as	a	re-
sult	of	forest	management.	Furthermore,	our	method	assumes	that	
the	environmental	variables	used	are	indeed	related	to	differences	
in	SR	between	aggregated	plots.	The	quality	and	resolution	of	the	
environmental	 data	 might	 not	 be	 sufficient	 to	 describe	 ecologi-
cally	meaningful	 differences	 across	 plots.	 Additionally,	 other	 vari-
ables	such	as	maximum	temperature	or	summer	precipitation	could	
be	better	suited	for	certain	regions	or	species	groups.	This	aspect	
should	be	further	investigated	to	better	understand	which	variables	
best	capture	EH	in	each	country,	and	how	much	each	EH	measure	
contributes	to	SR.

Third, in regions where the tree species composition has strongly 
been	modified	by	forest	management,	e.g.,	by	creating	monospecific	
plantations,	 environmental	 variables	 might	 be	 meaningless	 in	 ex-
plaining	differences	in	SR	between	aggregated	plots.	In	other	words,	
our	method	is	expected	to	perform	best	in	forests	with	native	spe-
cies	mixes.	Unfortunately,	the	forest	naturalness	level	could	hardly	
be	accounted	for	by	using	variables	related	to	forest	management.	
Indeed, management practices often target certain species and can 
both	increase	and	decrease	SR	depending	on	the	treatments	applied.

4.3  |  Additional confounding factors resulting from 
sampling design differences

Sampling	 design	 characteristics	 other	 than	 plot	 size	 might	 affect	
how	many	species	are	recorded	in	a	plot.	In	NFIs,	the	DBH	threshold	
from	which	 trees	are	measured	varies	 across	 countries.	We	artifi-
cially	harmonized	this	threshold	to	match	the	highest	one	 (12	cm).	
This	might	 have	 affected	SR	differently	 in	 each	 country,	 as	 grow-
ing	 conditions	 can	 greatly	 vary	 between	 regions	 and	 along	 envi-
ronmental	gradients.	Consequently,	our	rather	high	DBH	threshold	
may	hardly	be	reached	even	by	mature	trees	where	environmental	
conditions	are	 limiting	 tree	growth.	This	 certainly	occurs	 in	Spain,	
and	possibly	in	Northern	Norway	or	in	the	Swiss	and	Slovak	moun-
tainous areas where the climate is cold and growing seasons are 
short.	 Additionally,	 slowly	 growing	 species	 –		 even	 when	 able	 to	
grow	beyond	that	threshold	–		are	less	likely	to	be	detected.	Instead	
of	using	the	same	DBH	threshold	across	inventories,	our	approach	
could	 be	 tested	 with	 country-		 or	 region-	specific	 DBH	 thresholds	
adapted to the prevalent growing conditions and species composi-
tion.	Furthermore,	our	approach	 is	applicable	to	 inventories	based	
on	both	fixed-	area	and	concentric	circles	plots,	but	not	to	invento-
ries using angle count sampling such as in Germany, as this design is 
not	area-	based.

4.4  |  Broader implications

By	allowing	reliable	SR	comparisons	between	inventories	using	dif-
ferent	plot	 sizes,	 our	method	could	be	used	 to	 compile	data	 from	

several	 monitoring	 programs	 to	 report	 on	 large-	scale	 biodiversity	
patterns.	Such	comparisons	are	relevant	both	within	countries	when	
several	 inventories	 using	 different	 plot	 sizes	 are	 in	 place,	 e.g.,	 for	
different regions or ecosystems, as well as internationally, where 
differences	in	plot	sizes	are	the	rule	rather	than	the	exception.	Our	
approach	could	enable	data-	driven,	 large-	scale	comparisons	of	SR,	
for	 example,	 across	Europe.	 Such	 attempts	would	 involve	 the	 fol-
lowing	 steps:	 (1)	 build	 rarefaction	 curves	 by	 aggregating	 plots	 for	
each	 inventory	of	 interest,	 (2)	perform	 inventory-	specific	CMP	re-
gressions	to	quantify	EH	effects,	(3)	predict	SR	with	no	EH	along	the	
area	gradient,	and	(4)	use	these	predictions	to	translate	to	a	common	
plot	size.	Furthermore,	our	method	could	be	used	to	provide	private	
owners	or	land	managers	with	a	tool	informing	them	on	the	number	
of species they can expect to find in their land, given its area and 
location. This tool could help planning and making decisions on the 
potential	necessity	to	take	actions	aiming	at	increasing	biodiversity.

Our	 approach	 focuses	 on	 SR,	 but	 could	 be	 applicable	 to	 any	
other	plot-	based	count	data	having	a	non-	linear	relationship	to	area,	
such	as	the	number	of	veteran	trees,	structural	elements,	or	micro-
habitats.	Furthermore,	our	method	is	not	bound	to	NFIs,	but	could	
be	applied	to	any	other	plot-	based	inventory	or	monitoring	program.	
Given	the	large	amount	of	biodiversity	datasets	that	have	been	put	
together over the last decades, our method is in line with the grow-
ing	interest	of	the	scientific	community	in	big	data.

Further	 steps	 building	 on	 our	 approach	 could	 involve	 investi-
gating	 beta	 diversity,	 or	 other	 related	 biodiversity	 indicators	 such	
as	 functional	or	phylogenetical	diversity.	Our	models	based	on	 the	
quantification	of	EH	and	its	effect	on	rarefaction	curves	could	also	be	
further developed to investigate the effect of other environmental 
factors,	explore	further	to	which	level	these	EH	variables	are	affect-
ing	SR	depending	on	the	region	or	country,	and	compare	their	effects.	
Consequently,	large	compiled	and	plot-	size	corrected	datasets	could	
enable	unseen	research,	e.g.,	on	the	environmental	determinants	of	
SR	across	large	areas,	maybe	even	entire	continents,	including	their	
potential trends over time. Our approach has therefore a high appli-
cability	and	transferability	that	could	be	further	pursued.
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